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Aging in Mice Reduces the Ability to Sustain Sleep/Wake States

Abstract
One of the most significant problems facing older individuals is difficulty staying asleep at night and awake
during the day. Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a
critical step in identifying novel therapeutic strategies to improve quality of life for the elderly. We measured
wake, non-rapid eye movement (NREM) and rapid-eye movement (REM) sleep in young (2-4 months-old)
and aged (22-24 months-old) C57BL6/NIA mice. We used both conventional measures (i.e., bout number
and bout duration) and an innovative spike-and-slab statistical approach to characterize age-related
fragmentation of sleep/wake. The short (spike) and long (slab) components of the spike-and-slab mixture
model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach,
we found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally,
spectral analysis of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal.
These combined analyses provide a window into the mechanisms underlying the destabilization of long
periods of sleep and wake and reduced vigilance that develop with aging.
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Abstract

One of the most significant problems facing older individuals is difficulty staying asleep at night and awake during the day.
Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a critical step in identifying
novel therapeutic strategies to improve quality of life for the elderly. We measured wake, non-rapid eye movement (NREM)
and rapid-eye movement (REM) sleep in young (2–4 months-old) and aged (22–24 months-old) C57BL6/NIA mice. We used
both conventional measures (i.e., bout number and bout duration) and an innovative spike-and-slab statistical approach to
characterize age-related fragmentation of sleep/wake. The short (spike) and long (slab) components of the spike-and-slab
mixture model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach, we
found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally, spectral analysis
of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal. These combined analyses provide
a window into the mechanisms underlying the destabilization of long periods of sleep and wake and reduced vigilance that
develop with aging.
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Introduction

Life expectancy is on the rise worldwide. Within the US alone, it

is estimated that 20% of the population will be over the age of 65

years by 2030 (U.S. Census Estimate). Normal aging produces

sleep fragmentation and impairs the ability to sustain wakefulness

in humans [1,2,3,4,5,6], and rodents

[7,8,9,10,11,12,13,14,15,16,17,18]. Aging has also been shown

to impact the amplitude and timing of circadian biological

rhythms [3] and reduce the homeostatic response to sleep loss

[9]. Previous studies suggest that alterations in neurotransmitter

and receptor levels in brain regions that regulate sleep/wake

underlie these age-induced disruptions in sleep. Aged animals

show lower extracellular levels of the wake promoting peptide

hypocretin (orexin) and reduced expression of hypocretin recep-

tors [19]. Orexinergic and noradrenergic neurons in aged mice

show reduced activity during the active phase [13]. These age-

related disruptions in signaling may underlie the inability to

maintain wakefulness and sleep, as well as the alterations of EEG

spectral profile that accompany normal aging. These two

hallmarks of aging have been well characterized in humans [3,6]

and rats [12]. However, few studies have investigated the effects of

normal aging on sleep in mice [9,13], and only one recent report

[9] examined the impact of aging on the spectral profile of the

EEG during sleep. To address changes in sleep with aging in mice

to lay the groundwork for future genetic studies, we studied

differences in EEG spectral profile and sleep architecture of young

and aged C57BL/6 mice, one of the most commonly used stains of

mice in genetic and pharmacological studies. The unique

architecture of rodent sleep is characterized by the uneven

distribution of short and long bouts in each behavioral state

[20,21,22], rendering average bout duration a poor descriptor of

sleep/wake structure. Here, we used an innovative statistical

approach [23] that faithfully models both components of each

behavioral state and permits the analysis of short and long bouts

simultaneously. We hypothesized that aging would impair the

ability of mice to sustain the longer bouts of sleep and wake.

