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Using an Instrumental Variable to Test for Unmeasured Confounding

Abstract
An important concern in an observational study is whether or not there is unmeasured confounding, that is,
unmeasured ways in which the treatment and control groups differ before treatment, which affect the
outcome. We develop a test of whether there is unmeasured confounding when an instrumental variable (IV)
is available. An IV is a variable that is independent of the unmeasured confounding and encourages a subject
to take one treatment level versus another, while having no effect on the outcome beyond its encouragement
of a certain treatment level. We show what types of unmeasured confounding can be tested for with an IV and
develop a test for this type of unmeasured confounding that has correct type I error rate. We show that the
widely used Durbin–Wu–Hausman test can have inflated type I error rates when there is treatment effect
heterogeneity. Additionally, we show that our test provides more insight into the nature of the unmeasured
confounding than the Durbin–Wu–Hausman test. We apply our test to an observational study of the effect of
a premature infant being delivered in a high-level neonatal intensive care unit (one with mechanical assisted
ventilation and high volume) versus a lower level unit, using the excess travel time a mother lives from the
nearest high-level unit to the nearest lower-level unit as an IV.
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Using an Instrumental Variable to Test for Unmeasured

Confounding

Jing Cheng∗

University of California, San Francisco (UCSF)

Scott A. Lorch

University of Pennsylvania

Dylan S. Small

University of Pennsylvania

Abstract: An important concern in an observational study is whether or not there is

unmeasured confounding, i.e., unmeasured ways in which the treatment and control groups

differ before treatment that affect the outcome. We develop a test of whether there is

unmeasured confounding when an instrumental variable (IV) is available. An IV is a variable

that is independent of the unmeasured confounding and encourages a subject to take one

treatment level vs. another, while having no effect on the outcome beyond its encouragement

of a certain treatment level. We show what types of unmeasured confounding can be tested

with an IV and develop a test for this type of unmeasured confounding that has correct

type I error rate. We show that the widely used Durbin-Wu-Hausman (DWH) test can have

inflated type I error rates when there is treatment effect heterogeneity. Additionally, we show

that our test provides more insight into the nature of the unmeasured confounding than the

DWH test. We apply our test to an observational study of the effect of a premature infant

being delivered in a high-level neonatal intensive care unit (one with mechanical assisted

ventilation and high volume) vs. a lower level unit, using the differential distance a mother
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lives from the nearest high-level unit to the nearest lower-level unit as an IV.

1 Introduction

An observational study is a comparison of treatment groups in which “the objective is to

elucidate cause-and-effect relationships [... in which it] is not feasible to use controlled

experimentation in the sense of being [able]... to assign subjects at random to different

procedures” (Cochran, 1965). A central concern in an observational study is confounding,

meaning that the treatment groups may differ before treatment in ways that affect the

outcome. If the ways in which the treatment groups differ are measured, these differences can

be adjusted for, e.g., by matching, stratification or regression (Rosenbaum, 2001). However,

there is often concern that there unmeasured ways in which the treatment groups differ that

affect the outcome, meaning that there is unmeasured confounding. Even when there is

unmeasured confounding, it is possible to obtain a consistent estimate of the causal effect

of treatment for a certain subpopulation (the compliers) if an instrumental variable (IV)

can be found. An IV is a variable that is independent of the unmeasured confounding and

encourages, but does not force a subject to take one treatment level vs. another, while

having no effect on the outcome beyond its encouragement of a certain treatment level. For

discussions of IVs, see Angrist, Imbens and Rubin (1996), Abadie (2002), Hernán and Robins

(2006), Tan (2006), Brookhart and Schneeweiss (2007), Cheng, Qin and Zhang (2009) and

Tan (2010). In this paper, we develop a method for using an IV to test whether there is

unmeasured confounding. Detecting whether there is unmeasured confounding is valuable in

many studies because if unmeasured confounding is found in a given study, it suggests that

for studying related questions, researchers should either try to measure more confounders or

seek to find IVs.

The existing and widely used test for whether there is unmeasured confounding using an

IV is the Durbin-Wu-Hausman endogeneity test, hereafter called the DWH test, indepen-
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dently proposed by Durbin (1954), Wu (1973) and Hausman (1978). The DWH test compares

an estimate of the average treatment effect under the assumption that there is no unmea-

sured confounding to an estimate of the average treatment effect using an IV that allows for

unmeasured confounding. The IV estimate of the average treatment effect is assumed to be

consistent so that a significant difference between it and the estimate that assumes no unmea-

sured confounding is taken as evidence of unmeasured confounding. The two estimates of the

average treatment effect in the DWH test assume that the treatment effect is homogeneous,

meaning that it is not associated with measured or unmeasured confounders; see Wooldridge

(2003), Hernán and Robins (2006), Basu et al. (2007), Brookhart and Schneeweiss (2007) and

Tan (2010) for discussion of homogeneity assumptions. Brookhart, Rassen and Schneeweiss

(2010) noted that if the DWH test rejects, one cannot be sure whether it is because of

unmeasured confounding or treatment effect heterogeneity.

