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Sets Uniquely Determined by Projections on Axes I. Continuous Case

Abstract
This paper studies sets S in Rn which are uniquely reconstructible from their hyperplane integral projections
Pi(xi ;S) = ∬ . . . ∫ΧS ( {x1, . . . ,xi, . . . ,xn) dx1 . . . dxi - 1 dxi + 1 . . .dxn onto the n coordinate axes of Rn. It is
shown that any additive set S = {x = (x1, . . .,xn) : ∑i = 1n fi(xi)≧0}, where each fi(xi) is a bounded measurable
function, is uniquely reconstructible. In particular, balls are uniquely reconstructible. It is shown that in R2 all
uniquely reconstructible sets are additive. For n≧3, Kemperman has shown that there are uniquely
reconstructible sets in Rn of bounded measure that are not additive. It is also noted for n≧3 that neither of the
properties of being additive and being a set of uniqueness is closed under monotone pointwise limits.

A necessary condition for S to be a set of uniqueness is that S contain no bad configuration. A bad
configuration is two finite sets of points T1 in Int(S) and T2 in Int(Sc), where Sc=Rn - S, such that T1 and T2

have the same number of points in any hyperplane xi = c for 1≦ i ≦n, and all c ∈ R2. We show that this
necessary condition is sufficient for uniqueness for open sets S in R2.

The results show that prior information about a density f in R2 to be reconstructed in tomography (namely if f
is known to have only values 0 and 1) can sometimes reduce the problem of reconstructing f to knowing only
two projections of f. Thus even meager prior information can in principle be of enormous value in
tomography.
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SETS UNIQUELY DETERMINED BY PROJECTIONS ON
AXES I. CONTINUOUS CASE*

P. C. FISHBURN’, J. C. LAGARIAS’, J. A. REEDS, AND L. A. SHEPP"

Abstract. This paper studies sets S in " which are uniquely reconstructible from their hyperplane
integral projections Pi(xi S) Xs(X ", xi, , x,,) dxt dxi_ dxi+t dx,, onto the n coor-
dinate axes of I". It is shown that any additive set 5;= {x= (x,... ,xn): i’=tf/(xi)->- 0}, where each fi(xi)
is a bounded measurable function, is uniquely reconstructible. In particular, balls are uniquely reconstructible.
It is shown that in I all uniquely reconstructible sets are additive. For n => 3, Kemperman has shown that
there are uniquely reconstructible sets in I" of bounded measure that are not additive. It is also noted for
n => 3 that neither of the properties of being additive and being a set of uniqueness is closed under monotone
pointwise limits.

A necessary condition for S to be a set of uniqueness is that S contain no bad configuration. A bad
configuration is two finite sets of points T in Int (S) and T2 in Int (S"), where S" ="-S, such that T
and T have the same number of points in any hyperplane xi c for <- -< n, and all c 1. We show that
this necessary condition is sufficient for uniqueness for open sets S in Ia.

The results show that prior information about a density f in to be reconstructed in tomography
(namely if f is known to have only values 0 and 1) can sometimes reduce the problem of reconstructing f
to knowing only two projections off. Thus even meager prior information can in principle be of enormous
value in tomography.

Key words, projections, uniqueness, additive sets, probability

AMS(MOS) subject classifications. 05B, 53A, 60B, 62H

1. Introduction. Horn [4] asked in connection with a problem of robot vision
whether the unit disk D in 12 is uniquely determined (up to null sets) by its line
integral projections onto the x and y axes. At first it may seem unlikely that only two
projections of the density

1 if(x,y)D
fo(x, y) Xo(X, y)

0 if (x, y) D

could determine f(x, y) uniquely, but in fact Horn’s question has an affirmative answer
despite such tempting "counterexamples" as Fig. 1.1. Here is a simple proof: Any two
sets having the same projections on the x and y axes have the same area and moment
of inertia. The disk D has the minimum moment of inertia among all sets S having
the same area as D, so that the area and moment of inertia of a disk D characterize
it uniquely (up to a null set).

This problem is a special kind of tomographic reconstruction problem in which
we attempt to reconstruct a density f(x, y), given two projections and the prior informa-
tion that the densityf(x, y) only takes the values 0 or 1. For an arbitrary density f(x, y)
we generally need to know infinitely many projections to reconstruct f(x, y) uniquely.
However, the disk example shows that the prior information that the density f(x, y)
is an indicator function can greatly influence the number of projections needed for
tomographic reconstruction.

More generally, we consider as given data for reconstructing a set S in Nn the
hyperplane integral projections

Pv(t; S) l- Xs(X) dH,, -< <
H,(v)

* Received by the editors August 10, 1987; accepted for publication (in revised form) January 20, 1989.

" AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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SETS UNIQUELY DETERMINED BY PROJECTIONS 289
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FIG. 1.1. The solid disk is extended out in quadrants II and IV and in in quadrants and III. The dashed
warped disk cannot have the same projections as the original.

where Xs(x) is the characteristic function of S, H,(v) denotes a hyperplane with normal
unit vector v given by

Ht(v {x: (v, x)= t}
and dH, is Lebesgue (n 1)-dimensional measure on Hr. We call the set {P,(t; S): -<
< c} the projection onto the line L,= {tv:-< <} and associate Pv(t; S) to the

point tv on this line.
This paper examines the problem of characterizing sets S of finite volume in $"

that are reconstructible (up to null sets) from their projections onto the n coordinate
axes of Sn, i.e., from

(1.1) Pi(xi;S)= I...IXs(xl,...,xi,...,xn) dxl...dx,_ldxi+l...dx

for -< xi < and _-< _-< n. We call the problem of characterizing sets of uniqueness
the continuous unique reconstruction problem. We show that such sets S exist. The
number n is the minimal number of directions of projection on lines for which there
is a set S (not a null set) such that unique reconstruction of S is possible. To see this,
note that if projections in n- or fewer directions are given, then there is a direction
orthogonal to all these directions, and we recover no information about the distribution
of the mass of S in this direction, so that unique reconstruction is impossible. Further-
more, this argument shows that for unique reconstruction from projections onto n
lines to be possible these lines must lie in n linearly independent directions. In this
case we may, without loss of generality, reduce the general problem to the special case
(1.1) where the lines are the coordinate axes by an invertible linear transformation of
coordinates.