Methods

Ethics Statement
All animal care and experiments were approved by the

Institutional Animal Care and Use Committee of the University

of Pennsylvania and conducted in accordance with the National

Institute of Health guidelines. Efforts were made to limit the

number of animals used in each experiment and to minimize

animal suffering using anesthetics and analgesics.
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Animals and surgery
8 young (2–4 months) and 12 old (22–24 months) male C57BL/

6NIA mice were obtained from the National Institute of Aging

mouse colony. Animals were maintained on a 12 hour light/

12 hour dark cycle with lights on (ZT 0) at 7:00 am. Food and

water were available ad libitum. All animal care and experiments

were approved by the Institutional Animal Care and Use

Committee of the University of Pennsylvania (permit # 801547)

and conducted in accordance with the National Institute of Health

guidelines. Animals were implanted with EEG and EMG

electrodes under isoflurane anesthesia and all efforts were made

to minimize animal suffering. Electrodes were held in place with

dental cement (Ketac, 3M, St Paul, MN). Electrodes consisted of

Teflon coated wires (Cooner wires, Chatsworth, CA) soldered to

gold socket contacts (Plastics One, Roanoke, VA) and pushed into

a 6-pin plastic plug (363 plug, Plastics One). The contacts were

cemented to the plug using dental cement. Animals were

connected to amplifiers using light-weight cables (363, Plastics

One) attached to a rotating commutator (SLC6, Plastics One). All

recordings were obtained using parietal electrodes (ML 61.5 mm,

AP 21.5 mm from bregma) referenced to an electrode over the

cerebellum (1.5 mm posterior of lambda). Mice were allowed to

recover from surgery for a minimum of 2 weeks. During the

second week of recovery, mice were acclimated to the cables and

to the recording chambers.

EEG recordings and analysis
EEG/EMG signals were sampled at 256 Hertz (Hz) and filtered

at 0.5–30 Hz and 1–100 Hz, respectively with 12A5 amplifiers

(Astro-Med, West Warwick, RI). Data acquisition and visual

scoring was performed using SleepSign software (Kissei Comtec,

INC, Japan). EEG/EMG recordings will be stored on the Abel lab

server and are available upon request. EEG/EMG recordings

were scored in 4-second epochs as wake, NREM, or REM by a

trained experimenter blind to age. Epochs containing movement

artifacts were included in the state totals and architecture analysis,

but excluded from subsequent spectral analysis. Spectral analysis

was performed using a fast Fourier transform (FFT; 0.5–20 Hz,

0.25 Hz resolution). Wake EEG spectra were computed during the

dark phase, when wakefulness prevails. NREM and REM EEG

spectra were calculated during the light phase, when mice are

mostly asleep. NREM slow wave activity (SWA) was computed

across the 24-hour recording period and SWA was normalized to

the last 4 hours of the light phase for each animal as previously

described [24].

Figure 1. Aged mice show reduced wakefulness during dark phase and decreased REM sleep during light phase. A. Total time (min)
spent awake for young and old mice over 24 hours (left) and during the light and dark period (right). B. Percent time spent awake shown in 863-hour
bins across light/dark cycle. Solid line represents the dark period C. Aged mice show increased NREM sleep during the dark phase. Total time spent in
NREM sleep over 24 hours (left) and during the light and dark period (right). D. Percent time spent in NREM in 3-hour bins. E. Old mice have
decreased REM sleep during the rest period. Total time spent in REM sleep for young and old mice over 24 hours (left) and during the light and dark
period. F. Percent time spent in REM sleep shown in 3-hour bins across light/dark cycle. Mean 6 standard error of the mean (s.e.m.), * p,0.05.
doi:10.1371/journal.pone.0081880.g001

Aging Fragments Sleep/Wake States
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Statistics: Student’s t-tests were used to compare wake,

NREM and REM sleep levels averaged over 24 hours. Multivar-

iate analysis of variance (MANOVA) was used on the proportion

of time spent in each state during the light phase, the dark phase

and during the 863-hour bins across 24 hours, followed by Tukey

studentized range tests to compare the 2 age groups. The same

procedure was applied to the number of bouts and the average

bout duration to compare age groups. Analyses were conducted

using either SPSS (version 17.0) or SAS (version 9.2). Tukey

studentized range tests were used to analyze raw EEG spectra for

wake, NREM and REM sleep. Student’s t-tests were used to

analyze theta peak frequency for wake and REM EEG spectra.

NREM SWA was analyzed using MANOVA followed by Tukey

studentized range tests. SWA during the light period and during

the dark phase were analyzed separately. Pearson’s correlation was

used to examine the relationship between time awake during the

dark phase and SWA during the first two hours of the subsequent

light period.

