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An Optimal Acceptance Policy for an Urn Scheme

Abstract
An urn contains m balls of value -1 and p balls of value +1. At each turn a ball is drawn randomly, without
replacement, and the player decides before the draw whether or not to accept the ball, i.e., the bet where the
payoff is the value of the ball. The process continues until all m+p balls are drawn. Let V(m,p) denote the value
of this acceptance (m,p) urn problem under an optimal acceptance policy. In this paper, we first derive an
exact closed form for V(m,p) and then study its properties and asymptotic behavior. We also compare this
acceptance (m,p) urn problem with the original (m,p) urn problem which was introduced by Shepp [Ann.
Math. Statist., 40 (1969), pp. 993--1010]. Finally, we briefly discuss some applications of this acceptance
(m,p) urn problem and introduce a Bayesian approach to this optimal stopping problem. Some numerical
illustrations are also provided.
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AN OPTIMAL ACCEPTANCE POLICY FOR AN URN SCHEME∗
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Abstract. An urn contains m balls of value −1 and p balls of value +1. At each turn a ball
is drawn randomly, without replacement, and the player decides before the draw whether or not to
accept the ball, i.e., the bet where the payoff is the value of the ball. The process continues until all
m+ p balls are drawn. Let V (m, p) denote the value of this acceptance (m, p) urn problem under an
optimal acceptance policy. In this paper, we first derive an exact closed form for V (m, p) and then
study its properties and asymptotic behavior. We also compare this acceptance (m, p) urn problem
with the original (m, p) urn problem which was introduced by Shepp [Ann. Math. Statist., 40 (1969),
pp. 993–1010]. Finally, we briefly discuss some applications of this acceptance (m, p) urn problem
and introduce a Bayesian approach to this optimal stopping problem. Some numerical illustrations
are also provided.

Key words. optimal stopping, acceptance policy, urn models, Bayesian approach

AMS subject classifications. primary, 60G40; secondary, 60K99

PII. S0895480195282148

1. Introduction. In [7], Shepp considered the following optimal stopping prob-
lem: An (m, p) urn contains m balls of value −1 and p balls of value +1, and the
player is allowed to draw balls randomly, without replacement, until he wants to stop.
Shepp was interested in finding, for what m and p, if there is an optimal drawing
policy for which V (m, p) is positive, where V (m, p) is the value of this (m, p) urn
problem under an optimal drawing policy. In particular, he showed that for every
positive integer p there is a positive integer β(p) for which V (m, p) > 0 or = 0, with
0 ≤ m ≤ β(p) or m > β(p) accordingly. In [2, 3], Boyce, motivated by applications to
financial and marketing problems, also studied this (m, p) urn problem. In [4], Chen
and Hwang derived some new properties of V (m, p) that give additional insight into
the structure of the optimal drawing policy for this (m, p) urn problem.

In this paper, we study a new (m, p) urn problem that we call an acceptance
(m, p) urn problem and that can be simply described as follows: An urn contains m
balls of value −1 and p balls of value +1. At each turn a ball is drawn randomly,
without replacement, and the player decides before the draw whether or not to accept
the ball, i.e., the bet where the payoff is the value of the ball. The process will
continue until all m + p balls are drawn. We are interested in the value V (m, p)
of this acceptance (m, p) urn problem under an optimal acceptance policy. We
first derive an exact closed form for V (m, p) by a simple probabilistic argument and
obtain inequalities of the form V (m, p) < V (m+ 1, p+ 1), in the spirit of [3] and [4]
for the original urn problem. Then we study the asymptotic behavior of V (m, p). We
also compare this acceptance (m, p) urn problem with the original (m, p) urn problem.
Finally, we briefly indicate an application of this acceptance urn version of the optimal
policy problematics to (in-and-out) bond trading and introduce a Bayesian approach
to this optimal stopping problem. Some numerical illustrations are also provided.

∗Received by the editors February 27, 1995; accepted for publication (in revised form) January
30, 1997.

http://www.siam.org/journals/sidma/11-2/28214.html
†Department of Mathematics and Computer Science, University of Miami, Coral Gables, FL

33124 (chen@cs.miami.edu, zame@cs.miami.edu).
‡AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 (amo@research.att.com,

las@research.att.com).
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184 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

2. Exact solutions of V (m, p). For each nonnegative integer m and p such
that m + p ≥ 1, let A(m, p) be the expected value of accepting the current drawn
ball from the (m, p) urn, assuming an optimal acceptance policy is followed after the
current draw, and let N(m, p) be the expected value of not accepting the current
drawn ball from the (m, p) urn, assuming an optimal acceptance policy is followed
after the current draw. It is clear that V (m, p) = max{A(m, p), N(m, p)}, A(m, p) =
(p/(m+p))(1+V (m, p−1))+(m/(m+p))(−1+V (m−1, p)), and N(m, p) = (p/(m+
p))V (m, p−1)+(m/(m+p))V (m−1, p). Hence A(m, p) = (p−m)/(m+p)+N(m, p).
Therefore, V (m, p) = A(m, p) if p ≥ m and V (m, p) = N(m, p) if p < m. The optimal
acceptance policy can now be easily stated as follows: Accept the current drawn ball if
the number of +1 balls is greater than or equal to the number of −1 balls, otherwise,
do not accept the current drawn ball.