In this paper, we discuss what types of unmeasured confounding can be tested for and

provide a test with correct type I error rate for the testable types of unmeasured confounding.

In addition to having the advantage over the DWH test of having correct type I error

rate when there is treatment effect heterogeneity, our testing approach also provides more

insight into the nature of the unmeasured confounding by providing separate tests for two

different types of unmeasured confounding. In the DWH test, these two types of unmeasured

confounding are lumped together.

The motivating application for our work is an observational study of neonatal care that

seeks to estimate the effect on mortality of a premature infant being delivered in a high-level

neonatal intensive care unit (NICU) vs. a lower-level NICU. A high-level NICU is defined

as NICU that has the capacity for sustained mechanical assisted ventilation and delivers at

least 50 premature infants per year. Estimating the effect of being delivered at a high-level

NICU is important for determining the value of a policy of regionalization of perinatal care

that aims for premature infants to be mostly delivered in high-level NICUs. (Lorch, Myers

and Carr, 2010). Regionalization of perinatal care was developed in the 1970s along with
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the expansion of neonatal technologies, but by the 1990s, regionalization began to weaken in

many areas of the United States (Howell et al., 2002). The difficulty in studying the causal

effect of a premature infant being delivered in a high-level vs. a lower-level NICU is that the

infants who are at most risk of death are most likely to be delivered at a high level NICU. In

our data from Pennsylvania (described in Section 6), the unadjusted death rate in high-level

NICUs is higher than in low-level NICUs, 2.3% vs. 1.2%. Our data contains a number of

potential confounders, including birth weight, gestational age, month prenatal care started,

mother’s comorbid conditions, mother’s socioeconomic status and mother’s insurance. After

adjustment for these measured confounders by propensity score matching, the death rate

is 0.5% lower in high-level NICUs with the difference being not significant at the .05 level

(Lorch et al., 2011). However, we are concerned about unmeasured potential confounders,

such as the severity of a mother’s comorbid condition or an infant’s antenatal condition, lab

results, fetal heart tracing results, the compliance of the mother to medical treatment and

the physician’s history with that mother. These variables are known to the physicians who

assess a mother’s probability of delivering a high-risk infant. Based on this probability, the

physicians then play a role in deciding where the mother should live. To attempt to deal

with the problem of potential unmeasured confounding, we have collected data on a proposed

IV, the excess travel time that a mother lives from the nearest high-level NICU compared

to the nearest lower-level NICU; specifically, the IV is whether or not the mother’s excess

travel time is less than or equal to 10 minutes. Excess travel time to a hospital delivering

specialty care has been used as an IV in other medical settings, such as studies of the effect

of cardiac catheterization on survival in patients who suffered an acute myocardial infarction

(McClellan et al., 1994) In obstetric care, prior work suggests that women tend to deliver at

the closest hospital with obstetric care so that we expect that excess travel time will have a

strong effect on where the infant is delivered (Phibbs, 1993). Our goal in this paper is to use

the putative IV excess travel time to test whether there is unmeasured confounding in the

study of the effect of high-level vs. lower-level NICUs. If unmeasured confounding is found,
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it suggests that previous studies of the effect of high-level vs. lower-level NICUs provide

biased estimates and that future studies of this and related medical questions should seek

to measure more confounders and/or find and measure IVs.

The rest of the paper is organized as follows. In Section 2, we set up the causal framework

and introduce notation and assumptions. In Section 3, we discuss what type of unmeasured

confounding can be tested for when there are heterogeneous treatment effects. In Section

4, we discuss the DWH test and how it performs when there are heterogeneous treatment

effects. In Section 5, we develop our method for testing unmeasured confounding. In Section

6, we apply our test to the study of the effect of high-level vs. lower-level NICUs. Finally,

we provide conclusions and discussion in Section 7.

2 The Framework

2.1 Notation

The IV Z and the treatment A are assumed to each be binary, where level 0 of the treatment

is considered the “control” (lower-level NICU in our application) and level 1 is considered to

be the “treatment” (high-level NICU in our application). We let Z denote the N -dimensional

vector of IV values for all N subjects, with individual elements Zi = z ∈ {0, 1} for subject i;

level 1 of the IV is assumed to encourage receiving the treatment compared to level 0. LetAz

be the N -dimensional vector of potential treatment under IV assignment z, with individual

element Az
i = a ∈ {0, 1} according to whether subject i would take the control or treatment

under z. We let Yz,a be the vector of potential responses that would be observed under IV

levels z and treatment levels a, with individual element Y r,a
i for subject i. {Y r,a

i } and {Ar
i}

are “potential” responses and treatments in the sense that we can observe only one value in

each set. We let Yi and Ai be the corresponding observed outcome and treatment variables

for subject i. We let Xi denote the measured confounders for subject i. We assume that Xi

includes an intercept.