Spike and Slab Statistical Model
A spike-and-slab statistical model was also used to examine

sleep/wake microstructure. This mixture model, where short bouts

are represented by the spike and long bouts are captured by the

slab component was previously described in detail [23]. Briefly,

this approach models the sequence of unique sleep/wake states

and their duration. The spike and slab formulation is used to

generate a set of 12 descriptive summary statistics that can be

further distilled into three key parameters: 1) n, the number of

bouts of the behavioral state, conditional on the previous state 2) p,

the proportion of spikes (short bouts) 3) m, the average duration of

the slabs (long bouts).

Results

Aged mice have decreased wakefulness during the active
period

We used EEG/EMG recordings from young (2–4 months) and

old (22–24 months) mice to quantify wake, NREM and REM

Figure 2. Aging causes fragmentation of wake and NREM sleep. A. Number of bouts of wakefulness (left) and average wake bout duration
(right) during the light and dark phase. Aged mice show more bouts of wakefulness of shorter average duration during the dark phase. B. Aged mice
show fragmented NREM sleep during the dark phase. Number of NREM bouts (left) and average NREM bout duration (right) during the light and dark
phase. C. Number of REM episodes (left) and average REM bout duration during the light and dark period. Mean 6 s.e.m., * p,0.05.
doi:10.1371/journal.pone.0081880.g002

Aging Fragments Sleep/Wake States
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sleep. Aged animals showed decreased wakefulness over 24 hours

compared to young mice (Satterthwaite t-test, p = 0.039, Fig. 1A).

Aged mice spend more time awake during the light period

compared to young animals and less time awake during the dark

phase, when mice are typically active (F(2,17) = 10.84, p,0.001,

Fig. 1A). We also found that age affects the percentage of time

spent awake across the light/dark cycle (F(8,11) = 7.4, p = 0.0017,

Fig. 1B). We used Tukey studentized range tests to examine the

effect of age at 863 hour bins across the 24-hour period (Fig. 1B).

These tests revealed that aged mice have more wakefulness at the

end of the light period and show decreased wake during most of

the dark phase (Fig. 1B). Decreased wakefulness in aged mice over

24 hours was accompanied by increased NREM sleep (t-test,

p = 0.031). This increase was most obvious during the dark phase

(F(2,17) = 12.91, p,0.001, Fig. 1C). Indeed, aged mice showed

increased NREM sleep at 3 of the 4 time points during the dark

period (F(8,11) = 7.3, p = 0.002, Fig. 1D). REM sleep was overall

unchanged when averaged over 24 hours (t-test, p = 0.17, Fig. 1E).

However, aged animals showed decreased REM sleep during the

light phase (F(2,17) = 6.51, p = 0.008, Fig. 1E). When analyzed in

3 hour bins, aged animals showed decreased REM sleep during

Figure 3. Spike and slab model shows improved fit over a single distribution. Distribution of NREM to Wake bout durations are shown for
young and old mice during the light (A) and dark period (B). The solid line represents the density of the spike and slab model, and the dashed line
represents the density of the traditional gamma model. The gamma model assigns too little probability to short bouts and too much probability to
long bouts.
doi:10.1371/journal.pone.0081880.g003

Aging Fragments Sleep/Wake States
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most of the light phase and increased REM sleep during one time

point of the dark phase (F(8,11) = 4.3, p = 0.014, Fig. 1F).

Aged mice do not sustain sleep/wake states
Next, we examined sleep and wake architecture in young and