There is an analogous discrete version of the problem which we call the discrete
unique reconstruction problem. The discrete problem is to characterize which finite
subsets S of the integer lattice points 7" given by their indicator function

1 if(xl,’’’,xn)S,
fs(Xl,’’’,x.)=

0 if(xl,’’-,x.)S,
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290 FISHBURN, LAGARIAS, REEDS, AND SHEPP

are uniquely reconstructible from the projections {Pi" <-i_-< n}, where

Pi(xi)-- E fs(Yl, Y,).
(y ,...,y,, ) 7/"

Yi xi

The discrete problem is studied in a companion paper [1].
The problem of characterizing sets of uniqueness was studied in the two-

dimensional case by Lorentz [9] in 1948 in an elegant but apparently little known
paper. Lorentz gave the following necessary and sufficient condition that a set S be
uniquely reconstructible. Let the projections Pt(x), P2(Y) of S onto the x-axis and
y-axis in E2 be

Pl(X)= I Xs(x, y dy; P2(y)= f Xs(x, y) dx

and define the nonincreasing rearrangements pi of P on 0 <= u < by

pi(u) [ X(x" P,(x)>= u) dx

Leb {x" -c < x < c and Pi(x) >- u},

so that pi(u) decreases on 0=< u <, where Leb {. } denotes Lebesgue measure.
THEOREM (Lorentz). A set S in I offinite measure is a set of uniqueness if and

only ifp and p are inverses of each other on u >= O, i.e.,

pl(P2(U))=--u, u>=O.

Lorentz’s result can be used to show that the unit disk D is a set of uniqueness.
Indeed, it is verified easily that the projections of the unit disk centered at (0, 0) are

PI(x) Pz(x) 2x/(1 x2)+

and that the nonincreasing rearrangements

p,() p(u) ,/(4- u)+, u => 0,

are inverses of each other for u->_ 0.
In this paper we give a sufficient condition that S be a set of uniqueness in

namely that S be additive (as defined below). We also give a necessary condition that
S be a set of uniqueness in ", which is that S have no bad configuration (as defined
below).

A set S is said to be additive if there are bounded measurable functions f for
i= 1,...,n, where f(x)=f(x) depends only on the ith coordinate xi of x=
(x,..., x,), such that

(1.2) xS f(x)>-O.
i=1

2For example, the unit ball is additive as may be seen by taking f(x)=(1/n)-xi for
l<_i<=n.

THEOREM 1.1. Any additive set S in n offinite n-dimensional measure is a set of
uniqueness.

Proof Suppose there were another set T in " having the same projections

Pi(xi)’--If ’’’f,)(s(X)dXl’’’dXi-ldXi+l’’’dxn
as S. Let gg(x)= gi(xi) be any integrable (over S[_J T) function on [" whose values
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SETS UNIQUELY DETERMINED BY PROJECTIONS 291

depend only on the ith coordinate of x. Then

(1.3)

r
gi(x) dxl dx,,

by integrating over the n- 1 coordinates other than xi and using the fact that S and
T have the same projections. Clearly, S and T have the same n-dimensional measure.
Setting gi =f in (1.3) and subtracting the integral over S T in (1.3) we get

(1.4)

and

(1.5)
s-sr

But summing over in (1.4) we obtain

(1.6)

The integrand on the left in (1.6) is nonnegative by (1.2), and the integrand on the
right in (1.6) is strictly negative, also by (1.2). It follows that Leb (T-S f3 T)= 0 and
then from (1.5) that Leb (S- S (3 T)= 0, so S and T differ by null sets. [3

Kemperman [7] has subsequently proved that a generalized notion of our version
of additivity also guarantees uniqueness.

We can show that various simple sets are uniquely reconstructible by showing
that they are additive, as for the unit n-sphere. However, it may be difficult to tell
whether a general set S is additive.

There is a simple necessary condition for a set S to be a set of uniqueness, which
we state next. A set of four points z (xl, y), z2 (x2, Y2), w (x, y2), and w=
(x2, y) forming the corners of a rectangle in [2 are a 2.bad configuration (or bad
rectangle) for S ifz and z2 are in the interior Int (S) of S and w and wz are in Int (SC),
where S =-S is the complement of S. More generally, a k-bad configuration (or
k-configuration) for S in " consists of 2k vectors z,..., zk and wl,..., wk, where
all the zj are distinct points in Int (S) and all the wj are distinct points in Int (S), and
every coordinate plane xi c contains the same number of w’s as z’s. We define a
weakly k-bad configuration for S in " the same way, except that z,..., z need not
be distinct points, and w,..., w need not be distinct points. We say that S has no
bad configuration if S has no k-bad configuration for any k _>-2.

THEOREM 1.2. A set S of uniqueness in " has no bad configuration.
Proof Suppose S has a k-bad configuration consisting of points z,..., Zk and

w, , Wk as described above. Then for a small enough positive 6, the set C consisting
of the union of k balls of radius 6 around the z lies in Int (S), and the set C2 consisting
of the union of k balls of radius 6 around the w lies in Int (S). Then T S- C + C2
has the same projections as S so S cannot be a set of uniqueness. [3

In the rest of this paper we study the relations between the conditions that a set
S is additive, that S is a set of uniqueness, and that S has no bad configuration. We
now summarize the results obtained.

In 2 we first show that the concepts "having a bad configuration" and "having
a weakly bad congfiuration" coincide for open sets in all dimensions.
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292 FISHBURN, LAGARIAS, REEDS, AND SHEPP

THEOREM 2.1. Let S be an open set of finite measure in n. The following are

equivalent.
(1) S has no k-bad configuration for any k >-2.
(2) S has no weakly k-bad configuration for any k >= 2.
This theorem highlights an essential difference between the continuous case and

the discrete case, for in [1] we show that in the discrete case the concepts "having a

bad configuration" and "having a weakly bad configuration" are distinct in all
dimensions greater than or equal to 3.