Based on the optimal acceptance policy, we will accept the drawn balls until
the number of +1 balls is less than the number of −1 balls. Since the probability
that starting from the position (m, p)(m 6= p) and reaching the position (i, i)(i >
0 and i ≤ min{m, p}) the first time is exactly equal to the probability of starting
from the position (p,m) and reaching the position (i, i) the first time, it is easy to see
that the following two theorems hold.

THEOREM 2.1. For any nonnegative integer m and p, |V (m, p) − V (p,m)| =
|m− p|.

THEOREM 2.2. If m > p,

V (m, p) =
p∑
j=1

V (j, j)
{(

m+ p− 2j − 1
m− j − 1

)

−
(
m+ p− 2j − 1

m− j

)}
p · · · (j + 1)m · · · (j + 1)

(p+m)(p+m− 1) · · · (2j + 1)

=
p∑
j=1

D(j, j)
(m− p)

(m+ p− 2j)

(
m+p−2j
m−j

)(
m+p
p

) .

Here, D(i, j) =
(
i+j
j

)
V (i, j).

THEOREM 2.3. For any positive integer m ≥ p,

V (m, p) =
p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

) =
p−1∑
i=0

(
m+p
i

)(
m+p
p

)
= p2m+p

∫ 1
2

0
xm(1− x)p−1dx,

and V (m,m) =
(
22m−1/

(2m
m

))
− 1

2
.

Proof. Let Xi be the value of the ith ball (i = 1, 2, . . . ,m + p), and let Sk =∑m+p
i=k+1Xi be the kth (tail) partial sum (k = 0, 1, 2, ...,m + p − 1). Let N = #{k :

Sk = 0, 0 ≤ k < m + p}. Notice that P (Sk+1 = 1 | Sk = 0) = 1/2 and that
whenever Sj = 1, the player gains one unit (according to the optimal policy) by time
τ , where τ = min{k | k > j and Sk = 0}. Hence, V (m, p) = 1/2E(N). Notice that
each realization of this urn problem is an arrangement of m identical −1 balls and p
identical +1 balls and that each realization occurs with probability 1/

(
m+p
p

)
. Thus,(

m+p
p

)
E(N) =

∑
wN(w), where the sum is taken over all realizations w. Next let Ti

D
ow

nl
oa

de
d 

07
/2

6/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



AN OPTIMAL ACCEPTANCE POLICY FOR AN URN SCHEME 185

be the number of realizations in which Sm+p−2i = 0. Since
∑
wN(w) =

∑p
i=1 Ti and

Ti =
(
m+p−2i
p−i

)(2i
i

)
, we have

(
m+p
p

)
E(N) =

∑p
i=1

(
m+p−2i
p−i

)(2i
i

)
. Therefore,

V (m, p) =
1
2
E(N) =

p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

) .

By the combinatorial identity,
∑p
i=1

(
m+p−2i
p−i

)(2i
i

)
= 2

∑p−1
i=0

(
m+p
i

)
; then

V (m, p) =
p−1∑
i=0

(
m+p
i

)(
m+p
p

) .
Since

l−1∑
i=0

(
n

i

)(
1
2

)n
= l

(
n

i

)∫ 1
2

0
xn−l(1− x)l−1dx,

then
p−1∑
i=0

(
m+p
i

)(
m+p
p

) = 2m+pp

∫ 1
2

0
xm(1− x)p−1dx.

By the combinatorial identity,
∑m
i=1

(2m−2i
m−i

)(2i
i

)
= 4m −

(2m
m

)
[5, p. 32]; then

V (m,m) =
22m−1(2m
m

) − 1
2
.

The proof of Theorem 2.3 is now complete.
THEOREM 2.4. For any positive integer m and p, D(m, p) = V (m, p)

(
m+p
p

)
is a

positive integer.
Proof. By Theorem 2.1, it is sufficient to consider the case when m ≥ p. By

Theorem 2.3, D(m, p) = V (m, p)
(
m+p
p

)
=
∑p−1
i=0

(
m+p
i

)
is a positive integer.

THEOREM 2.5. For any nonnegative integer m and p, V (m+1, p+1) > V (m, p).
Proof. Since V (m + 1, 1) > V (m, 0) = 0 for any nonnegative integer m, by

Theorem 2.1 we can and do assume m ≥ p ≥ 1. By Theorem 2.3,

V (m+ 1, p+ 1)− V (m, p)

= 2m+p
∫ 1

2

0
xm(1− x)p−1(4(p+ 1)x(1− x)− p

)
dx

= 2m+p
∫ 1

2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx.