aged mice using conventional measures (i.e., number of bouts and

average bout duration) for each state. Aged mice had more bouts

of wakefulness during the dark period compared to young mice

(F(2,17) = 14.90, p = 0.0002) and the average duration of wake

bouts was shorter in old mice during the dark phase

(F(2,17) = 18.07, p,0.0001, Fig. 2A). Similarly, the number of

NREM bouts was higher in old mice during the dark period

(F(2,17) = 12.31, p = 0.0005) and the average NREM bout

duration was lower in aged animals (F(2,17) = 9.7, p = 0.0015,

Fig. 2B). The number of REM bouts was not affected by age

(F(2,17) = 2.46, p = 0.1151) and neither was the average duration

of REM bouts (F(2,17) = 2.14 , p = 0.1484, Fig. 2C). We also used

a new spike-and-slab mixture model to compare sleep/wake

microstructure in young and aged animals [23]. Typically, bout

durations have been modeled as gamma-distributed random

variables. However, we found that gamma assigns too little

probability to short bouts and too much probability to very long

bouts (Fig. 3). The short (spike) and long (slab) components of this

model permit an improved fit of the distribution of bout durations

in mice (Fig. 3). This was confirmed using BIC and Q-Q plots-

based analyses. In addition, we found that the duration of a bout

in a given state is dependent upon the previous state of the animals

(Table 1). Therefore, each state was analyzed using two models

(i.e. wake was subdivided into NREM to wake and REM to wake.

Note: REM to NREM transitions were too rare to include in this

analysis). The number of NREM to wake episodes and wake to

NREM bouts was higher in aged mice (p = 9.3561026 and

p = 6.4361025, respectively, Fig. 4A). In addition, the average

duration of the slab was shorter for both wake and NREM sleep in

aged mice (p = 1.5361025 for NREM to wake and p = 1.6761023

for wake to NREM, Fig. 4B). Thus, the major difference between

young and old mice is in the ability of old mice to sustain long

bouts of NREM sleep and long bouts of wakefulness. The

architecture of sleep/wake was only disrupted when animals were

transitioning between wake and NREM sleep. Aging did not

disrupt the architecture of REM sleep during the dark phase

(Table 2) or during the light phase (Table 3).

Aged mice show slower theta peak frequency (TPF) and
reduced slow wave activity (SWA) at low frequencies
(0.5–1.5 Hz)

We used fast Fourier transform (FFT) of EEG recordings to

examine the EEG spectral profiles during each behavioral state for

both age groups. Wake EEG spectra from both young and old

animals showed a peak in the theta frequency range but aged mice

showed reduced power in the theta range at frequencies between

8.5–9.625 Hz (Tukey Studentized range t-test, Fig. 5A). Interest-

ingly, age did not affect NREM sleep spectra, which showed a

characteristic peak in the delta (0.5–4 Hz) frequency range in both

young and aged animals (Fig. 5B). Aged mice showed higher

power for a small range of frequencies of the REM sleep spectra

(2.375–2.625, Fig. 5C). Theta peak frequency (TPF) was

determined by recording the frequency at which absolute power

was highest in the theta range (6–10 Hz). Aging slowed TPF by

about 1.5 Hz from 7.560.39 Hz to 6.0360.02 Hz in the wake

EEG spectra (Satterthwaite t-test, p = 0.0072, Fig. 5D). Similarly,

TPF was lower by about 0.34 Hz in aged mice (6.6360.05 Hz)

Table 1. Bout duration in a given state is conditional on the previous state.

Age Period NREM to Wake REM to Wake p-value REM to NREM Wake to NREM p-value

Young Light 2 4 2.09610245* 10 14 0.001*

Young Dark 2 4 6.33610219* 4.5 11 –

Old Light 2 3 1.64610240* 9 16 0.002*

Old Dark 2 5 3.96610224* 1 16 0.065

Wake and NREM bout durations were subdivided according to the previous state. Shown are the medians (in 4 second epochs) for each group. Kruskal-Wallis tests were
used to compare bout durations for young and old mice during the light and dark period.
*indicates p-values that are significant after Bonferonni correction.
doi:10.1371/journal.pone.0081880.t001

Figure 4. Aged mice are unable to sustain long bouts of wakefulness and NREM sleep. A. Number of bouts during the dark phase for
young and old mice transitioning from NREM to wake (left) and from wake to NREM (right). Aged mice show an increased number of episodes for
both states. B. Average duration of slabs (long bouts) for mice transitioning from NREM to wake (left) and wake to NREM (right). The duration of the
slabs for both transitions is reduced in aged animals. Mean 6 s.e.m., ` p,0.00625 (Bonferroni correction).
doi:10.1371/journal.pone.0081880.g004