5



2.2 Assumptions

We make the same assumptions as Angrist et al. (1996) within strata of the measured

confounders X.

Assumption 1: Stable unit treatment value assumption (SUTVA) (Rubin, 1986): (a) If z = z
′
, then

Az
i = Az

′

i . (b) If z = z
′
and a = a

′
, then Y z,a

i = Y z
′
,a

′

i . This assumption allows us to

write Y z,a
i and Az

i as Y z,a
i and Az

i , respectively, for subject i.

Assumption 2: IV is independent of unmeasured confounding: Conditional on X, the IV Z is indepen-

dent of the vector of potential responses and treatments (Y 0,0, Y 0,1, Y 1,0, Y 1,1, A0, A1) for

a randomly chosen subject.

Assumption 3: Exclusion restriction: For subject i, Y z,a
i = Y z

′
,a

i for all z, z
′
and a, i.e., the IV level

affects outcomes only through its effect on treatment level. This assumption allows us to

define Y a
i ≡ Y 0,a

i = Y 1,a
i for a = 0, 1.

Assumption 4: Nonzero average causal effect of Z on A: E(A1 − A0|X) ̸= 0.

Assumption 5: Monotonicity: P (A1 ≥ A0) = 1. This assumption says that there is no one who would

always do the opposite of what the IV encourages, i.e., no one who would not take the

treatment if encouraged to do so by the IV level but would take the treatment if not

encouraged by the IV level.
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Table 1: The relation of observed groups and latent compliance classes under the monotonic-
ity assumption

Zi Ai Ci

1 1 co(Complier) or at (Always-taker)
1 0 nt (Never-taker)
0 0 nt (Never-taker) or co (Complier)
0 1 at (Always-taker)

2.3 Compliance Class

Based on a subject’s joint values of potential treatment (A0
i , A

1
i ), a subject can be classified

into one of four latent compliance classes (Angrist et al., 1996):

Ci =



nt (never-taker) if (A0
i , A

1
i ) = (0, 0)

co (complier) if (A0
i , A

1
i ) = (0, 1)

at (always-taker) if (A0
i , A

1
i ) = (1, 1)

de (defier) if (A0
i , A

1
i ) = (1, 0)

Under the monotonicity assumption, there are no defiers. We can observe only one

of A0
i and A1

i , so a subject’s compliance class is not observed directly but it can be par-

tially identified based on IV level and observed treatment as shown in Table 1. Based

on Table 1, the following quantities are identified based on the observable data: P (C =

at) = P (A = 1|Z = 0), P (C = nt) = P (A = 0|Z = 1), P (C = co) = 1 − P (A =

1|Z = 0) − P (A = 0|Z = 1), E(Y 1|C = at) = E(Y |Z = 0, A = 1), E(Y 0|C = nt) =

E(Y |Z = 1, A = 0), E(Y 1|C = co) = E(Y |Z=1,A=1)−[P (C=at)/{P (C=at)+P (C=co)}]E(Y |Z=0,A=1)
P (c=co)/{P (C=at)+P (C=co)}

and E(Y 0|C = co) = E(Y |Z=0,A=0)−[P (C=nt)/{P (C=nt)+P (C=co)}]E(Y |Z=1,A=0)
P (c=co)/{P (C=nt)+P (C=co)} . The quantities

E(Y 1|C = nt) and E(Y 0|C = at) are not identified.
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3 Type of Unmeasured Confounding that Can Be Tested

For Using an IV

The average treatment effect is E(Y 1 − Y 0). Rosenbaum and Rubin (1983) and Imbens

(2004) discuss how the average treatment effect can be consistently estimated by propensity

score methods, matching methods regression methods under the following two assumptions:

0 < P (A = 1|X) < 1 (1)

(Y 1, Y 0) ⊥⊥ A | X. (2)

Assumption (1) says that the support of the covariate distributions of the treated and control

units is the same; this is called the overlap assumption. Assumption (2) is called the un-

confoundedness assumption and holds if there are no unmeasured confounders of treatment

assigment (i.e., no unmeasured variables that are associated with both treatment assignment

and outcome). When the overlap assumption (1) does not hold, but the unconfoundedness

assumption (2) holds, then the average treatment effect on the common support of the co-

variate distributions of the treated and controls subjects can be consistently estimated. For

consistent estimation of the average treatment effect, the following conditions implied by (2)

are sufficient (Heckman, Ichimura and Todd, 1998; Imbens, 2007):

E(Y 1|A = 1,X) = E(Y 1|A = 0,X), (3)

E(Y 0|A = 1,X) = E(Y 0|A = 0,X). (4)

We will show that having a valid IV Z allows us to test certain aspects of (3)-(4), but not

other aspects.