It is sufficient to show that∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx > 0.

Notice that∫ 1
2

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

=
1
2

∫ 1

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx =

2p!(p+ 1)!
(2p+ 1)!

− p!p!
(2p)!

> 0.
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186 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

Let x∗ be the number in (0, 1/2) such that 4(p+1)x∗(1−x∗) = p. Then 4(p+1)x(1−
x)− p ≤ 0 if 0 ≤ x ≤ x∗ and 4(p+ 1)x(1− x)− p ≥ 0 if x∗ ≤ x ≤ 1/2. Hence,∫ 1

2

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
=
∫ 1

2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

−
∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx > 0;

that is, ∫ 1
2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
>

∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx.

By the Mean Value theorem,∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
= xm−p+1

2

∫ 1
2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

−xm−p+1
1

∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx,

where 0 ≤ x1 ≤ x∗ ≤ x2 ≤ 1/2. Hence,∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx > 0,

since m ≥ p. Therefore, V (m+ 1, p+ 1) > V (m, p) for all nonnegative integers m and
p.

THEOREM 2.6.
1. 1/(m+ p+ 1) ≤ V (m, p+ 1)− V (m, p) ≤ 1.
2. 0 ≤ V (m, p)− V (m+ 1, p) ≤ 1− (1/(m+ p+ 1)).

Proof. By Theorems 2.1 and 2.3, it is easy to check that V (m, p)−V (m+1, p) ≥ 0
and to also check that 1/(m + p + 1) ≤ V (m, p + 1) − V (m, p) is equivalent to that
V (m, p)− V (m+ 1, p) ≤ 1− (1/(m+ p+ 1)) by Theorem 2.1. Theorem 2.6 is clearly
true when n = m + p = 1. Now, by mathematical induction on n, we can prove
Theorem 2.6 easily (details are omitted).

THEOREM 2.7. For any positive integer k, V (km,m) and V (m, km) are strictly
increasing in m.

Proof. By Theorem 2.1, it is sufficient to show that V (km,m) is strictly increasing
in m. By Theorem 2.5, Theorem 2.7 holds when k = 1. Now we will prove Theorem
2.7 when k ≥ 2. By Theorem 2.3,

V (k(m+ 1),m+ 1)− V (km,m)

= 2km+m
∫ 1

2

0
xkm(1− x)m−1(2k+1(m+ 1)xk(1− x)−m

)
dx

= 2km+m
∫ 1

2

0
xm−1(1− x)m−1xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx.
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AN OPTIMAL ACCEPTANCE POLICY FOR AN URN SCHEME 187

Since m ≥ 1, xm−1(1 − x)m−1 is strictly increasing and nonnegative on the interval
[0, 1/2], 2k+1(m + 1)xk(1 − x) −m ≤ 0 if 0 ≤ x ≤ x∗, ≥ 0 if x∗ ≤ x ≤ 1/2, where
0 < x∗ < 1/2. By the Mean Value theorem, it is sufficient to show that∫ 1

2

0
xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx > 0.

By a direct computation,∫ 1
2

0
xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx

= (1/2)km−m+2
(

2(m+ 1)
km+ k −m+ 2

− m+ 1
km+ k −m+ 3

− m

km−m+ 2

)
> 0,

since k ≥ 2. Therefore, V (k(m + 1),m + 1) − V (km,m) > 0, and the proof of
Theorem 2.7 now is complete.

3. Asymptotic behavior of V (m, p). By Theorems 2.1, 2.2, and 2.3, we have
an exact closed form solution for V (m, p). However, it is only useful when m or p is
small. In this section, we will derive some asymptotic forms for V (m, p) when m and
p→∞.

THEOREM 3.1. V (m, p)→ p/(m− p) if m/p→ λ > 1.
Proof. By Theorem 2.3,

V (m, p) =
p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

)
∼ 1

2

∞∑
γ=1

(
2γ
γ

)(
λ

(1 + λ)2

)γ
=

1
λ− 1

=
p

m− p

if m/p→ λ > 1.
THEOREM 3.2.
1. V (m, p)/

√
p/2 → exp(α2/2)

∫∞
α

exp(−t2/2)dt if (m − p)/
√

2p → α ≥ 0 as
m, p→∞;

2. V (m, p)/
√
p/2→ 2α+exp(α2/2)

∫∞
α

exp(−t2/2)dt if (m−p)/
√

2p→ −α ≤ 0
as m, p→∞;

3. For any integer k, V (k + p, p)/
(√
πp/2

)
→ 1 as p→∞.