Aging Fragments Sleep/Wake States
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compared to young (6.9760.09 Hz) in the REM spectra (t-test,

p = 0.0026, Fig. 5D). The height of the peak in the theta range was

not changed by aging during wake or REM sleep. Slow wave

activity (SWA), the spectral power of the EEG in the 0.5–4 Hz

range during NREM sleep, is the best characterized marker of

sleep intensity and changes in response to sleep loss [25]. SWA

(0.5–4 Hz) decreased over the course of the light phase

(F(11,176) = 22.59, p,0.0001, Fig. 5E), and SWA (0.5–4 Hz)

was not different between young and aged mice (F(11,176) = 1.72,

p = 0.1406, Fig. 5E). These results suggest that sleep pressure is

discharged similarly during the rest period in young and aged

mice. During the dark period, increased SWA was more

pronounced in young animals compared to aged mice

(F(11,99) = 5.58, p = 0.0009, Fig. 5E). Time spent awake during

the dark phase was not correlated with SWA (0.5–4 Hz) during

the first two hours of the subsequent light phase (Pearson’s,

R2 = 0.14, p = 0.54).

SWA in lower frequencies (0.5–1.5 Hz) is sensitive to changes in

arousal and exploratory behavior during the preceding active

period [26,27]. Thus, changes in low frequency SWA (0.5–1.5 Hz)

is indicative of altered vigilance and exploration during wakeful-

ness. We found that low frequency SWA (0.5–1.5 Hz) decreases

over the course of the light phase (F(11,165) = 16.75, p,0.0001,

Fig. 5F) and that low frequency SWA is lower during the first two

hours of the light phase in aged mice compared to young animals

(F(11,165) = 2.96, p = 0.0038, Fig. 5F). During the dark phase, age

did not affect low frequency SWA (F(11,99) = 0.87, p = 0.5086,

Fig. 5F). Interestingly, time awake during the active period was

positively correlated with low frequency SWA during the first two

hours of the subsequent light phase (Pearson’s, R2 = 0.49,

p = 0.03), suggesting that the decrease in low frequency SWA is

due in part to reduced wake during the active period. One

possibility is that aged animals have less opportunity for

exploration during the dark phase, which leads to reduced low

frequency SWA during the early part of the light phase.

Discussion

We confirmed and extended previous studies examining age-

associated changes in sleep/wake patterns with disturbances of

sleep and wakefulness in aged mice

[7,8,9,10,11,12,13,14,15,16,17,18]. We found that aged mice

have reduced wakefulness and did not sustain long periods of

wake during the active phase. Decreased wake with aging was

accompanied by increased NREM sleep and aged mice did not

sustain long periods of NREM sleep compared to young adult

animals. Using the spike and slab formulation, we found that

transitions between wakefulness and NREM sleep seem particu-

larly sensitive to the deleterious effects of aging. Interestingly,

destabilization of wakefulness and NREM sleep have also been

reported in the elderly [28,29,30]. Spectral analysis of EEG signals

Table 2. Spike-and-slab analysis, dark period.

Transition Quantity Young Old p-value

n 25.8869.06 36.00616.10 0.125

NREM to REM m 19.2264.20 20.9367.52 0.569

p 0.5560.16 0.5960.23 0.7

n 104.63±25.06 213.67±46.01* 9.3561026

NREM to Wake m 245.79±48.58 137.39±34.54* 1.5361025

p 0.7960.085 0.8160.04 0.574

n 25.8868.86 35.67616.12 0.136

REM to Wake m 363.836363.224 93.55652.70 0.019

p 0.7760.07 0.8060.08 0.437

n 130.38±31.86 249.08±59.11* 6.4361025

Wake to NREM m 26.02±5.07 18.89±3.60* 1.6761023

p 0.2760.09 0.2860.16 0.794

Spike-and-slab analysis of each state during the dark period for young and old mice. n = number of episodes, m= average duration of slabs (long bouts, in epochs),
p= probability that the animal is in a spike (short bout). Mean 6 standard deviation.
*p,0.00625 (Bonferroni correction).
doi:10.1371/journal.pone.0081880.t002

Table 3. Spike-and-slab analysis, light period.