We can decompose the two expected values in (3) into parts contributed by the compliance
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classes:

E(Y 1|A = 1) =
P (C = at|X)

P (C = at|X) + P (Z = 1|X)P (C = co|X)
E(Y 1|C = at,X) +

P (Z = 1|X)P (C = co|X)

P (C = at|X) + P (Z = 1|X)P (C = co|X)
E(Y 1|C = co,X), (5)

E(Y 1|A = 0) =
P (C = nt|X)

P (C = nt|X) + P (Z = 0|X)P (C = co|X)
E(Y 1|C = nt,X) +

P (Z = 0|X)P (C = co|X)

P (C = nt|X) + P (Z = 0|X)P (C = co|X)
E(Y 1|C = co,X). (6)

Although there are a variety of ways for (5) to equal (6), the way that seems most easily

discussed with collaborators as to whether it is plausible and that is most easily generalized

to other related studies is for the expected potential outcome under treatment given the

measured confounders X to be the same for all three compliance classes:

E(Y 1|C = at,X) = E(Y 1|C = co,X) = E(Y 1|C = nt,X). (7)

As discussed in Section 2.3, the IV Z identifies E(Y 1|C = at,X) and E(Y 1|C = co,X) but

not E(Y 1|C = nt,X). Thus, we can test the following aspect of (7):

E(Y 1|C = at,X) = E(Y 1|C = co,X) for all X. (8)

Similarly, a way for (4) to hold is for

E(Y 0|C = at,X) = E(Y 0|C = co,X) = E(Y 0|C = nt,X), (9)

and the IV Z enables us to test the following aspect of (9):

E(Y 0|C = co,X) = E(Y 0|C = nt,X) for all X. (10)

To summarize, a valid IV Z enables us to test the aspects (8) and (10) of (7) and (9)
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respectively, where (7) and (9) holding together ensure that the no unmeasured confounders

assumption (2) holds.

We now discuss what information is learned from the test of (8) and (10). Suppose one

of tests rejects, e.g., suppose there is evidence that E(Y 1|C = at,X) > E(Y 1|C = co,X).

Then, in the NICU study (where Y is mortality), conditional on measured confounders X,

among the always takers and compliers, infants who are more likely to be delivered at a high

level NICU (always takers) are in worse underlying condition than infants who are less likely

to be delivered at a high level NICU (compliers). This indicates that there are unmeasured

confounders that are associated with both (i) selection of whether to go to a high level NICU

and (ii) mortality. It is still possible that the unconfoundedness assumption (2) assumption

holds through some cancellation of the effects of these unmeasured confounders with other

unmeasured confounders, but it seems unlikely. Now suppose that the (8) and (10) are true.

This does not necessarily imply that unconfoundedness (2) holds, but it does imply that

(2) holds under the following additional assumption that the average treatment effect is the

same for the different compliance classes conditional on the measured confounders X:

E(Y 1 − Y 0|C = at,X) = E(Y 1 − Y 0|C = co,X) = E(Y 1 − Y 0|C = nt,X).

4 DWH Test

The DWH test statistic TDWH is the following. Let β̂OLS denote the ordinary least squares

(OLS) estimates of the regression of Y on A and X and let β̂2SLS denote the two stage least

squares (2SLS) estimates of the effects of A and X on Y , namely β̂2SLS is computed by first

regressing A on Z,X by least squares and finding the predicted value Â and then regressing Y

on Â,X by least squares. The DWH test statistic is an assessment of the difference between

the OLS and 2SLS estimates,

TDWH = (β̂OLS − β̂2SLS)
T (Cov{β̂2SLS} − Cov{β̂OLS})+(β̂OLS − β̂2SLS), (11)
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where (Cov{β̂2SLS}−Cov{β̂OLS})+ is the Moore-Penrose pseudo-inverse of (Cov{β̂2SLS}−

Cov{β̂OLS})+. The covariances in (11) are the covariances that come for the normal linear

regression model or normal simultaneous equations model that make the homoskedasticity

assumption that V ar(Y 0|X) is equal to V ar(Y 1|X) and the same for all X, Under the null

hypothesis that the aspects (8) and (10) of unconfoundendess hold in addition to the average

treatment effect for compliers being homogeneous inX (i.e., E(Y 1−Y 0|C = co,X is the same

for all X), E(Y 0|X) being linear in X and a homoskedasticity assumption that V ar(Y 0|X)

is equal to V ar(Y 1|X) and the same for all X, the null distribution of TDWH is chi-squared

with 1 degree of freedom (Durbin, 1954; Wu, 1973; Hausman, 1978).