In 2 we study the two-dimensional case in detail. In the two-dimensional case,
additivity and uniqueness coincide.

THEOREM 2.2. Let S be a set in 2 offinite measure. The following conditions are
equivalent.

(1) S is a set of uniqueness.
(2) S is additive.
Kuba and Voli6 [8] give other necessary and sufficient conditions for being a set

of uniqueness in the two-dimensional case.
If S is suitably restricted then the "set of uniqueness" concept essentially coincides

with the other concepts in the two-dimensional case.
THEOREM 2.3. Let S be an open set in 2 offinite measure. Thefollowing conditions

are equivalent.
(1) There is no open set unequal to S having the same projections on the x-axis

and y-axis.
(2) S has no k-bad configuration for all k >-2.
(3) S has no weakly k-bad configuration for all k >-2.

If in addition the boundary OS has measure zero, these are also equivalent to thefollowing
condition.

(4) S has no 2-bad configuration.
It seems likely that the hypothesis that OS has zero measure is unnecessary in this
theorem.

An interesting question concerns whether or not the concepts of uniqueness and
additivity coincide for three or more dimensions. In an earlier version of this paper
we conjectured that they coincide, but Kemperman [6] settled that conjecture with a
counterexample of a set of uniqueness that is not additive. Kellerer found a similar
counterexample and kindly transmitted it to us. Kemperman [7] then proposed a

generalized notion of additivity that is necessary and sufficient for certain sets to be
sets of uniqueness.

Section 3 studies general properties of additive sets. We first give a criterion for
a set not to be additive.

THEOREM 3.1. IfS is a bounded measurable subset of n and if there are measures

Ix and on with the same projections (one-dimensional marginals) on all n axes, and

tx is concentrated on S and , is concentrated on Sc, then S is not additive.
Section 3 then studies the following subset of the cube in 3:

So={(Xl,X2, X3): O<--_Xi <- 1, i= 1, 2, 3, x3 >_-- max {xl, x2}}.

Note that So is the limit as n- o of the additive sets

S,={(x,x2, x3):O<-xi<-lfori=l,2,3, x3=x x2

with $1 c $2 c $3 c2 .o Our study of this set was motivated by our search for a set of
uniqueness that is not additive. We prove two interesting facts about So.

TrtEOREM 3.2. So is not additive.
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SETS UNIQUELY DETERMINED BY PROJECTIONS 293

TrtEOREM 3.3. So is not a set of uniqueness.
These theorems imply that both the additivity property and the set of uniqueness

property are not closed under the operation of taking monotone pointwise limits in
dimensions greater than or equal to 3.

Theorem 3.2 follows from the fact that there are a pair of measures and v
concentrated on So and S, respectively, having the same projections onto the
coordinate axes. An alternative direct proof of Theorem 3.2 has been shown to us by
Kemperman.

We prove Theorem 3.3 by showing there exists a pair of measures /x and v
concentrated on So and S, respectively, having densities taking only the values 0 and
1, which have the same projections on the coordinate axes. We actually construct a
pair/z, v having bounded densities and then use a general result ([2]) which asserts
that the existence of a pair (/z, ,) with bounded densities implies the existence of such
a pair having densities taking only the values 0 and 1.

The related problem of deciding whether there exists a set S having given projec-
tions is not considered in the paper. The existence problem is studied in the two-
dimensional continuous case in [5], [9], where necessary and sufficient conditions for
existence are given.

2. Continuous case: general results. Our first result in the continuous case shows
that the concepts of"no bad configuration" and "no weakly bad configuration" coincide
for open sets S, in all dimensions n. This differs from the discrete case for n => 3.

THEOREM 2.1. Let S be an open set in n. The following conditions are equivalent.
(1) S has no weakly k-bad configuration for all k >= 2.
(2) S has no k-bad configuration for all k >-_ 2.

Proof It is clear that (2)==>(1), so that it suffices to show (1)=:>(2). To do this we
show that if S has a weakly k-bad configuratio0 then it has a k-bad configuration. Let
the weakly k-bad configuration consist of the k points w<i) (wi), , wi)) in Int (S),

() z(,i)) in Int (S), for < < k. Since the sets {w)} andand thekpointsz(i) (z
{zJ i)} have equal projections (counting multiplicities) for each j from to n, there are
permutations rj of {1, 2, k} such that zJ i)

w"(,(i)). Clearly, there are k points if(i)
arbitrarily close to the w(i) in Int (S) whose coordinates consist of kn distinct real
numbers. For any such (i), define (i)by Z’*j(’i) l/Vj’A(’rri(i)), for all and j. Then the (i) and
<) are all distinct points and the sets {ffi} and {,<i)} have the same projections.
As /(i) approaches w<i), ,i) approaches zi), so by choosing the i) sufficiently close
to the w<) we may ensure both t) Int (S) and ) Int (SO); hence we conclude that
there is a k-bad configuration.

The remainder of this section establishes results for the two-dimensional case.
TIJEOREM 2.2. Let S be a set offinite measure in 2. The following are equivalent.
(1) S is a set of uniqueness.
(2) S is additive.
Proof. The result (2)==>(1) is just Theorem 1.1. To prove (1)=>(2) we use ideas

of Lorentz [9]. We are given a set of uniqueness S. Suppose first that S is contained
in I2+ {(x, x2)" x => 0, x2 0} and that the projection

P(x) [o Xs(X, x2) dx_

is nonincreasing for xl >= 0, and that the projection

P(x) 1-o ,,)(s(XI, X2) dXl
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294 FISHBURN, LAGARIAS, REEDS, AND SHEPP

is nonincreasing for x2_-> 0. Note that Pl(xl) is finite for each X > 0 since S has finite
measure. Lorentz’s condition that S be a set of uniqueness is

P2(PI(x))=- x, a.e. [Leb]

for X 0. Using this it is easy to verify that

(2.1) S= {(x, x): Xl =>0 and 0=<x2 <- P(xl)}

is identical to S up to a null set, since the right side of (2.1) produces the correct
projections. Using the fact that P(Xl) is nonincreasing, it is easy to verify that

(2.2) S’= {(x, x2): fl(xl) +f2(x2) ->- 0}
where

f P,(x,) if X 0
(2.3) -c if x < 0

and

f-x2 if x2>_-0
(2.4) f2(x2) - ifx2<O.
This would show that S is additive if f and f2 did not take the value -c. We avoid
this difficulty in the general case by a change of variable, as described below.