Transition Quantity Young Old p-value

n 84.00611.28 77.00616.51 0.311

NREM to REM m 21.7461.54 22.1463.06 0.734

p 0.4560.11 0.5460.11 0.074

n 205.38649.69 224.67649.65 0.406

NREM to Wake m 90.64621.43 84.91622.02 0.571

p 0.8960.03 0.8360.06 0.025

n 80.50610.39 73.00616.73 0.275

REM to Wake m 66.29641.66 42.06617.29 0.086

p 0.8860.05 0.8660.10 0.533

n 284.88653.42 297.25658.10 0.636

Wake to NREM m 25.5264.28 23.7364.85 0.409

p 0.2260.09 0.2660.12 0.529

n 4.12561.126 4.16762.250 0.962

REM to NREM m 12.346610.995 16.584618.730 0.572

p 0.25060.250 0.31060.358 0.69

Spike-and-slab analysis of each state during the light period for young and old
mice. n = number of episodes, m= average duration of slabs (in epochs),
p= probability that the animal is in a spike. Mean 6 standard deviation. No
differences were significant during the light period.
doi:10.1371/journal.pone.0081880.t003
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revealed that activity in the theta frequency range, a correlate of

arousal, was slowed in aged animals. Slow wave activity (SWA) at

low frequencies (0.5–1.5 Hz) during the early part of the light

phase is sensitive to vigilance and exploration during the previous

period of wakefulness. We found that aged animals have decreased

SWA at low frequencies, suggesting that aging also reduces

vigilance during the active period. Taken together, our results

suggest that decreased wakefulness in aged mice is due to the

inability to sustain long periods, which causes reduced arousal and

vigilance.

Studies in the past 50 years have mapped the complex neural

circuitry that controls wakefulness and sleep. The consensus based

on these electrophysiological, genetic and lesion experiments is

that interactions between wake-producing and sleep-promoting

networks control transitions from one state to the next, whereas

separate components of these networks stabilize each state

[27,31,32,33,34]. Consistent with this idea, behavioral states can

be further classified into short and long bouts in rodents

[20,21,22,35,36,37]. Historically, the conventional measures that

are used to characterize behavioral structure measure each of

these components separately by computing the number of

transitions from one state to the next, the number of bouts for

each state and the average bout duration for wake, NREM and

REM sleep [27,38]. However, these standard metrics are

correlated with one another and do not give independent views

of each behavioral state. Our improved understanding of the

biological mechanisms governing sleep/wake structure necessitat-

ed the creation of new models that better reflect and capture the

complexity of these processes. Some recent models of sleep/wake

dynamics have used a mixture of distributions to account for the

uneven distribution of bout lengths [22,23,39,40]. Our approach

builds upon this literature, using a mixture of two distributions to

simultaneously model short and long processes for each state

transition. This spike and slab formulation permits the quantifi-

cation of all unique states, number of bouts and bout duration for

each sub-stage of wake, NREM and REM sleep. We believe this

model better reflects the complexity of sleep/wake dynamics in

mice. We used 4-second epochs to score sleep because it is the

more commonly used sleep scoring method in mice [9,24,41]. The

spike and slab formulation was previously used to confirm that

sleep/wake architecture is under genetic control [23]. Both 4-

second and 10-second epochs were used to score sleep stages in

this study and the length of the scoring epoch had no bearing on

the outcome of the spike and slab analysis [23]. Future work could

Figure 5. Aging slows theta peak frequency (TPF) and decreases slow wave activity (SWA) at low frequencies (0.5–1.5 Hz). A. Wake
EEG spectra calculated during the dark period for young and old mice. Aged animals show lower power in the higher frequency range. B. EEG spectra
for NREM sleep generated during the light period for young and aged mice. Aging did not profoundly affect NREM spectral profile. C. EEG spectra of
REM sleep computed during the light phase for young and old mice. D. Theta peak frequency (TPF) for wake and REM EEG during the dark and light
phase, respectively. TPF slowed with aging for both states. E. Slow wave activity (0.5–4 Hz, SWA) of NREM sleep for young and old mice expressed
relative to the last 4 hours of the light period ( = 100%) for each animal. Grey area denotes the dark period. F. Low frequency (0.5–1.5) SWA of NREM
sleep young and old mice expressed relative to the last 4 hours of the light period ( = 100%) for each animal. Grey area denotes the dark period. Mean
6 s.e.m., gray bar and * indicate p,0.05.
doi:10.1371/journal.pone.0081880.g005
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examine whether scoring sleep/wake using shorter and longer