Proof. By Theorem 2.3, for m ≥ p,

V (m, p) =
p−1∑
k=0

(
m+p
i

)(
m+p
p

) = P (X ≤ p− 1)/P (X = p),

where X is a binomial random variable with parameters m+p and 1/2. By the central
limit theorem [1, p. 42],

P (X ≤ p− 1)/P (X = p)√
p/2

→ exp(α2/2)
∫ ∞
α

exp(−t2/2)dt

if (m− p)/
√

2p→ α ≥ 0 as m, p→∞.
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188 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

By Theorem 2.1, for m < p, V (m, p) = V (p,m) + p − m. Then, by the same
argument,

V (m, p)√
p/2

=
(p−m)√

p/2
+
V (p,m)√

p/2

→ 2α+ exp(α2/2)
∫ ∞
α

exp(−t2/2)dt

if (m− p)/
√

2p→ −α ≤ 0 as m, p→∞.
When α = 0,

∫∞
α

exp(−t2/2)dt =
√
π/2. Hence, V (k + p, p)/

(√
πp/2

)
→ 1 as

p→∞. The proof of Theorem 3.2 is now complete.

4. The original (m, p) urn problem. For any nonnegative integer m and p,
let V (m, p) be the value of the original (m, p) urn problem proposed by Shepp as
stated in section 1. We now want to compare V (m, p) and V (m, p).

THEOREM 4.1. V (m, 0) = V (m, 0) for all m = 0, 1, 2, . . . and V (0, p) = V (0, p) =
p and V (1, p) = V (1, p) = p2/(1 + p) for all p = 0, 1, 2, . . ..

Proof. Since, when p = 0 or m = 0 or 1 two problems are the same, they have
the same value.

THEOREM 4.2. For any positive integer m ≥ 2 and p ≥ 1, V (m, p) < V (m, p).
Proof. For any positive integer m and p,

V (m, p) = max
{

0,
p−m
p+m

+
m

p+m
V (m− 1, p) +

p

p+m
V (m, p− 1)

}
and

V (m, p) =
(p−m)+

p+m
+

m

p+m
V (m− 1, p) +

p

p+m
V (m, p− 1).

By Theorem 4.1, V (m, 0) = V (m, 0)for all m = 0, 1, 2, . . . and V (1, p) = V (1, p) =
p2/(p+ 1) for all p = 0, 1, 2, . . ..

Now by mathematical induction we can conclude that V (m, p) > V (m, p) for any
integers m ≥ 2 and p ≥ 1 since V (2, 1) = 1/3 > V (2, 1) = 0.

For the original (m, p) urn problem, if

E(m+ 1, p) =
m+ 1

m+ 1 + p

(
−1 + V (m, p)

)
+

p

m+ 1 + p

(
1 + V (m+ 1, p− 1)

)
≥ 0,

then V (m, p)− V (m+ 1, p) ≥ 1/(m+ 1 + p). However, for the acceptance (m, p) urn
problem, we do not have this inequality. For instance, V (1, 1)−V (2, 1) = 1/2−1/3 =
1/6 < 1/3.

In the original (m, p) urn problem, the last ball drawn, under the optimal drawing
policy, is always a +1 ball. Similarly, we have the following theorem in the acceptance
(m, p) urn problem.

THEOREM 4.3. In the acceptance (m, p) urn problem, the last ball accepted under
the optimal acceptance policy is always a +1 ball.

Proof. Under the optimal acceptance policy, one will accept the current drawn
ball if and only if the number of +1 balls is greater than or equal to the number of
−1 balls. Now if the current drawn one is a −1 ball, then the number of +1 balls
will be still greater than the number of −1 balls. Hence, the player will accept the
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AN OPTIMAL ACCEPTANCE POLICY FOR AN URN SCHEME 189

next drawn ball until he gets a +1 ball. Thus, a −1 ball is never the last accepted
ball.

THEOREM 4.4.

lim
p→∞

(V (m, p+ 1)− V (m, p)) = lim
p→∞

(V (m, p)− V (m+ 1, p)) = 1,

lim
p→∞

(V (m, p+ 1)− V (m, p)) = lim
p→∞

(V (m, p)− V (m+ 1, p)) = 1.

Proof. Since limm→∞ V (m, p) = 0 for any fixed p,

lim
p→∞

(
V (m, p+ 1)− V (m, p)

)
= 1 + lim

p→∞

(
V (p+ 1,m)− V (p,m)

)
= 1.

Similarly,

lim
p→∞

(
V (m, p)− V (m+ 1, p)

)
= 1 + lim

p→∞

(
V (p,m)− V (p,m+ 1)

)
= 1.

For any nonnegative integer m and p, define

∆2Vp(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p),
∆2Vm(p) = V (m, p+ 2) + V (m, p)− 2V (m, p+ 1),

∆2V (m, p) = V (m+ 2, p) + V (m, p+ 2)− 2V (m+ 1, p+ 1),

and define ∆2V p(m), ∆2V m(p), and ∆2V (m, p) accordingly.
In [4], Chen and Hwang proved that ∆2Vp(m) ≥ 0, ∆2Vm(p) ≥ 0, and ∆2V (m, p)

≥ 0. The next theorem shows that ∆2V p(m) > 0, ∆2V m(p) > 0, and ∆2V (m, p) > 0,
for all positive integers m and p.