Consider the general case and recall that Lorentz proves that associated to each
projection Pi(xi; S) there are measurable functions o-i’+={x: x>0} which are
one-one (almost everywhere) and onto (almost everywhere) such that the functions
Pi(t) defined by

pi(o’i(Xi)) Pi(xi) i= 1, 2

are nonincreasing on O< <. These are monotone rearrangements of the Pi(xi) on
the xi-coordinates. Now define S+++ by

S+ {(O-l(Xl) 0"2(x2) )" (Xl, x2) E St.
Then S+ has projections pl(x) and p2(x2), and it is easy to check that S+ is a set of
uniqueness if and only if S is a set of uniqueness. By hypothesis, S is a set of uniqueness,
hence so is S+, and by the preceding argument there are functions f and f2 for S+

satisfying (2.2)-(2.4). Then (2.2) implies that S is additive forf*(x) and f2*(x2), where

fl(Xl) fl(O’l(Xl)) and f*(x2) fz(cr2(x2)),

after noting that fl*(Xl) and f*(x2) are finite everywhere because o-(x)>0 and
o-2(x) > 0 for all Xl, X2 E . This completes the proof. 71

We now observe that for open sets S of finite measure our concepts essentially
coincide in the two-dimensional case.

THEOREM 2.3. Let S be an open set in 2 offinite measure. Thefollowing conditions
are equivalent.

(1) There is no open set S unequal to S having the same projections on the x-axis

and y-axis.
(2) S has no k-bad configuration for all k >= 2.
(3) S has no weakly k-bad configuration for all k >= 2.

If in addition the boundary OS of S has measure zero, then these conditions are also
equivalent to the following one.

(4) S has no 2-bad configuration.
Proof Condition (1):=>(2) by Theorem 1.2 and (2):>(3) by Theorem 2.1. We

prove (2)=:>(1) in the contrapositive form by the following lemma.
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SETS UNIQUELY DETERMINED BY PROJECTIONS 295

LEMMA 2.4. Suppose that $1 and $2 are disjoint open sets in 2 offinite area having
the same projections on the x-axis and y-axis. Then there are finite sets T1 in SI and T2
in $2 having the same number ofpoints on each line x c and on each line y cfor all c .

Proof. We prove the stronger result that the set T1 can include any given point
Vo (Xo, Yo) in S. To do this take a small open square Uo of side 6 centered at Vo that
lies entirely in the open set S. Since the projections of S1 and $2 agree, we can find
points y (Xo, Yl) and Y2 (x, Yo) with Yl and Y2 in S2. Since $2 is open, by decreasing
6 if necessary, we can find open squares Uo, U*, U of side 6 centered at Vo, y, and
Y2 with the squares U, U* being in $2. (See Fig. 2.1.) We say that the points in U*
cover those in Uo in the "down" direction, by which we mean the projections
Pl(x; U*)= P(x; Uo) for all x [, and those in U cover those in Uo in the "across"
direction, by which we mean P2(Y; U1)--Pz(y; Uo). Note that Uo, U, and U* each
has area 62

FIG. 2.1. Initial open squares in S and $2.

Now let e be a positive constant depending on 6 that will be picked once and
for all. We claim there exists an open set U2 such that:

(i) U2 is in S.
(ii) For each point w= (w, w2) in U2 there is some point (w, y) in U having

the same first coordinate.
(iii) Pl(X; U2) <- Pl(X; U) for all x.
(iv)

_
IP(x; U2)- Pl(X; U1)] dx < e, so that Area (U2) --> 62- e.

(v) U2 is a disjoint union of a finite set of open rectangles.
To see this, we use the fact that since U is in $2, and S and $2 have the same
projections, and since Uo has no x-coordinate in common with U1, then

P(x; S Uo) PI(X; U1) for all x ,
where the bar denotes closure. Now cover the open set S1- Uo with a mesh of squares
of side r/ and let r/- 0. Taking r/ sufficiently small we can approximate the Riemann
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296 FISHBURN, LAGARIAS, REEDS, AND SHEPP

integral of Sl- Uo arbitrarily well from below, and choosing an appropriate subcollec-
tion of these squares yields a set U2 such that (i)-(v) hold.

We continue to construct a series of sets Ui such that:
(i) If is odd, then Ui is in $2, and is in $1 otherwise.
(ii) Each point W"(W1, W2) in U can be reached from a point (w,y) in U_

if is even and from a point (x, w) in U-I if is odd.
(iii) Pl(X; U)<-_ P(x; U_) for all x if is even. P2(Y; U)<-_ P(y; U_I) for all y

if is odd.
(iv) oo IP(z; Ui) P(z; Ui_l) dz <-_ ie where j 1 for even and j 2 for odd i,

so Area (Ui) >- 2_ e.
(v) U is a disjoint union of a finite set of open rectangles.
(vi) U,f’l U= for O<-j<i.