We now consider the properties of the DWH test when the aspects (8) and (10) hold,

but average treatment effects are heterogeneous in X. The DWH test statistic TDWH is the

difference between the ordinary least squares estimate of the treatment effect from a linear

regression of Y on A and X (namely, the coefficient on A in this linear regression) and the

two stage least squares estimate of the treatment effect that uses the IV Z, namely the

coefficient on Ê(A|X, Z) from a regression of Y on Ê(A|X, Z) and X, where Ê(A|X, Z) is

obtained from a linear regression of A on X and Z. Let β̂OLS and β̂TSLS denote the ordinary

least squares and two stage least squares treatment effect estimates respectively. Under the

null hypothesis that E(Y (0)|X) is linear in X and E(Y (1) − Y (0)|C,X) is the same for all

C,X, the asymptotic null distribution of TDWH is a mean zero normal random variable with

variance V ar(β̂TSLS)− V ar(β̂OLS), where the variances are under the null hypothesis.

Suppose (8) and (10) hold. We will show that the DWH test may still reject with

probability converging to 1 when there are heterogeneous treatment effects. This is because

β̂OLS and β̂TSLS are converging to different weighted averages of treatment effects. Let

βX = E(Y 1 − Y 0|C = co,X). Suppose E(Yi|Xi, Ai = 0) is linear in Xi and (8) and

(8) and (10) hold. Then E(Y |A = 1,X) − E(Y |A = 0,X) = βX. Then, we have the

following expression for the probability limit of the OLS estimator where E∗(A|B is the
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linear projection of A onto B, namely E∗(A|B) = αTB, α = argminα∗ E(A− (α∗)TB,

plimβ̂OLS =
E[(Ai − E∗(Ai|Xi))(Yi − E∗(Yi|Xi))]

E[(Ai − E∗(Ai|Xi))2
(12)

=
E[(Ai − E∗(Ai|Xi))Yi]

E[(Ai − E∗(Ai|Xi))2
(13)

=
E[(Ai − E∗(Ai|Xi))E(Yi|Xi, Ai)]

E[(Ai − E∗(Ai|Xi))2
(14)

=
E[(Ai − E∗(Ai|Xi))(E(Yi|Xi, Ai = 0) + βXAi]

E[(Ai − E∗(Ai|Xi))]2
(15)

=
E[(Ai − E∗(Ai|Xi))

2βX]

E[(Ai − E∗(Ai|Xi))2]
(16)

Thus, the OLS estimator converges to a weighted average of treatment effects at different

values of X, where the values of X that get the most weight are those where E[(Ai −

E∗(Ai|Xi))
2] is largest. If E(Ai|Xi) is linear inX, then E[(Ai−E∗(Ai|Xi))

2] is the conditional

variance of A given X. We use the fact that any linear function of Xi is independent of Ai−

E∗(Ai|Xi) to derive (13) and (16) and we iterate expectations over Xi and Ai to derive (14).

If E(Yi|Xi, Ai = 0) is not linear in Xi, then plimβ̂OLS equals (16) plus E[(Ai−E∗(Ai|Xi))E(Y 0|X)]
E[(Ai−E∗(Ai|Xi))2]

.

Angrist and Krueger (1999) derive similar expressions assuming E(Ai|Xi is linear in Xi.

Similarly,

plimβ̂TSLS = E[V ar(E(Ai|Xi, Zi)|Xi)βX]/E[V ar(E(Ai|Xi, Zi)|Xi)]

= E[P (C = co|Xi)
2P (Zi = 1|Xi)(1− P (Zi = 1|Xi))βX]

E[P (C = co|Xi)
2P (Zi = 1|Xi)(1− P (Zi = 1|Xi))].

Thus, the TSLS estimator converges to a weighted average of treatment effects at different

values of X, where the values of X that tend to get the most weight are those for which the

proportion of compliers is highest. A value of X at which there are no compliers gets zero

weight.

We estimated the TSLS and OLS weights for the NICU data set. Table 4 shows the
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Table 2: Comparison of population, OLS and TSLS weights

Condition Population OLS TSLS
Proportion Weight Weight

Pregnancy induced hypertension .104 .098 .080
Gestational diabetes .052 .052 .045

Pre-term labor .447 .433 .338

weights for some key variables. Mothers with pregnancy-induced hypertension, gestational

diabetes and pre-term labor are less likely to be compliers and hence receive less weight in

the instrumental variable two stage least squares analysis.