THEOREM 4.5. For any positive integer m and p, ∆2V m(p) > 0, ∆2V p(m) >
0,and ∆2V (m, p) > 0.

Proof. By definition, ∆2V p(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p).
Case 1. Suppose that m ≥ p; then by Theorem 2.3,

∆2V p(m) = 2m+p+2p

∫ 1
2

0
xm+2(1− x)p−1dx+ 2m+pp

∫ 1
2

0
xm(1− x)p−1dx

−2m+p+2p

∫ 1
2

0
xm+1(1− x)p−1dx

= 2m+pp

∫ 1
2

0
xm(1− x)p−1(4x2 − 4x+ 1)dx > 0.

since m ≥ 1 and p ≥ 1.
Case 2. Suppose that p = m+ 1; then by Theorems 2.1 and 2.3,

∆2V p(m) = V (m+ 2,m+ 1) + V (m,m+ 1)− 2V (m+ 1,m+ 1)

= V (m+ 2,m+ 1) + V (m+ 1,m) + 1− 2V (m+ 1,m+ 1)

=
22m+2(2m+3
m+1

) +
22m(2m+1
m

) − 22m+2(2m+2
m+1

)
= 22m+1(m+ 1)!(m+ 1)!/(2m+ 3)! > 0.
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190 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

Case 3. Suppose that p ≥ m+ 2; then by Theorems 2.1 and 2.3,

∆2V p(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p)
= V (p,m+ 2) + V (p,m)− 2V (p,m+ 1)

= (m+ 2)2m+p+2
∫ 1

2

0
xp(1− x)m+1dx+m2m+p

∫ 1
2

0
xp(1− x)m−1dx

−(m+ 1)2m+p+2
∫ 1

2

0
xp(1− x)mdx

= 2m+p
∫ 1

2

0
xp(1− x)m−1(4(m+ 2)(1− x)2 − 4(m+ 1)(1− x) +m

)
dx.

Notice that g(m) = 4(m + 2)(1− x)2 − 4(m + 1)(1− x) + m is strictly increasing in
m for all 0 ≤ x ≤ 1/2 and g(0) ≥ 0 if 0 ≤ x ≤ 1/2. Hence,

2m+p
∫ 1

2

0
xp(1− x)m−1(4(m+ 2)(1− x)2 − 4(m+ 1)(1− x) +m

)
dx > 0.

∆2V m(p) > 0 and ∆2V (m, p) > 0 can be proved similarly.
Based on Theorems 2.1, 2.3, and 2.5, we can also prove the following interesting

theorems.
THEOREM 4.6. For any nonnegative integer m and p,

2V (m, p) < V (m, p) + V (m+ 1, p+ 1)
< V (m+ 1, p) + V (m, p+ 1) ≤ 2V (m+ 1, p+ 1).

Proof. By Theorem 2.7, V (m, p) < V (m + 1, p + 1), and 2V (m, p) < V (m, p) +
V (m+ 1, p+ 1).

Case 1. If m = 0, then

V (m+ 1, p) + V (m, p+ 1) = V (1, p) + V (0, p+ 1) = p+ 1 + p2/(p+ 1),

V (m, p) + V (m+ 1, p+ 1) = V (0, p) + V (1, p+ 1) = p+ (p+ 1)2/(p+ 2),

and

2V (m+ 1, p+ 1) = 2V (1, p+ 1) = 2(p+ 1)2/(p+ 2).

It is easy to see that

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

Case 2. If p = 0, then

V (m, p) + V (m+ 1, p+ 1) = V (m, 0) + V (m+ 1, 1) = 1/(m+ 2),

V (m+ 1, p) + V (m, p+ 1) = V (m+ 1, 0) + V (m, 1) = 1/(m+ 1),

and

2V (m+ 1, p+ 1) = 2V (m+ 1, 1) = 2/(m+ 2).
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AN OPTIMAL ACCEPTANCE POLICY FOR AN URN SCHEME 191

Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) ≤ V (m+ 1, p+ 1).

Now we assume that m ≥ 1 and p ≥ 1.
Case 3. If m ≥ p+ 1, then by Theorem 2.3

V (m, p)− V (m+ 1, p) = 2m+pp

∫ 1
2

0
xm(1− x)p−1(1− 2x)dx

and

V (m, p+ 1)− V (m+ 1, p+ 1)

= 2m+p+1(p+ 1)
∫ 1

2

0
xm(1− x)p(1− 2x)dx

= 2m+p(p+ 1)
∫ 1

2

0
xm(1− x)p−1(1− 2x)(2− 2x)dx

> 2m+pp

∫ 1
2

0
xm(1− x)p−1(1− 2x)dx.

Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1).