This construction is carried out using the fact that (for i= 2j)

P,(x; S1- Uo- U2 U2-) -> P,(x;

and (for 2j + 1)

P2(Y; $2- U1- U U2j-1)-->-- P2(Y; Uj)

provided U2j+ fq U* . Since S has finite area A, if we take e small enough, say
e 1/100A-264 then the sets U are all of area greater than 1/22 for 1 < i<2(A/6)
hence by pairwise disjointness this construction must halt for some i<2(A/6). It
follows that there is some 2j for which U2j has a point v2. (x2., Y2) such that there
is a point v= (x*, y2) in U*. By condition (ii) we can extend this to a sequence of
points Vk (Xk, Yk) in Uk such that Xk Xk+ if k is odd and Yk Yk+l if k is even. Now
since U* and U are rectangles, Vl (x, Yo) U and v.+1 (Xo, Y2) U*. Then the
sets of points T1 {Vo, v2, v4," ", vj} in S and T {v,, v3, vs," ", v2+} in $2 have
the required property. [3

We now complete the proof of Theorem 2.3. The implication (2)=:>(4) is always
true. We prove (4):=>(2) under the assumption that the boundary OS S-S of S has
Lebesgue measure zero. (Since open sets are Lebesgue measurable, it follows that OS
is always measurable, but it may have positive measure; cf. [12, p. 59].) We show the
contrapositive, which asserts that if S has a k-bad configuration for k => 3 then S has
a 2-bad configuration.

We may suppose that the k-bad configuration has the form

x(’)= (x’), y]’)) e Int (S), x(2)= (x],), y]2)) Int (SC),

x(3)= (x), y2)) Int (S), X(4)= (X2), y3)) Int (S),

x(2k-1) (xk), yk)) Int (S), X
(2k) (Xk), y’)) Int (S").

Since these sets are open, for all y with Ilyll < and 6 small enough, the set

S(y) {x(’) + y: 1 -< -< 2k}

is a k-bad configuration. Since OS has measure 0, the set of y with Ilyll < 6 for which
some point x() +y is in OS has measure 0, hence we can choose y so that all k points
(x]i), y])) for =< i, j=< k are in Int (S)U Int (SO), i.e., none of them are on OS (=0So).
Now the argument of Lemma 1 in [1] in the discrete case can be applied to conclude
that there is a subset of four of these k points with {(x,y), (x2,Y2)} S and
{(x, Y2), (x2, yl)}___ S". Since these points are actually in Int (S) or Int (S), this is a
2-bad configuration.
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SETS UNIQUELY DETERMINED BY PROJECTIONS 297

FIG. 2.2. Staircase example.

Remarks. (1) Lemma 2.4 is false in two-dimensions if $1 and $2 are allowed to
have infinite area, even if projections are everywhere finite. The infinite checkerboard
staircase in Fig. 2.2 provides a counterexample, where shaded open squares are in $1
and unshaded open squares are in $2.

(2) The three-dimensional analogue of Lemma 2.4 is false for open sets S and
$2 of finite volume.

LEMMA 2.5. There exist two disjoint bounded open sets S and $2 in R such that:
(1) S1 and $2 have identical projections on all three axes.
(2) There exists no finite bad configuration for S1 or $2 contained in S1 [.J $2.

This result is proved in the Appendix.

3. Properties of additive sets. Recall that S is additive if and only if there are
bounded measurable functions fi(xi) for 1 _<- -< n such that, up to sets of measure zero,

(3.1) S= {x--(Xl, xn)"
i:1

Although it is difficult to decide when a set is additive, there is a simple necessary
condition for additivity.

THEOREM 3.1. Suppose S is a bounded measurable subset of Rn and there are
measures tx and u with the same projections for which Ix and u are concentrated on S and
Sc, i.e., Ix(S)>0 and

(3.2) tz(S) ,(S) 0.

Then S is not additive, i.e., (3.1) holds for no fi, i= 1,..., n.
Proof. If f/exist satisfying (3.1) then for each

(3.3) I’’’Ifi(xi) dix(x)=f’’’Ifi(xi)dt,’(x)
since the f/are bounded measurable and depend only on one coordinate while Ix and
u have the same one-dimensional margins. Adding over in (3.3) gives

By (3.1), the left integrand is nonnegative while the right integrand is strictly negative.
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298 FISHBURN, LAGARIAS, REEDS, AND SHEPP

It follows that u has measure zero and so x has measure zero since/x and u have the
same marginals. But/x(S) > 0, so f cannot exist.

To illustrate some of the difficulties in proving that a set is additive or is one of
uniqueness, we study the following particular subset So of the cube in R3"

So={(xl,xz, x3)" x3-> max {xl,x2}, 0--<xi<= 1 for i= 1,2,3}.
We will show that So is not additive by exhibiting a pair of measures satisfying Theorem
3.1 for So.

TrEOREM 3.2. So is not additive, i.e., there are tx and v satisfying (3.2) with S So.
Proof Since we would naturally believe that max {xl, x2} cannot be written as

f-l(fl(xl)+fz(x2)), the result that So is not additive is perhaps not surprising.
The proof gives a /x and v not absolutely continuous with respect to Lebesgue

measure A. The idea behind the proof is that if we can find a single probability space
on which random variables X1, X2, X’I, X are defined, and if Xi and XI have the
same distribution for i= 1, 2, and yet max {X1, X} is everywhere strictly less than
max {X’1, X}, i.e.,

(3.4) X1 X, X2"- X, max {X1, X2} < max {X’,, X},
then we may assume by change of scale that 0 =< X -< 1 for 1, 2 and set

X3 X 1/2(max {X1, X2} + max {X, X}).
Then the measure /x induced by (X1, X_, X3) is concentrated on So since X3 ->

max {X1,Xz} while the measure v induced by (X, X’,X’3) is concentrated on S
since X < max {X’, X}. The measures/x and v have the same projections onto the

for 1 2" they also have the same projectionsfirst two coordinate axes since X X
onto x3 since X3 X.

