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Uniform collapsibility of distribution dependence over a

nominal, ordinal or continuous background

Zongming Ma, Xianchao Xie and Zhi Geng

LMAM, Peking University, Beijing 100871, China

zgeng@math.pku.edu.cn

Summary. Cox and Wermuth (2003) proposed that the partial deriva-

tive of the conditional distribution function of a random variable Y given

another X can be used for measuring association between the two vari-

ables with arbitrary distributions. This paper shows the condition for

collapsibility of the association measure.

Keywords: Collapsibility; Distribution dependence; Yule-Simpson para-

dox

1. Introduction

An association measure may be reversed by omitting a background variable, which

is called Yule-Simpson Paradox (Yule, 1903; Simpson, 1951). For simplicity, we

consider three random variables Y , X and W , such as a response of interest, a

treatment and a background variable. Cox and Wermuth (2003) proposed the partial

derivative of the conditional distribution function F (y|x) of Y given X = x with

respect to a continuous X
∂F (y|x)

∂x

as a general measure of dependence of Y on X with an arbitrary density, called the

distribution dependence below. If X is discrete, the partial differentiation is replaced

by differencing between adjacent levels, that is, F (y|x + 1)− F (y|x). Further, if Y

is a binary response and X is a binary treatment, the difference becomes the risk

difference P (Y = 1|X = 1) − P (Y = 1|X = 0). If the partial derivation satisfies
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∂F (y|x)/∂x ≤ 0 for all y and x with strict inequality in a region of positive probabil-

ity, then P (Y > y|X = x) is increasing in x for all y, and we say that the distribution

dependence of Y on X is stochastically increasing with X. Similarly the distribution

dependence of Y on X conditional on W can be defined as ∂F (y|x,w)/∂x, where

F (y|x,w) is the conditional distribution function of Y given X = x and W = w.

When W is not observed or omitted, the distribution dependence of Y on X may be

reversed, that is, ∂F (y|x,w)/∂x ≤ 0 (or ≥ 0) for all y, x and w, but ∂F (y|x)/∂x > 0

(or < 0) for some y or x. Cox and Wermuth (2003) showed that either Y W |X or

X W is a sufficient condition for avoiding distribution dependence reversal after

marginalization over W .

In many investigations, such as epidemiological studies, we wish to study whether

a background variable W may influence the dependence of Y on X, or whether W is

a confounder. In a clinical study, we may also wish to discretize a continuous back-

ground variable without changing the original dependence of response on treatment.

In this paper, we discuss collapsibility of distribution dependence. We say that a

distribution dependence is collapsible if the dependence conditional on W remains

unchanged after marginalization over W . We show a condition for collapsibility of

distribution dependence, which is a revision of Cox and Wermuth’s (2003) condition

for avoiding dependence reversal.

Section 2 defines collapsibility of distribution dependence and shows a condition

for the collapsibility over a discrete or continuous background variable W . The proof

of our main result is given in Appendix.

2. Collapsibility of distribution dependence

For both cases of discrete and continuous background variables, we define homo-

geneity and collapsibility of distribution dependence as follows. We say that the

conditional distribution dependence ∂F (y|x,w)/∂x is homogeneous over the back-

ground variable W if ∂F (y|x,w)/∂x = ∂F (y|x,w′)/∂x for all y, x and w 6= w′.

The simple collapsibility of distribution dependence means that the conditional dis-

tribution dependence ∂F (y|x,w)/∂x equals the marginal distribution dependence
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∂F (y|x)/∂x for all y, x and w. When the distribution dependence is not simply

collapsible over W , we call W a moderating variable.

Definition 1. The conditional distribution dependence ∂F (y|x,w)/∂x is uni-

formly collapsible over W if ∂F (y|x,W ∈ I)/∂x = ∂F (y|x)/∂x for all y, x and

I, where I is a subset of levels for a nominal background variable W , a subset of

consecutive levels (i, i + 1, . . . , i + j) for an ordinal discrete background variable W ,

or an interval for a continuous background variable W .

When the distribution dependence is not uniformly collapsible over W , we call

W an occasional moderating variable. Assume that the distribution of Y , X and W

satisfies the regular condition, that is, differentiation and integration are exchange-

able.

Theorem 1. The distribution dependence is uniformly collapsible over W if

and only if

(a) Y W |X or

(b) X W and the distribution dependence is homogeneous over W .