On the other hand,

2V (m+ 1, p+ 1)− V (m+ 1, p)− V (m, p+ 1)
= ((m− p)/(m+ p+ 2))V (m, p+ 1)− ((m− p)/(m+ p+ 2))V (m+ 1, p) > 0.

Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

Case 4. If m = p, then

V (m+ 1, p+ 1) = V (m+ 1,m+ 1) = 1/2 V (m+ 1,m) + 1/2 V (m,m+ 1).

Hence,

V (m,m) + V (m+ 1,m+ 1) < 2V (m+ 1,m+ 1) = V (m,m+ 1) + V (m,m+ 1).

Case 5. If m < p, then

V (m+ 1, p) + V (m, p+ 1) = V (p,m+ 1) + V (p+ 1,m) + 2p− 2m,

V (m, p) + V (m+ 1, p+ 1) = V (p,m) + V (p+ 1,m+ 1) + 2p− 2m,

and

2V (m+ 1, p+ 1) = 2V (p+ 1,m+ 1) + 2p− 2m.

By Case 3,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

The proof of Theorem 4.6 is now complete.
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192 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

By Theorem 2.5,

V (m, p) < V (m+ 1, p+ 1) < V (m+ 2, p+ 2)

for all nonnegative integers m and p. The next theorem reveals that for all nonnegative
integers m and p, V (m+ k, p+ k) is a concave function of k.

THEOREM 4.7. For any nonnegative integer m and p, V (m, p)+V (m+2, p+2) <
2V (m+ 1, p+ 1).

Proof. By Theorem 2.1,

V (m, p)+V (m+2, p+2)−2V (m+1, p+1) = V (p,m)+V (p+2,m+2)−2V (p+1,m+1)

if m < p. Since it is easy to see that Theorem 4.7 is true when p = 0, we will assume
m ≥ p ≥ 1 in the following proof. Now for any positive integer m and p, we write
V (m, p) = V (n+ p, p), where n = m− p ≥ 0. By Theorem 2.3,

V (n+ p, p) = 2n+2pp

∫ 1
2

0
xn+p(1− x)p−1dx

= 2n
∫ 1

2

0
xn(1− x)−1p

(
4x(1− x)

)p
dx

=
1
2

∫ 1

0
g(t)ptpdt,

where g(t) =
(
1−
√

1− t
)n(1 +

√
1− t

)−1(1− t)−1/2. Hence,

V (n+ p+ 2, p+ 2)− 2V (n+ p+ 1, p+ 1) + V (n+ p, p) =
1
2

∫ 1

0
g(t)h(t)dt,

where h(t) = (p+2)tp+2−2(p+1)tp+1 +ptp. Notice that h(t) ≥ 0 if 0 ≤ t ≤ p/(p+2)
and h(t) ≤ 0 if p/(p+ 2) ≤ t ≤ 1. Also notice that∫ 1

0
h(t)dt = (p+ 2)/(p+ 3)− 2(p+ 1)/(p+ 2) + p/(p+ 1) < 0.

Hence,

V (n+ p+ 2, p+ 2) + V (n+ p, p)− 2V (n+ p+ 1, p+ 1)

=
1
2

∫ 1

0
g(t)h(t)dt =

1
2

∫ t∗

0
g(t)h(t)dt+

1
2

∫ 1

t∗
g(t)h(t)dt,

where t∗ = p/(p + 2). Hence, by the Mean Value theorem, 1/2
∫ t∗

0 g(t)h(t)dt =

1/2g(t1)
∫ t∗

0 h(t)dt and 1/2
∫ 1
t∗ g(t)h(t)dt = 1/2g(t2)

∫ 1
t∗ h(t)dt, where 0 < t1 < t∗ <

t2 < 1. Since g is strictly increasing in t, 0 ≤ t ≤ 1, 0 < g(t1) < g(t2). Since,
0 <

∫ t∗
0 h(t)dt < −

∫ 1
t∗ h(t)dt, g(t1)

∫ t∗
0 h(t)dt < −g(t2)

∫ 1
h∗ h(t)dt. Therefore,

V (n+ p+ 2, p+ 2) + V (n+ p, p)− 2V (n+ p+ 1, p+ 1)

=
1
2
g(t1)

∫ t∗

0
h(t)dt+

1
2
g(t2)

∫ 1

t∗
h(t)dt < 0,

and the proof of Theorem 4.7 is now complete.
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5. A variation of the acceptance (m, p) urn problem. In the stock market,
investors try to sell if the future price will go down and try to buy if the future price
will go up, so the following variation of the acceptance (m, p) urn problem will be a
suitable model.

An urn contains m balls of value −1 and p balls of value +1. Each turn a ball is
drawn randomly, without replacement, and the player decides before the draw whether
or not to accept and guess the ball. If he accepts and guesses correctly he gets a +1;
if he accepts and guesses incorrectly he gets a −1. The process continues until all
m+ p balls are drawn.