We construct random variables satisfying (3.4). Let X1 X2 =/3 where

du
P ,8 du

,rrx/u l u
0=< u=< 1,

and let (X’, X) be a uniform point on the union of the line segments from (0, 1) to
(/3,/3) and from (/3,/3) to (1, 0). Clearly max {X1, X2} =/3 < max (X, X}. It remains
only to show that X’ and X, have the distribution of/3. We have

I,, du du f_: du du du

vrx/u(1 u) 2(1 ,--------- rV’u(1 u) 2 rV’u(1 u)"
Hence X’1""/3 and therefore X--- X’ Of course since/ assigns measure 1 to X X21"

z is not absolutely continuous.
We now show that So is not a set of uniqueness, hence that neither additivity nor

being a set of uniqueness is closed under monotone pointwise limits for n greater than
or equal to 3. To do this it suffices to show that there are measures/x and u satisfying
the conditions of Theorem 3.1 for So which have Radon-Nikodym derivative 0 and 1
at all points. Indeed, if To is another set with the same projections as So and if
A Lebesgue measure on Rn, x(A) is the indicator function of A, and/Zo and Uo are
the measures with Radon-Nikodym derivatives

d/xo duoX(So- Sofq To) and ---77-, X( To- SoVI To),
dA aA

then/Xo and Uo have the same projections.
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SETS UNIQUELY DETERMINED BY PROJECTIONS 299

THEOREM 3.3. So is not a set of uniqueness, i.e., there are tz and u with densities
taking only values 0 and 1 satisfying tx (S) u(So) O.

Proof The idea of the proof is to construct /x and u with bounded densities
satisfying (3.2), and then to use a general result that the existence of/x and u with
bounded densities implies the existence of such/x and u having densities taking only
values 0 and 1.

We now exhibit/x and u with bounded densities that satisfy (3.2). We will construct
a probability space and random variables as in (3.4). To this end suppose q(y)> 0 on
I (0, 1) and define the measure r on 12 by

(3.5) r(dx, dy) q(x v y) dx dy, where x v y max {x, y}.

We will define a mapping (x, y) (x’, y’) with x v y < x’ v y’ and then set X x X2 y
X x’, X y’ so that (3.4) holds. To do this, we choose (y)" I- I and O(Y)" I - I
and set

X
(3.6a) y’= (y), x’=- q(y) for x<y

Y

(3.6b) x’= b(x), y’=Y q(x) fory <x
X

where b and O are to satisfy

(3.7) y<th(y), b(0)=0, (1)=1, bincreases, 0<O(y) <1.

For (3.4) to hold we need r(x < a) r(x’ < a) so that we want

Io Iodx dy q(x)+ dx dy q(y) dx dy q(x)x(6(x) < a)
(3.8)

fO1 ’1 ()+ dx dyq(y)x 6(y) < a

We will require and q to satisfy

(3.9) O(y) a where 0 < < 1 is to be chosen

and

(3.10) aq(a) > q(y) dy, 0< a < a

Io’(3.11) q(y) dy yq(y) dy, q(a) > 0, 0< a < 1.

Then (3.8) with b b(a)= -(a) may be written as

;o { }Io(3.12) 2 xq(x) dx + a q(y) dy xq(x) dx + min ,1 yq(y) dy.

Clearly b(O)=0, b(1)= 1, and differentiating on a we obtain

(3.13) aq(a)+ q(y) dy--- yq(y) dy bq(b)b’(a), a <

(3.14) aq(a)+ q(y) dy= bq(b)b’(a), a> a.
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300 FISHBURN, LAGARIAS, REEDS, AND SHEPP

Using (3.10) and (3.11) we see that the left side of (3.13) is aq(a)- q(y) dy>O so
that b b(a), defined by (3.12), has b’(a) > 0 (if q(b) > 0) for a < a. By (3.14), b’(a) > 0
for a > a. Thus b(a) b-l(a) increases from 0to 1 so that b(a) does also. Furthermore,
we must have b b(a) < a for 0< a < 1 because if b >- a in (3.12) then the right side
is greater than the left since under (3.11) it is easy to see that

(3.15) 2 xq(x) dx + a q(y) dy < xq(x) dx + min __a, 1 yq(y) dy.

Thus under (3.9)-(3.11), (3.7) and (3.8) hold. Leaving aside the question of finding q
to satisfy (3.10) and (3.11) for some 0< ce < 1, suppose we then set X X3 z where

z (1- O)(x v y)+ O(x’vy’)

and 0 is independent of (x, y) and uniform on I (0, 1). Thus the measure space on
which Xi and X’i are defined is I3--{(X, y, 0)}. Let /x be the measure induced by
(X1, X2, X3) (x, y, z) and v be the measure induced by (X, X, X) (x’, y’, z).
Clearly and v satisfy (3.2) since xvy<z<x’vy’ and /x and v have the same
projections by (3.8) and the symmetry between (x, x’) and (y, y’).

We now verify that/x and v have bounded densities. The density of for x < y
is from (3.5) and (3.6a) and the fact that P(O(y’-y)dz-y)=dz/(y’-y),

ix(dx, dy, dz) P((1-O)y+O(x’vy’)dz) q(y)
:q(y)

dx dy dz dz (x’v y’)-y
(3.16)

<
q(Y)

th(y)-y"

The density of , for x’< y’ is as follows. If (x’, y’) comes from (Xo, yo) with Xo < Yo,
where Xo < yo denotes an event Ao with indicator Xo, then from (3.5) and (3.6a),

r(Ao n (dx’, dy’, dz’)) dxo dyo P((1 -O)yo+ Oy’ 6 dz’)
=xoq(y)

dx’ dy’ dz’ dx’ dy’ dz’
(3.17)

xoq(yo)
yo 1 1

(Yo) b’(yo) Y’-Yo"
However, (x’, y’) may also come from (xl, y) with x > y, an event A with indicator

X1. But

(3.18) u(dx’, dy’, dz’)/dx’ dy’ dz’= Tr((Aot.J al) f’l (dx’ dy’ dz’))/dx’ dy’ dz’

since (x’, y’) comes from either a unique (Xo, Yo) with Xo < Yo or from a unique (x, y)
with x > y, or both. That is to say, if (x’, y’) also comes from say (x2, Y2), then either
(x2, Y2)=(Xo, Yo) or (x2, y2)= (Xl, Yl) because 4’ is strictly monotonic. By (3.5) and
(3.6b)

(3.19)

.a-(A, f’l (dx’, dy’, dz’))
dx’ dy’ dz’

=xq(x)
dx dy P((1-O)x, + Oy’ dz’)
dx’ dy’ dz’

=xq(x)
x 1

b’(x,) tp(x,)