5 Test Based on IV Propensity Score Subclassification

Estimate

One approach to testing (8)-(10) would be to fit a parametric model for the data as in

Hirano, Imbens, Rubin and Zhou (2000) and test (8)-(10) through the parameters of the

model. This test might involve a large number of degrees of freedom. To gain more power

for the particular contrasts of interest, our approach is to choose a covariate distribution

F (X) that we are interested in and test

EF (Y
1|C = at,X) = EF (Y

1|C = co,X) (17)

EF (Y
0|C = nt,X) = EF (Y

0|C = co,X) (18)

Three particular covariate distributions that could be of interest are (1) the distribution of

X over the whole study population; (2) the distribution of X over the compliers; (3) the

distribution of X over the compliers and never takers. (1) is of interest for comparing a

policy that provides the treatment to everybody to a policy that provides the treatment to

nobody; this contrast is not of particular interest for the NICU study because eliminating

all high-level NICUs is not a policy that is being considered. (2) is of interest for comparing
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a policy that provides the encouraging level of the IV to everybody versus a policy that

provides the encouraging level of the IV to nobody; this contrast is of interest for the NICU

study because it compares the policy of building enough high level NICUs so that everybody

lives close to one to a policy in which there are very few high level NICUs so that everybody

lives far from one. (3) is of interest for comparing a policy that provides the treatment

to everybody to a policy that provides the not encouraging level of the IV to everybody;

this contrast is of interest for the NICU study because it compares the policy of sending all

premature infants to high level NICUs to the policy of having few high level NICUs so that

most people live far from one.

To estimate the quantities in (17)-(18), we use the approach of subclassification on the

IV propensity score of Cheng (2011). This approach is an extension to the IV setting

of subclassification on the propensity score for estimating average treatment effects under

strongly ignorable treatment assignment (Rosenbaum and Rubin, 1984). The basic idea is

that we create subclasses in which the covariate distribution of X is approximately the same

between the Z = 1 and Z = 0 groups, then estimate the quantities in (17)-(18) within the

subclass using methods that assume the IV is independent of X within the subclass and then

weight the subclass estimates appropriately to obtain overall estimates of (8)-(18).

1. We construct subclasses over which the distribution of the covariates X in the Z = 1 and

Z = 0 groups are approximately equal. To construct these subclasses, we estimate the

IV propensity score, P (Z = 1|X) and then divide the subjects by their IV propensity

scores into five subclasses. This borrows Rosenbaum and Rubin (1984)’s approach for

estimating average treatment effects under strongly ignorable treatment assignment of

subclassifying on the propensity score for treatment assignment, P (A = 1|X). Rosen-

baum and Rubin, building on results in Cochran (1968), showed that subclassifying on

the propensity score removes approximately 90% of the initial bias in X. Since we are

interested in creating subclasses that have an equal distribution between the Z = 1 and

Z = 0 groups, we use the IV propensity score instead of the usual propensity score. To
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check balance of covariates X in the Z = 1 and Z = 0 groups has been achieved, the

diagnostics suggested by Rosenbaum and Rubin (1984) and Stuart (2010) can be used;

see our application in Section 6 for an illustration.

2. Within each subclass, the IV Z is approximately independent of X and by Assumption

2 for IVs, Z is independent of any unmeasured confounders. Consequently, within the

subclass, Z can be considered to be approximately randomly assigned. For randomly

assigned IVs, Cheng (2009) developed maximum likelihood estimates of the quantities

E(Y 1|C = at), E(Y 1|C = co), E(Y 0|C = nt), E(Y 0|C = co), P (C = at), P (C = co)

and P (C = at); see Baker (2010) and Cheng (2010) for further discussion.

3. For each subclass, estimate PF (X in subclass) and weight the subclass estimates by these

probabilities to form the overall estimates. For example, for F being the distribution of

X over the whole study population, we weight the subclasses by the number of subjects

in the subclass. For F being the distribution of X over the compliers, we weight the

subclasses by P̂ (C = co|subclass)× number of subjects in subclass.

4. We use the bootstrap to obtain confidence intervals for EF (Y
1|C = at,X)−EF (Y

1|C =

co,X) and EF (Y
0|C = nt,X) − EF (Y

0|C = co,X), and check if zero is in the confi-

dence intervals; if zero is not in either confidence interval, this indicates unmeasured

confounding of the type discussed in Section 3. The bootstrap is carried out treating the

distribution of the covariates X and Z as fixed, so that the subclasses and the number of

Z = 1 and Z = 0 within each subclass are the same as the actual data for each bootstrap

iteration, and we just resample the (Y,A)|Z = 1 and (Y,A)|Z = 0 within each subclass.
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6 Application to Study of High-Level NICUs vs. Lower-

Level NICUs

We obtained birth certificates from all deliveries occurring in Pennsylvania. Each state’s

department of health linked these birth certificates to death certificates using name and date

of birth, and then de-identified the records. We then matched over 98% of birth certificates to

maternal and newborn hospital records using prior methods (references from Scott) Over 80%

of the unmatched birth certificate records were missing hospital, suggesting a birth at home

or a birthing center. The unmatched records had similar gestational age and racial/ethnic

distributions to the matched records. The Institutional Review Boards of The Children’s

Hospital of Philadelphia and the department of health in Pennsylvania approved this study.