Let W (m, p) denote the value of this new variation. Let A0(m, p) be the expected
value of accepting the current drawn ball from the (m, p) urn and guessing it is a
−1 ball, assuming an optimal accepting and guessing policy is followed after the
current one. Let A1(m, p) be the expected value of accepting the current drawn ball
from the (m, p) urn and guessing it is a +1 ball, assuming an optimal accepting and
guessing policy is followed after this one. Let A(m, p) = max{A0(m, p), A1(m, p)},
and let N(m, p) be the expected value of not accepting the current drawn ball from
the (m, p) urn, assuming an optimal accepting and guessing policy is followed. It is
obvious that W (m, p) = max{A(m, p), N(m, p)}. Since A0(m, p) = (m/(m + p))

(
1 +

W (m − 1, p)
)

+ (p/(m + p))
(
−1 + W (m, p − 1)

)
and A1(m, p) = (m/(m + p))

(
−1 +

W (m − 1, p)
)

+ (p/(m + p))
(
1 + W (m, p − 1)

)
, A0(m, p) < A1(m, p),= A1(m, p), or

> A1(m, p) accordingly as m > p = p, or < p. Hence,

A(m, p) = (1/(m+ p))
(
|m− p|+mW (m− 1, p) + pW (m, p− 1)

)
≥ N(m, p) = (1/(m+ p))

(
mW (m− 1, p) + pW (m, p− 1)

)
,

since |m − p| ≥ 0. Therefore W (m, p) = A(m, p) = (1/(m + p))
(
|m − p| + mW (m −

1, p) + pW (m, p − 1)
)
. The optimal guessing policy is to guess that it is a −1 ball if

m > p, guess that it is a +1 ball if m < p, and guess randomly if m = p. If balls of
value +1 mean that the price will go up and balls of value −1 mean that the price will
go down, then guessing +1 means to buy and guessing −1 means to sell. The optimal
guessing policy is consistent with the optimal practice of investors. The following
theorems can be proved.

THEOREM 5.1. For any nonnegative integer i and j, W (i, j) = W (j, i).
THEOREM 5.2. For any nonnegative integer i and j, W (i, j) = V (i, j) + V (j, i).

6. A Bayesian approach to the acceptance (m, p) urn problem. In a
financial or marketing problem, the total number of balls is usually known but the
number of balls of value−1 is unknown and is a random variable. A Bayesian approach
to this optimal stopping problem would be appropriate.

Now let n = m + p be the total number of balls in the urn, and let θ be the
initial prior distribution of the random variable m (number of balls of value −1). Let
Nn(θ) denote the expected value of not accepting the current drawn ball from the urn,
assuming an optimal Bayesian acceptance policy is followed, and let An(θ) denote the
expected value of accepting the current drawn ball from the urn, assuming an optimal
Bayesian acceptance policy is followed. Let V n(θ) = max{Nn(θ), An(θ)} denote the
value of the urn with n balls and the prior distribution θ.

Let x1 be the value of the first drawn ball. It is easy to see that An(θ) =
∫ (
x1 +

V n−1(θ(x1))
)
θ(dx1) and Nn(θ) =

∫
V n−1(θ(x1))θ(dx1). Here θ(x1) is the posterior

distribution of the number of balls of value −1 after the first draw given that X1 = x1.
Since An(θ) ≥ Nn(θ) if and only if

∫
x1θ(dx1) = θ(X1 = 1) − θ(X1 = −1) ≥ 0,

one would accept the current drawn ball if θ(X1 = 1) ≥ θ(X1 = −1). Therefore, the

D
ow

nl
oa

de
d 

07
/2

6/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



194 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

optimal Bayesian acceptance policy can be simply stated as follows: for k = 1, 2, . . . , n,
the player will accept the kth drawn ball if and only if θ(Xk = 1 | x1, x2, . . . , xk−1) ≥
θ(Xk = −1 | x1, x2, . . . , xk−1) where θ(· | x1, . . . , xk−1) is the posterior distribution
of the number of −1 balls given that X1 = x1, X2 = x2, . . . , Xk−1 = xk−1.

Now suppose that the initial prior distribution θ of m (the number of −1 balls)
is uniform over the set {0, 1, 2, . . . , n}. Since

∑k
i=1Xi is a sufficient statistic for the

unknown parameter m, θ(Xk = 1 |
∑k−1
i=1 Xi) ≥ θ(Xk = −1 |

∑k−1
i=1 Xi) if an only if∑k−1

i=1 Xi ≥ 0. The player will accept the kth drawn ball if and only if
∑k−1
i=1 Xi ≥ 0.

It is worth noticing that the character of the optimal Bayesian acceptance policy is
similar to that of the optimal acceptance policy of the non-Bayesian urn problem.
However, when m is known, under the optimal acceptance policy the ball accepted
last is always a +1, but under an optimal Bayesian acceptance policy the ball accepted
last is always a −1 except for the nth ball.