In a special case where Y is a binary response, X is a binary treatment and

W is a discrete background variable, the distribution dependence is replaced by the

risk difference. Theorem 1 gives a necessary and sufficient condition for uniform col-

lapsibility of risk difference over the discrete background variable W . The condition

coincides with the condition for collapsibility of relative risks for Y with respect to

X presented by Wermuth (1987, propositions 1 and 4) and Geng (1992, theorem 2).

From definitions, it can be seen that uniform collapsibility implies simple col-

lapsibility, and simple collapsibility in turn implies no reversal. Cox and Wermuth

(2003) showed that either Y W |X or X W is a sufficient condition for avoiding re-

versal of distribution dependence. Theorem 1 shows that Y W |X is also a sufficient

condition for both uniform collapsibility and simple collapsibility, but X W is not

unless the dependence is homogeneous. Theorem 1 can also be used to group levels

of a discrete background variable or to discretize a continuous background variable.

If the domain of W can be partitioned into K regions I1, . . . , IK , and the condition

in theorem 1 is satisfied separately for each region Ik, then the background variable

3



W can be recategorized into a crude background variable with K levels such that the

dependence in each region keeps the same as the original distribution dependence.

Cox and Wermuth (2003) discussed the general case with multivariate Y , X and

W . Their argumentation also applies to our results on simple collapsibility and

confounding.
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Appendix: Proof of theorem 1

First we give the notations and lemmas to be used in proofs of theorems 1. For an

arbitrary natural number n, we partition the interval (−n, n] uniformly into 2n×2n

small intervals I(n)
i = (ai, bi] where a1 = −n, b2n×2n = n, ai+1 = bi and bi−ai = 1/2n

for i = 1, . . . , 2n × 2n. Let Γn denote the class {I(n)
i : i = 1, . . . , 2n × 2n} and Γ

denote the union
⋃∞

n=1 Γn.

Lemma 1. Suppose that I1 and I2 are two disjoint subsets of W . Then we

have:

(1) If F (y|x,W ∈ I1) = F (y|x,W ∈ I2), then F (y|x,W ∈ I1∪I2) = F (y|x,W ∈
I1);

(2) If F (y|x,W ∈ I1) = F (y|x,W ∈ I1∪I2), then F (y|x,W ∈ I2) = F (y|x,W ∈
I1 ∪ I2);

(3) If P (W ∈ Ii|x) = P (W ∈ Ii) for i = 1 and 2, then P (W ∈ I1 ∪ I2|x) =

P (W ∈ I1 ∪ I2);

(4) If P (W ∈ I1|x) = P (W ∈ I1) and P (W ∈ I1∪I2|x) = P (W ∈ I1∪I2), then

P (W ∈ I2|x) = P (W ∈ I2).

Proof. The proof is obvious and thus omitted. ¤
Lemma 2. For an arbitrary natural number n, we have:

(1) If F (y|x,W ∈ I(n+1)
α ) = F (y|x) for all α, then F (y|x,W ∈ I(n)

β ) = F (y|x)

for all β;
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(2) If P (W ∈ I(n+1)
α |x) = P (W ∈ I(n+1)

α ) for all α, then P (W ∈ I(n)
β |x) =

P (W ∈ I(n)
β ) for all β.

Proof. Let In
β = I(n+1)

α1 ∪ I(n+1)
α2 . For the result 1, we have

F (y|x,w ∈ I(n)
β ) =

P (Y ≤ y, w ∈ I(n)
β |x)

P (w ∈ I(n)
β |x)

=
P (Y ≤ y, w ∈ I(n+1)

α1 |x) + P (Y ≤ y, w ∈ I(n+1)
α2 |x)

P (w ∈ I(n)
β |x)

=
F (y|x,w ∈ I(n+1)

α1 )P (w ∈ I(n+1)
α1 |x) + F (y|x,w ∈ I(n+1)

α2 )P (w ∈ I(n+1)
α2 |x)

P (w ∈ I(n)
β |x)

=
F (y|x)[P (w ∈ I(n+1)

α1 |x) + P (w ∈ I(n+1)
α2 |x)]

P (w ∈ I(n)
β |x)

= F (y|x).