Infants included in this study had a gestational age between 23 and 37 weeks, and a birth

weight between 400 to 8000 grams. Birth records were excluded if the birth weight was more

than 5 standard deviations from the mean birth weight for the recorded gestational age in

the cohort. There are 192,078 infants in the final cohort. The primary outcome for this

study is neonatal death, defined as any death during the initial birth hospitalization.

Baiocchi, Small, Lorch and Rosenbaum (2010) discussed a matching approach to esti-

mating the complier average causal effect, E(Y 1−Y 0|C = co), for this study. Here our focus

is on using the IV of excess travel time to test for whether there is unmeasured confounding.

The IV is Z = 1 if a mother’s excess travel time to the nearest high level NICU compared

to the nearest hospital is 10 minutes or less, Z = 0 if her excess travel time is more than

10 minutes. Discussion of IV assumptions for application. Excess travel time is correlated

with whether a mother delivers at a high level NICU because a mother typically obtains

prenatal care from and would prefer to deliver at a close by facility (Phibbs et al., 1993).

Excess travel time is unlikely to have a direct effect on the outcome because presumably, a

nearby hospital with a high level NICU only affects the baby if the baby receives care at

that hospital. The third assumption, that excess travel time is independent of unmeasured
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confounders, is plausible after controlling for measured characteristics that predict where

people live (e.g., race and socioeconomic status).

The measured confounders X include birth weight and gestational age; maternal sociode-

mographic factors, such as race, age, education, and insurance status; sociodemographic

characteristics of the zip code the mother lives in; maternal comorbid conditions such as

gestational diabetes and hypertension; prenatal care and congenital anomalies. We fit a

logistic propensity score model P (Z|X = exp(λT
X)

1+exp(λT
X)
. Following the approach of Crump,

Hotz, Imbens and Mitnik to dealing with limited overlap, we limited our study sample to

those infants with propensity scores between 0.1 and 0.9, leaving 165,868 infants. We then

divided the infants into five subclasses equally spaced along the range of propensity scores

[0.1, 0.9], namely [0.10, 0.26), [0.26, 0.42), [0.42, 0.58), [0.58, 0.74), [0.74, 0.90].

The standardized difference between the infants living near to a high level NICU (Z = 1)

and far from a high level NICU (Z = 0) before and after the subclassification are dis-

played in Table 3. The standardized difference of a covariate X before subclassification is

X̄near−X̄far√
s2X,near+s2X,far/2

(Rosenbaum and Rubin, 1985). This is the difference in means of the co-

variate between the near and far group divided by the standard deviation of the covariate,

where the standard deviation is calculated in a way that gives equal weight to the near and

far groups. The standardized difference of a covariate X after subclassification is

∑5
s=1(X̄near,s − X̄far,s)√
s2X,near + s2X,far/2

, (19)

where X̄near,s and X̄far,s are the means of the covariate X for the near and far infants in

subclass s respectively and ws is the proportion of infants in subclass s. The numerator in

(19) is the average difference in means of the covariate X between the near and far groups

within a subclass, weighted by the number of infants in the subclass. The denominator in (19)

is the standard deviation of the covariate calculated in the same way as for the standardized

difference before subclassification. The standardized differences before subclassification in
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Table 3 show that near infants had substantially lower birth weight, a later start to prenatal

care, were more likely to have non-white mothers, were less likely to have fee for service

insurance and more likely to have federal/state insurance and lived in neighborhoods with

more poverty. The standardized differences after subclassification are all less than or equal

to 0.05 (with most being 0.01 or less) indicating that the subclassification has succeeded

in balancing the covariance distribution between the near and far infants within subclasses.

Because of space limitations, Table 3 does not show the standardized differences for all

of the maternal comborbidities and complications during pregnancy and infant congenital

anomalies, but all of these covariates have standardized differences after subclassification of

0.05 or less.

The estimates and confidence intervals for the mean potential outcomes for the compli-

ance classes under the covariate distribution of the compliers are shown in Table 4. The fifth

line, E(Y 1|C = co)−E(Y 0|C = co), shows that we estimate that for compliers, attending a

high level NICU reduces the death rate by 0.8%, with a 95% confidence interval of a 0.6%

to 1.0% reduction. The sixth line, E(Y 1|C = at) − E(Y 1|C = co), displays the test of

unmeasured confounding (8). Always takers appear to have much higher death rates than

compliers who attend high level NICUs; the 95% confidence interval for the difference is 3.1%

to 3.6%. This is evidence that there is unmeasured confounding. Infants who live far away

from high level NICUs but are nevertheless delivered at high level NICUs are in substantially

worse health than infants who only deliver at a high level NICU when they live close to one

even after controlling for all of the covariates in Table 3. The seventh line, 10, displays the

test of unmeasured confounding (10). The death rates of never takers and compliers who

deliver at low level NICUs appear to be comparable, and there is not evidence of unmeasured

confounding in this dimension. Infants who would always deliver at a low level NICU no

matter whether they live near or far from a high level NICU appear to comparable in their

health to infants who would deliver at a high level NICU if they lived close to one but a low

level NICU if they lived far from a high level NICU.
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Table 3: Covariate balance before and after subclassification. The subclasses are the following ranges of

propensity scores: [0.10, 0.26), [0.26, 0.42), [0.42, 0.58), [0.58, 0.74), [0.74, 0.90]; subjects with propensity scores

less than 0.1 or greater than 0.9 are not considered. |St-dif| = absolute standardized difference. 1/0 means