The following are values of V n(θ) when θ is uniform:
n = 1, V n(θ) = 0,
n = 2, V n(θ) = 1/6,
n = 3, V n(θ) = 1/3,
n = 4, V n(θ) = 17/30.

Notice that E(m | n = 2) = 1, but V 2(θ) = 1/6 < V (1, 1) = 1/2; E(m |
n = 4) = 2, but V 4(θ) = 17/30 < V (2, 2) = 5/6. These facts are expected since
we have full information about an acceptance (m, p) urn and we have only partial
information about a random acceptance (m, p) urn, i.e., when m is a random variable.
Furthermore, V n(θ) is nondecreasing in n since the player has more times to decide
whether or not to accept.

7. Application and numerical illustration. The acceptance (m, p) urn model
studied above can be useful in the following financial situation. Suppose that we ex-
pect there will be m downs and p ups in the stock price (or bond price). Suppose
that the up or down will be on an equal scale. We buy the stock and sell it at the
next time unit. If the price goes up one unit we make a profit; otherwise we lose. Our
goal is to maximize the gain. Based on our acceptance (m, p) urn model, we should
buy the stock if and only if the number of the ups is greater than the number of the
downs. Otherwise we should not have any trading.

The variation of the acceptance (m, p) urn model discussed in section 5 can be
used in the following situation. Suppose that we expect that there will be m downs
and p ups in the stock price. If we know the price will be up, certainly we should
buy the stock and sell later. If we know the price will be down, we should sell the
stock and buy back later. Our goal is to maximize the gain between “in and out.”
The optimal strategy will be that “buy now sell later” if the number of the ups is
greater than the number of the downs; conversely, “sell now and buy back later” if
the number of the ups is less than the number of the downs.

Certainly, the numbers of the ups and downs are not known, and they are random.
Therefore, the Bayesian approach to the acceptance (m, p) urn model would be much
more suitable to the financial application. The details will be presented in another
article.

The following three tables of values of V (m, p), V (m, p), and W (m, p) are given
for the sake of comparison.

Acknowledgment. We would like to thank the referee for his invaluable com-
ments which led to a simpler and more intuitive proof of Theorem 2.3, and also for
correcting a mistake in Theorem 3.2.
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TABLE 1
V (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.10 7.20 6.31 5.43 4.58 3.75 2.95 2.21 1.53
8 8 7.11 6.22 5.35 4.49 3.66 2.86 2.11 1.43 0.84
7 7 6.13 5.25 4.39 3.56 2.76 2.01 1.34 0.66 0.23
6 6 5.14 4.29 3.45 2.66 1.91 1.23 0.66 0.23 0
5 5 4.17 3.33 2.54 1.79 1.12 0.55 0.15 0 0
4 4 3.20 2.40 1.66 1.00 0.44 0.07 0 0 0
3 3 2.25 1.50 0.85 0.34 0 0 0 0 0
2 2 1.33 0.67 0.20 0 0 0 0 0 0
1 1 0.50 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

TABLE 2
V (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.10 7.22 6.36 5.53 4.73 3.99 3.30 2.70 2.20
8 8 7.11 6.24 5.41 4.60 3.85 3.16 2.55 2.05 1.70
7 7 6.13 5.28 4.47 3.70 3.00 2.39 1.89 1.55 1.30
6 6 5.14 4.32 3.55 2.83 2.22 1.72 1.39 1.16 0.99
5 5 4.17 3.38 2.66 2.03 1.53 1.22 1.00 0.85 0.73
4 4 3.20 2.47 1.83 1.33 1.03 0.83 0.70 0.60 0.53
3 3 2.25 1.60 1.10 0.83 0.66 0.55 0.47 0.41 0.36
2 2 1.33 0.83 0.60 0.47 0.38 0.32 0.28 0.24 0.22
1 1 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10
0 0 0 0 0 0 0 0 0 0 0

TABLE 3
W (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.20 7.44 6.72 6.06 5.46 4.98 4.60 4.40 4.40
8 8 7.22 6.48 5.82 5.20 4.70 .4.32 4.10 4.10 4.40
7 7 6.26 5.56 4.94 4.40 4.00 3.78 3.78 4.10 4.60
6 6 5.28 4.64 4.10 3.66 3.44 3.44 3.78 4.32 4.98
5 5 4.34 3.76 3.32 3.06 3.06 3.44 4.00 4.70 5.46
4 4 3.40 2.94 2.66 2.66 3.06 3.66 4.40 5.20 6.06
3 3 2.50 2.20 2.20 2.66 3.32 4.10 4.94 5.82 6.72
2 2 1.66 1.66 2.20 2.94 3.76 4.64 5.56 6.48 7.44
1 1 1.00 1.66 2.50 3.40 4.34 5.28 6.26 7.22 8.20
0 0 1 2 3 4 5 6 7 8 9
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