By (3.18) and (3.17) and then (3.19) we have

u( dx’, dy’, dz’) Yo 1 1 x 1 1
(3.20) <=q(Yo) + q(xl)

dx’ dy’ dz’ d/(yo) b’(yo) ch(yo)-Yo tp(x) ch’(x) y’-x
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SETS UNIQUELY DETERMINED BY PROJECTIONS 301

But

Yl(3.21) y X []](Xl) X -> (Xl) X
Xl

since y=y’=(y/xl)q,(x)> x=x 4(x) and we are in case (3.6b). Thus , will
have a bounded density if and only if there is an M for which

(3.22) q(y)
y 1 1

-----_-< M, 0<y<l.
q,(y) c/)’(y) c(y)-y

And, from (3.16), x will have a bounded density if and only if there is an M for which

(3.23) q(y)/(Cb(y)- y) <- M

since both terms on the right in (3.20) have the same form after (3.21) is used in the
denominator of the last term in (3.20).

It remains to show that there is 0< a < 1 and q(y), 0< y < 1, for which (3.10),
(3.11), (3.22), and (3.23) hold for the & determined by (3.8), as in (3.12)-(3.15). We
choose in particular

(3.24) a 2/5, q(y) y(1 y)2

and directly verify that (3.10) and (3.11) hold. It is clear from (3.13) and (3.14) that
the only chance for (y)-y or d’(y) to be small is near y 0 or y 1. But near a 0,
from (3.12), recalling b= b(a)=6-’(a), (3.11), (3.13), and (3.24),

x(1 x dx 2 xq(x) dx a q(y) dy
o 6 6 20 3 2 5

Let stand for "bounded above and below by a constant multiple of." It follows that
near a=0, ’(a)l, (a)-aq(a) and hence (3.22) and (3.23) hold near a=0.
Near a 1, from (3.12), subtracting from (3.12) with a b 1, and setting 1-a a
and 1 b b,

x(1 x dx 2 xq(x) dx a q(y) dy

= x(-x x-(-a) x(-x) x

3 4 3s 3 4
=+ +.

3 12 20 3 2 5

It follows that near a 1, ’(a) 1, (a)-a (1- a) q(a) and so (3.22) and (3.23)
hold near a 1. This completes the proof that and have bounded densities.

The fact that there exist and with densities taking values only 0 and 1 follows
easily from the following simple, powerful, and apparently new result, proved in [2].
This result says that if f is any density in N with 0NfN 1, then there is a density g
with values in {0, 1} that has the same projections as This is proved in the case n 2
by observing that the necessary and sucient condition for the existence of a bounded
density with given marginals due to Strassen [11] is the same as the necessary and
sucient condition for the existence of a set with given marginals due to Lorentz [9]
for n 2. The proof for general n follows easily from the result for n 2. S

D
ow

nl
oa

de
d 

07
/2

6/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



302 FISHBURN, LAGARIAS, REEDS, AND SHEPP

Final remarks. The first part of the proof of Theorem 3.2 shows that there is a
fuzzy set with the same projections as So, where a fuzzy set is a functionfo =fo(x) [0, 1 ].
Indeed, if/x and , are as in the proof with densities bounded by (multiply by a
small constant), we can setfo X(So) dtx ! dA + du/dA. Note that this is a much different
statement than the trivial one that there is a bounded density go(x) supported on the
cube with the same projections as X(So), i.e., as S; merely take

go(X) 9P1 (Xl) P2(x2) P3(x3),

where P(x) is the projection of So onto x,

1 -xP,(x) for i= 1, 2; P3(x3) X.2

The difference is that go is not a fuzzy set because go(x)> 1 at some points such as
go(0, 0, 1)--9/4. It is interesting to note that there are analogous reconstruction prob-
lems in which a measure exists satisfying a given set of "moment" conditions, but no
set exists. For example, it is impossible to find a set Ac[0, 1] with Leb (Af-)I)=
1/2 Leb (I) for every interval /, but there certainly is a measure (or fuzzy set), 1/2A, with
this property. Related results are found in [10] (see also [3]), [5], and [11].

Appendix. Proof of Lemma 2.5. The bounded open sets $1 and $2 are constructed
recursively: each Si is an infinite union of open unit cubes of size 2-k for various
values of k.

The basis of the construction is a configuration which fits inside a 3 2 x 2 block
made up of sets T1 and T2 each of which consists of three unit cubes. Let the block
be B {(x, y, z): 0<=x<-3, 0-<y-< 2, 0=< z-<2} and label each cube by its corner having
the smallest coordinate values. The configuration is:

T1 {(0, 0, 0), (1, 0, 0), (2, 1, 1)}

T2 {(0, 1, 0), (2, 0, 0), (1, 0, 1)}.

It is pictured in Fig. A.1, where the cubes in T1 are labeled with a plus sign, and those
in T by a minus sign.

The basic configuration has three key properties:
(1) The sets T1 and T2 have the same projections on all three axes.
(2) T1 contains a 2 block in the lower left corner of the lower layer of B

and a 1 1 1 block in the upper right corner of the upper layer of B.
(3) Any bad configuration for T1 (or T2) in T1 t_J T2 must contain a point in every

cube of T1 t_J T:.

y=O +

x=O 2 x--0 2

z--0

FIG. A.1. Basic configuration.
z--1
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The first two properties are clear. To prove the third property, we form an
undirected graph whose vertices are the cubes in T1 U T2 and where an edge represents
a condition" "If a bad configuration includes a point in one vertex, then it necessarily
includes a point in the other vertex." Such conditions are forced by the requirement
that a bad configuration has equal projections for the subsets of T1 and T2. For example,
if a bad configuration includes a point in the cube (2, 1, 1) in T1, then it must include
a point in the cube (1, 0, 1) in T2, and vice versa, which is seen by examining its
projection in the z-direction. For a point in (2, 1, 1) in T1 can only be matched in the
z-direction by a point in T2 having 1 < z < 2, and all such points lie in the cube (1, 0, 1).
Proceeding in this way, we obtain the graph pictured in Fig. A.2, where edges are
labeled by the direction of projection that verifies their occurrence. Since this graph
is connected, it follows that a bad configuration includes every vertex.

x

FIG. A.2. Graph associated to basic configuration.