1=yes, 0=no. Prenatal care month refers to month in which prenatal care began. Mother’s education scale is

a six point scale with high school graduate scored as 3 and college graduate scored as 5. For Zip Code/Census

data, fr = fraction of Zip Code. In addition to the results shown, 20 additional maternal complications during

pregnancy and ten congenital anomialies also have an absolute standardized difference of 0.05 or less.
Before Subclassification After Subclassification

Near Far |St-dif| Near Far |St-dif|
Mean Mean Mean Mean

Covariates Pregnancy and Birth
Birth Weight (grams) 2,552 2,629 0.11 2,613 2,614 0.00
Gestational Age (weeks) 35.02 35.27 0.09 35.20 35.21 0.00
Gestational Diabetes (1/0) 0.05 0.05 0.00 0.05 0.05 0.01
Preg. Induced Hypertension (1/0) 0.11 0.10 0.02 0.10 0.10 0.00
Pre-term labor (1/0) 0.45 0.44 0.03 0.44 0.45 0.00
Prenatal Care (month) 2.43 2.20 0.17 2.24 2.23 0.00
Prenatal Care Missing 0.13 0.07 0.20 0.09 0.09 0.02
Single Birth (1/0) 0.83 0.83 0.00 0.82 0.82 0.05
Parity 2.18 2.04 0.11 2.05 2.05 0.02

Mother
Mother’s Age 28.06 28.04 0.01 28.47 28.47 0.05
Mother’s Education (scale) 3.68 3.70 0.02 3.80 3.80 0.00
Mother’s Education Missing 0.03 0.01 0.14 0.02 0.02 0.00
White (1/0) 0.59 0.85 0.60 0.79 0.79 0.01
Black (1/0) 0.26 0.05 0.65 0.08 0.08 0.02
Asian (1/0) 0.02 0.01 0.08 0.01 0.01 0.00
Other Race (1/0) 0.04 0.02 0.14 0.03 0.03 0.01
Race Missing (1/0) 0.09 0.07 0.05 0.09 0.08 0.01

Mother’s Health Insurance
Fee For Service (1/0) 0.18 0.25 0.18 0.24 0.23 0.01
HMO (1/0) 0.37 0.35 0.05 0.39 0.39 0.04
Federal/State (1/0) 0.33 0.28 0.11 0.26 0.26 0.00
Other (1/0) 0.10 0.09 0.10 0.10 0.10 0.00
Uninsured (1/0) 0.01 0.02 0.04 0.01 0.01 0.00

Mother’s Neighborhood (Zip Code/Census)
Income ($1000) 40 42 0.11 44 44 0.01
Below Poverty (fr) 0.15 0.10 0.19 0.09 0.09 0.00
Home Value ($1000) 92 101 0.02 106 107 0.03
Has High School Degree (fr) 0.79 0.82 0.36 0.82 0.83 0.01
Has College Degree (fr) 0.22 0.20 0.15 0.22 0.22 0.01
Rent (fr) 0.33 0.25 0.65 0.27 0.27 0.01
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Table 4: Inferences for NICU Study Under Covariate Distribution of Compliers

Estimand Estimate 95% CI
E(Y 1|C = co) 0.002 (0.001, 0.005)
E(Y 0|C = co) 0.010 (0.009, 0.012)
E(Y 1|C = at) 0.036 (0.034, 0.037)
E(Y 0|C = nt) 0.013 (0.011, 0.014)

E(Y 1|C = co)− E(Y 0|C = co) -0.008 (-0.010, -0.006)
E(Y 1|C = at)− E(Y 1|C = co) 0.034 (0.031, 0.036)
E(Y 1|C = co)− E(Y 1|C = nt) -0.002 (-0.004, 0.001)

7 Conclusions and Discussion

We have developed a test of whether there is unmeasured confounding when an instrumental

variable (IV) is available. Our test has correct type I error rate unlike the Durbin-Wu-

Hausman (DWH) test, which can have inflated type I error rates when there is treatment

effect heterogeneity. An important additional advantage of our approach over the DWH test

is that it breaks up the test into the two parts (8)-(10), providing more information. For the

application, we found that always takers are at much higher risk of death than compliers

when both groups are delivered at high level NICUs but there is not a big difference between

the never takers and compliers when both groups are delivered at lower-level NICUs.
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