For the result 2, we have

P (W ∈ I(n)
β |x) = P (W ∈ I(n+1)

α1
|x) + P (W ∈ I(n+1)

α2
|x)

= P (W ∈ I(n+1)
α1

) + P (W ∈ I(n+1)
α2

)

= P (W ∈ I(n)
β ).

Lemma 3. Suppose that W is binary. Then the distribution dependence is

uniformly collapsible over W if and only if

(1) [F (y|x,w)− F (y|x)]∂P (W = w|x)/∂x = 0 for all y, x and w, and

(2) the distribution dependence is homogeneous over W .

Proof. For the necessity, we have

∂F (y|x)
∂x

=
∂

∂x
[P (Y ≤ y, W = 0|x) + P (Y ≤ y, W = 1|x)]

=
∂

∂x
[F (y|x,W = 0)P (W = 0|x) + F (y|x,W = 1)P (W = 1|x)]

=
∂

∂x
F (y|x,W = 0)P (W = 0|x) +

∂

∂x
F (y|x,W = 1)P (W = 1|x)

+F (y|x,W = 0)
∂

∂x
P (W = 0|x) + F (y|x,W = 1)

∂

∂x
P (W = 1|x)

=
∂F (y|x)

∂x
+ F (y|x,W = 0)

∂

∂x
P (W = 0|x) + F (y|x,W = 1)

∂

∂x
P (W = 1|x).
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Thus we have [F (y|x,W = 0) − F (y|x,W = 1)]∂P (W = w|x)/∂x = 0, that is, the

condition (1). Condition (2) is immediately from the definition of uniform collapsi-

bility.

For the sufficiency, we only need to show that ∂F (y|x)/∂x = ∂F (y|x,w)/∂x for

all y, x and w since W is binary. We have

∂F (y|x)
∂x

=
1∑

w=0

∂

∂x
[F (y|x,w)P (w|x)]

=
1∑

w=0

∂

∂x
F (y|x,w)P (w|x) +

1∑

w=0

F (y|x,w)
∂

∂x
P (w|x),

where
∑1

w=0 F (y|x,w)∂P (w|x)/∂x =
∑1

w=0 F (y|x)∂P (w|x)/∂x = 0 according to

condition (1). Thus according to the homogeneity of distribution dependence, we

have

∂

∂x
F (y|x) =

1∑

w=0

∂

∂x
F (y|x,w)P (w|x)

=
∂

∂x
F (y|x,w)

1∑

w=0

P (w|x) =
∂

∂x
F (y|x,w). ¤

Hereunder we simply call I a normal set of W if I is a set of consecutive levels

for a discrete W or I is an interval for a continuous W .

Proof of Theorem 1. For sufficiency, we consider the conditions (a) and (b)

separately. For any subset I defined in definition 1, we have

∂F (y|x,w ∈ I)
∂x

=
∂

∂x

[
P (Y ≤ y, w ∈ I, |x)

P (w ∈ I|x)

]
. (1)

If Y W |X, we get

∂

∂x

[
F (y|x)P (w ∈ I, |x)

P (w ∈ I|x)

]
=

∂F (y|x)
∂x

.

If W X, then we rewrite (1) as

1
P (w ∈ I)

∂

∂x

∫

w∈I
P (Y ≤ y|x,w)P (w|x)dw =

1
P (w ∈ I)

∫

w∈I

∂

∂x
F (y|x,w)P (w)dw.

6



Since ∂F (y|x,w)/∂x is homogeneous, it becomes

1
P (w ∈ I)

∂

∂x
F (y|x,w)

∫

w∈I
P (w)dw =

∂F (y|x,w)
∂x

for any w. Thus we showed the sufficiency.

For the necessity, we discuss separately the cases that W is binary, nominal

(including ordinal) with more than 2 levels and continuous. For the case that W is

binary, according to lemma 3, we need only to show that two conditions of lemma

3 implies (a) or (b). Suppose that (a) does not hold, that is, there exists y0 and x0

such that F (y0|x0,W = 1) − F (y0|x0) 6= 0. According to the definition of uniform

collapsibility, we have that for all x

∂

∂x
[F (y0|x,W = 1)− F (y0|x)] = 0,

that is, F (y0|x,W = 1)− F (y0|x) does not involve x. Thus we obtain that for all x

F (y0|x,W = 1)− F (y0|x) = F (y0|x0,W = 1)− F (y0|x0) 6= 0.