We now begin the recursive construction. Construct a shrunken and rotated copy
of the basic configuration by first scaling the first axis by 1/2 and then permuting the
axes cyclically to obtain a configuration in a 223-2 block consisting of 1 1/2 1
parallelepipeds. We place this 2 - 2 block so that its lower left corner in its lowest
level exactly overlaps the 111 cube (2,1,1) in T1. The 111 cube (2,1,1)
corresponds to the union of two cubes labeled (0, 0, 0) and (1, 0, 0) in the shrunken
configuration. Let (T, T) denote the analogues of T1 and T2 in the shrunken configu-
ration. Our second set is:

U T kJ T-{cube (2, 1, 1)}

U= T) U T-{cube (2, 1, 1)}.

Now we repeat this construction one more time, shrinking and rotating the basic
configuration to obtain a 2 x 1 x block containing the basic configuration as a set of
1 x 5 x 1/2 parallelepipeds, and adding it in to obtain"

U’ T1 U T U T’- {two overlapping corner cubes},

U T2 U T U r- {two overlapping corner cubes}.

We call this configuration the composite configuration.
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Now we describe the composite configuration explicitly. For convenience we scale
up the sets U, so that all cubes involved have side at least one, by expanding the
y and z axes by a factor of 2. When we do so, the resulting configuration U1, U2 is
embedded in a 567 block B’= {(x, y, z): Ox<=5, 0-<y=<6, 0--< z=<7}. U consists
of a 222 cube A, three 1 1 2 parallelepipeds B, C, D, and a 1 1 cube E:

A. (0, O, 0), (0, O, 1), (0, 1, 0), (0, 1, 1)
(1, O, 0), (1, O, 1), (1, 1, 0), (1, 1, 1)

B. (2, 4, 2), (2, 4, 3)
C. (2, 3, 4), (2, 3, 5)
D. (3, 2, 2), (3,2,3)
E. (4,5,6).

The set U2 consists of three 2 2 parallelepipeds F, G, H and three cubes
/, J, K, which are:

F. (0, 2, 0), (0, 3, 0), (0, 2, 1), (0, 3, 1)
G. (2, 0, 0), (2, 0, 1, 0), 1, 1)
H. (1, 0, 2), (1, 0, 3), (1, 1, 2), (1, 1, 3)
I. (3,5,4)
J. (4,4,5)
K. (3,4,6).

The composite configuration (U1, U2) has three key properties:
(1) The sets U1 and U2 have the same projections on all three axes.
(2) U contains a 2 2 2 block in the lower left corner of its lowest two layers

and a 1 x 1 x 1 block in the upper right corner of its highest layer.
(3) Any bad configuration for U1 (or U2) in U U Uz must contain a point in its

highest cube (4, 5, 6).
Here (1) and (2) are easily checked. Property (3) is proved directly using an argument
similar to that given for the basic configuration. We use directed graphs whose vertices
consist of several cubes, and whose directed edges indicate: "A bad configuration
containing a point in some cube in the entering vertex must contain a point in one of
the cubes in the vertex pointed to." The edges in the graph are constructed by arguments
similar to those used for the basic configuration. Figure A.3 gives such graphs showing
that any bad configuration must include a point in the cube E, thus proving
property (3).

To describe the recursive construction of S and S, we form an infinite set of
copies of the composite configuration, shrunk by factors of at each step, so that the
kth composite configuration lies inside a 5/(2k-l) 6/(2k-l) 7/(2k-) block Bk. These
blocks are stacked successively so that the corner E of the block Bk exactly overlaps
the corner A of block Bk+, as indicated in Fig. A.4.

Let Uk), U2k) denote the composite configuration in block Bk. The sets S, $2
are given by"

S U-1 U U U -{all overlapped corners}
=1

S= UP- U U U2 -{all overlapped corners}.
=1

If we let U denote U-{A}-{E} then

S={A}U U::z-> U U U2)

=1 k=l
u u OF
k=l =1
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x 0or

FIG. A.3. Directed graphs associated to composite configuration.

FIG. A.4. Recursive construction of blocks Bk.

It is easy to see that the sets S and S2 are bounded. Moreover, we show that:
(1) S and $2 have the same projections on all three axes.
(2) There exists no finite bad configuration for $1 contained in S U $2.

To show that (1) holds, we observe that

g,= u ul’-’ u u’ s= u u’-’ u u
k=l k=l k=l k=l
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306 FISHBURN, LAGARIAS, REEDS, AND SHEPP

have the same projections on all three axes. Indeed, this holds by property (1) for the
composite configuration and the fact that all sets in the union defining $1 (respectively,
2) are disjoint. The sets 1 and 2 are not disjoint, since their intersection V is"

V= fq S:z= tO Ek,
k=l

where E (k) denotes the corner cube E in U]k), which is also the corner cube A in
U]k+l). Since $1 1-V and S_ e-V, property (1) follows.

rr(k)To prove property (2), let t /-(k) I/(k) [(k)1
_

and call the level k points in
$1 t_J $2. We first prove the analogue of property (3) of the composite configuration,
which is:

(3’) Any bad configuration for $1 in $1LJ S that contains a point in [(k) must
contain a point in tk+

This is proved by exactly the same graph-theoretic argument as in Fig. A.3, except
that the vertex E in that graph is interpreted to be "all points in $1 t.J $2 in all levels
_->k+ 1." The conclusion of property (3) that there must be a point in E is replaced
by the conclusion that there must be a point in the bad configuration at a higher level.
This point must be on level k + 1 because points on level k and points on levels greater
than or equal to k +2 do not have any projections that agree. So (3’) is proved. Finally,
property (3’) implies property (2), because repeated applications of property (3’)
produce at least one point in the bad configuration at all levels _->k. Hence the bad
configuration contains infinitely many points.
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