epochs (i.e. 2 or 8 seconds) would affect the results of the spike and

slab analysis in the context of aging. The current study shows for

the first time that spike-and-slab analysis can be used to detect

changes in sleep/wake microstructure that accompany aging in

mice.

Using the spike and slab analysis, we found that transitions from

wake to NREM sleep and NREM sleep to wake were uniquely

altered by aging and that REM sleep architecture was unchanged

with age. These results are consistent with rodent and human

studies, which show that sleep becomes more fragmented with age

[9,10,13,28,29,30]. Changes in sleep architecture may contribute

to alterations in the quality of sleep and wake in aged animals. In

rats, hippocampal theta activity during wakefulness is indicative of

arousal, exploratory behavior, and spatial navigation [42] and we

found that aging slowed the peak in the theta component of the

wake EEG spectra. Theta activity is also prevalent during REM

sleep and aging slowed the peak in the theta component of the

REM EEG spectra. Interestingly, spatial navigation is impaired by

aging [11,43], and theta activity in the hippocampus during REM

sleep is experience dependent [44]. Hence, one possibility is that

decreased exploration in aged mice alters hippocampal theta

activity during wakefulness and during subsequent REM sleep. We

measured SWA (0.5–4 Hz), a marker of sleep pressure and SWA

at low frequencies (0.5–1.5 Hz) during NREM sleep because this

low frequency range is particularly sensitive to changes in

exploratory behavior and reductions in arousal during the

previous wake period [26,27]. For instance, animals with lesions

to the LC show reduced exploratory behavior and decreased low

frequency SWA during the early part of the light phase [26]. SWA

(0.5–4 Hz) during the dark period was lower in aged mice,

suggesting that fragmented wakefulness interfered with the normal

build up of sleep pressure during the active period. Consistent with

this possibility, we found that reduced wake time during the dark

period likely contributes to decreased low frequency SWA (0.5–

1.5 Hz) in aged mice during the following first two hours of the

light phase. Because the correlation between wake time and SWA

is fairly weak, other factors are likely to contribute to reduced

SWA in lower frequency ranges in aged mice. Theta activity and

exploratory behavior during wake can affect subsequent SWA

during sleep [45], suggesting that slower TPF and lower SWA

(,1.5 Hz) in aged animals may be linked. Studies in human and

rodents indicate that deterioration of sleep/wake with aging may

contribute to age-related cognitive impairments

[46,47,48,49,50,51,52]. Our results suggest that aging affects the

quality of wakefulness, which may also contribute to memory

deficits. Further studies would be needed to explore this possibility.

The age-related changes in sleep/wake patterns that we

observed are specific to circadian time, as previously reported

[7,9,17], indicating that changes in circadian rhythms with aging

may be linked to disruptions of sleep/wake states. Consistent with

this hypothesis, the superchiasmatic nucleus (SCN), which drives

circadian rhythm in mammals, is directly affected by aging. SCN

cells show altered firing patterns or cease to fire rhythmically in

aged mice [53,54], which may lead to reduced wakefulness during

the active period [53,55]. In addition, the rhythm of clock gene

expression in the SCN of aged mice shows reduced amplitude

[56]. Therefore, lower SCN outputs during the dark phase may

contribute to destabilization of wakefulness and NREM sleep.

In conclusion, the spike-and-slab approach, which simulta-

neously models short and long processes for all state transitions, is

useful for characterizing age-related changes in sleep/wake

microstructure. The major effect of age is to limit the durations

of NREM sleep and wake that old mice can sustain during the

active period. This provides a foundation for future investigations

of the mechanisms involved in how the maintenance of wake and

NREM sleep is altered by aging.
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