Condition (1) in lemma 3 implies that for all x

∂

∂x
P (W = 1|x) = 0,

which implies P (W = 1|x) = P (W = 1), i.e. X W . The homogeneity of distribu-

tion dependence is directly from the definition of uniform collapsibility. We showed

that at least one of the conditions (a) and (b) holds.

For the case that W is nominal or ordinal with more than 2 levels, we use the

method of mathematical induction to show that Y W |X or X W holds. The

homogeneity of distribution dependence is directly from the definition of uniform

collapsibility. Assume that W ∈ {1, . . . , K} (K ≥ 3). In the following proof of

the necessity, we only use subsets of W ’s consecutive levels (i, i + 1, . . . , i + j) (i.e.,

normal sets) for a nominal W in an arbitrary level ordering.

First we consider the case of K = 3. According to the above result for a binary

W , we have that for one combined level {i, i+1} and the other single level {1, 2, 3}\
{i, i + 1}, where i = 1 or 2:

F (y|x,W ∈ {i, i + 1}) = F (y|x) (2)
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or

P (W ∈ {i, i + 1}|x) = P (W ∈ {i, i + 1}), (3)

and that for two single levels i and i + 1

F (y|x,W = i) = F (y|x,W = i + 1) = F (y|x,W ∈ {i, i + 1}) (4)

or

P (W = i|x,W ∈ {i, i + 1}) = P (W = i|W ∈ {i, i + 1}). (5)

We show below that the above equations implies condition (a) or (b). For simplicity,

let (j.i) denote that equation (j) holds for i. For example, (2.1) means that (2) holds

for i = 1. Enumerate all possible equations as follows

(2.1) (2.2) (4.1) (4.2)

(3.1) (3.2) (5.1) (5.2),

and we find that at least one equation holds for each column. Thus we obtain

that at least two equations in {(2.1), (2.2), (4.1), (4.2)} hold or at least two in

{(3.1), (3.2), (5.1), (5.2)} hold. According to lemma 1, we can easily find that any

two in {(2.1), (2.2), (4.1), (4.2)} implies Y W |X, and that each pair of {(3.1), (3.2)}
and {(3.i), (5.j)} for i, j = 1, 2 implies X W . Below we show that {(5.1), (5.2)}
also implies X W . If the pair {(5.1), (5.2)} holds, we have that for i = 1 and 2

P (W = i|x)/P (W ∈ {1, 2}|x) = P (W = i)/P (W ∈ {1, 2}),

and for i = 2 and 3

P (W = i|x)/P (W ∈ {2, 3}|x) = P (W = i)/P (W ∈ {2, 3}).

Dividing them side-by-side gets P (W ∈ {1, 2}|x)/P (W ∈ {2, 3}|x) = P (W ∈
{1, 2})/P (W ∈ {2, 3}), which implies P (W ∈ {1, 2}|x)/P (W ∈ {1, 2}) = P (W ∈
{2, 3}|x)/P (W ∈ {2, 3}). From the above two equations, we have P (W = i) =

P (W = i|x)P (W ∈ {1, 2})/P (W ∈ {1, 2}|x) for i = 1, 2 and 3. Summing over W

gets P (W ∈ {1, 2})/P (W ∈ {1, 2}|x) = 1. So we get that P (W = i) = P (W = i|x)

for i = 1, 2 and 3, that is, X W .
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Next we assume that the conclusion is true for K = n. For K = n+1, we merge

the two consecutive levels of W , j and j + 1, into one level {j, j + 1} for 1 ≤ j ≤ n,

and define a new variable Wj with n levels: 1, . . . , j − 1, {j, j + 1}, j + 2, . . . , n + 1.

According to definition 1, distribution dependence is also uniformly collapsible over

Wj . Thus, for each j, we have Y Wj |X or X Wj . Since K = n + 1 ≥ 4, at least

one of Y Wj |X and X Wj holds for two different j, say j′ and j′′.

If Y Wj |X for j = j′ and j′′, we have that F (y|x,W ∈ {j′, j′+1}) = F (y|x,Wj′ =

{j′, j′ + 1}) = F (y|x,W = i) = F (y|x,Wj = i) = F (y|x) for i 6= j′ or j′ + 1, and

that F (y|x,W ∈ {j′′, j′′ + 1}) = F (y|x,Wj′′ = {j′′, j′′ + 1}) = F (y|x,W = i) =

F (y|x,Wj′′ = i) = F (y|x) for i 6= j′′ or j′′ + 1. According to lemma 1, we have

F (y|x,W = i) = F (y|x), i = 1, . . . , n + 1, that is, Y W |X.

If X Wj for j = j′ and j′′, we have that P (W ∈ {j′, j′ + 1}|x) = P (Wj′ =

{j′, j′ + 1}|x) = P (Wj = {j′, j′ + 1}) = P (W ∈ {j′, j′ + 1}) and P (W = i|x) =

P (Wj = i|x) = P (Wj′ = i) = P (W = i) for i 6= j′ or j′+1, and that P (W ∈ {j′′, j′′+
1}|x) = P (Wj′′ = {j′′, j′′ + 1}|x) = P (Wj′′ = {j′′, j′′ + 1}) = P (W ∈ {j′′, j′′ + 1})
and P (W = i|x) = P (Wj′′ = i|x) = P (Wj′′ = i) = P (W = i) for i 6= j′′, j′′+1. Also

according to lemma 1, we have that P (W = i|x) = P (W = i) for i = 1, . . . , n + 1,

that is, X W .

Thus we showed the necessity for K = n + 1, and thus we proved the necessity

for a nominal or an ordinal W .

Finally, for the case that W is continuous, we can define a discrete random

variable Zn with 2n×2n+2 levels for an arbitrary natural number n. Zn = 0 denotes

W ∈ (−∞, n], Zn = i denotes W ∈ I(n)
i for i = 1, . . . , 2n× 2n, and Zn = 2n× 2n +1

denotes W ∈ (n,∞). Uniformly collapsible of distribution dependence over W

implies uniformly collapsible over Zn. According to the above results for a discrete

W , we obtain that Y Zn|X or X Zn holds.

Y Zn|X implies that for i = 1, . . . , 2n× 2n

F (y|x,W ∈ I(n)
i ) = F (y|x,Zn = i) = F (y|x). (6)

According to lemma 2, equation (6) also holds for all Zk where k ≤ n. X Zn implies
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that for i = 1, 2, · · · , 2n× 2n,

P (W ∈ I(n)
i |x) = P (Zn = i|x) = P (W ∈ I(n)

i ). (7)

According to lemma 2, equation (7) also holds for all Zk where k ≤ n. Thus we have

that equation (6) holds for all n < ∞ or that equation (7) holds for all n < ∞. Now

we consider these two situations separately.

First consider the case that equation (6) holds for all n < ∞, that is, F (y|x,W ∈
I) = F (y|x) for all x, y and I ∈ Γ. Let f(·) denote the density of F (·). Then we also

have f(y|x,W ∈ I) = f(y|x). For any real value w0, there exists a natural number

n0 such that |w0| ≤ n0, and there also exists a sequence of intervals {In}∞n=n0
such

that for n ≥ n0

In ∈ Γn, In+1 ∈ Γn+1, In+1 ⊆ In,
∞⋂

n=n0

In = {w0},

where In denotes the closure of I. From the mean value theorem, we have

f(y|x) = f(y|x,W ∈ In) =

∫
In

f(y, w|x)dw∫
In

f(w|x)dw
=

f(y, wn1 |x) 1
2n

f(wn2 |x) 1
2n

=
f(y, wn1 |x)
f(wn2 |x)

,

which, as n →∞, tends to

f(y, w0|x)
f(w0|x)

= f(y|x,w0).

Thus we showed that f(y|x) = f(y|x,w) for any x, y and w, which means Y X|W .

Next consider the case that equation (7) holds for all n < ∞, that is, P (W ∈
I|x) = P (W ∈ I) for all x and I ∈ Γ. For any real value w0, there exists a sequence

{In}∞n=1 ⊂ Γ such that

(−∞, w0) ⊂
∞⋃

n=1

In ⊂ (−∞, w0], In

⋂
Im = ∅

for all n 6= m. Thus, we have that for all x

P (W ≤ w0|x) =
∞∑

n=1

P (W ∈ In|x) =
∞∑

n=1

P (W ∈ In) = P (W ≤ w0).

10



Thus we showed that X W . The homogeneity of distribution dependence are di-

rectly from the definition of uniform collapsibility. Thus we proved the necessity for

a continuous W . ¤
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