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Diffusion, Cell Mobility, and Bandlimited Functions

Abstract
The mechanism by which leukocytes steer toward a chemical attractant is not fully resolved. Experimental
data suggest that these cells detect differences in concentration of chemoattractant over their surface and
"walk" up the gradient. The problem has been considered theoretically only in stationary media, where the
distribution of attractant is determined solely by diffusion. Experimentally, bulk flow has been allowed only
unintentionally. Since bulk flow is characteristic of real systems, we examine a simple two-dimensional model
incorporating both diffusion and an additional drift. The latter problem leads to an integral equation which is
central also in the study of weighted Hilbert spaces of bandlimited functions. We find asymptotic expressions
for the required solution by a Wiener-Hopf method adapted to a finite interval. We conclude that, without
drift, the concentration does not vary detectably around the cell, but that drift inceases this variation
substantially. Thus over model suggests that drift may play an important role in the cell's chemotactic
response.
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DIFFUSION, CELL MOBILITY, AND BANDLIMITED FUNCTIONS* 

H. J. LANDAUt, B. F. LOGANt, L. A. SHEPPt AND N. BAUMAN* 

Abstract. The mechanism by which leukocytes steer toward a chemical attractant is not fully resolved. 
Experimental data suggest that these cells detect differences in concentration of chemoattractant over their 
surface and "walk" up the gradient. The problem has been considered theoretically only in stationary 
media, where the distribution of attractant is determined solely by diffusion. Experimentally, bulk flow has 
been allowed only unintentionally. Since bulk flow is characteristic of real systems, we examine a simple 
two-dimensional model incorporating both diffusion and an additional drift. The latter problem leads to an 
integral equation which is central also in the study of weighted Hilbert spaces of bandlimited functions. We 
find asymptotic expressions for the required solution by a Wiener-Hopf method adapted to a finite interval. 
We conclude that, without drift, the concentration does not vary detectably around the cell, but that drift 
inceases this variation substantially. Thus over model suggests that drift may play an important role in the 
cell's chemotactic response. 

1. Introduction. The mechanism by which cells steer toward a chemical attractor 
is still something of a mystery, for both bacteria and cells of higher organisms succeed 
at this task even when the concentration of the chemoattractant is so low that 
statistical fluctuations alone would seem to preclude accurate assessment. Bacteria, 
which can swim rapidly through the mediurm, apparently overcome this difficulty by 
striking out in a random direction, traversing a sizable distance, and then choosing a 
new random direction if the concentration has fallen [8]. Mammalian leukocytes, on 
the other hand, move very slowly along surfaces by directed extension of pseudopods; 
they are claimed to detect spatial gradients, and to "walk" up the gradient [9]. The 
plausibility of such an explanation, however, depends on how accurately the cell can 
measure a concentration, and on whether the concentration varies st-fficiently around 
the cell for a gradient to be detectable. These questions were addressed in [1], for the 
case that molecules of the chemoattractant propagate only by diffusion. Body fluids, 
however, are in constant motion. We therefore analyze here a simple two-dimensional 
model of a stationary cell in a fluid which moves, and so imparts an additional drift to 
the diffusing chemoattractant. This problem leads to an integral equation of finite 
convolution type which, surprisingly, is central also in a very different context: that of 
weighted Hilbert spaces of bandlimited functions. We prove existence of a solution 
for a class of such equations and, specializing to the one at hand, apply a Wiener- 
Hopf method to obtain asymptotic expressions for the required variation. We 
conclude that drift may play an important role in the cell's chemotactic response. 

2. The model and results. In coordinates relative to the cell, we view the cell as a 
fixed vertical segment IL: I < L of the y -axis, and the attractor as a number of 
particles, each independently executing a two-dimensional Brownian motion z = Zt 

with horizontal drift c > 0, starting at a point x far away on the negative x-axis. 
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We are interested in the probability that the motion first hits IL from the right, or 
distant, side, thereby conveying false information as to the location of the source. 
Thus let r be the first time that z hits IL (setting r = oo if z never hits IL), let 

(1) Q(c, L, x) = Prob(r<oo), 

and let R = R (c, L, x) denote the conditional probability that z hits IL from the 
right, given that r < oo: 

(2) R(c, L, x) = Prob(zr7= 0+ I r< oo) 
Then (1-R)IR represents the ratio of concentrations of the attractor on opposite sides 
of the cell; the closer it is to 1, the more difficult to distinguish the direction of the 
source. 

When there is no drift, the motion always hits IL, and a simple construction 
determines R (0, L, x) explicitly: 

(3) Q(0, L. X) I 1, 

(4) R (0, L, X ) =1/2 --Itan-,1 Ll 7r lxi 
For c > 0, however, the problem is more difficult and leads to the measure ALO 
satisfying the integral equation 

T 

(5) fKKo(t-s) dAO(s) = 1 9 It I T 

where Ko is the Bessel function 

(6) KO(t) = f c du 

and T = LC. (Here t is a dimensionless variable, not time, while c is the drift 
velocity scaled by twice the diffusion coefficient; thus in physical units T = LcI2D, 
and is likewise dimensionless.) Curiously, this equation arises also in studying the 
Hilbert space of functions of exponential type T, in which the scalar product is 
computed using the weight 1/11+t2; for that reason, it has appeared in the work of 
several authors, notably M. G. Krein [5,1[6]. We show first by construction that (5) 
has a unique solution whenever its kernel is even, nonnegative, convex decreasing, and 
integrable. An independent Hilbert space argument, applicable to a larger class of 
kernels, is also available. We then derive the following description of the behavior of 
Q and R when x ---oo; 

(7) Q(c, L, x) - / O[-TgT], 

1 T (8) R(C L X) 
2 'irAi[-T, TI 

For the quantity of interest AOt[-T, TI, we obtain 

(9) 7r.0[-T, T] = 1+2T + o(e-2T), as T oo, 

and, for small T, 
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(10) Ao[-T, TI] I 
log 

By a broad theory [71 recently developed for equations such as (5), (9) can be 
replaced by the more precise bound 

-2T 
1+2 T- eg;;2 T) 3/2,? 7r,u0[-T, TI K( 1+2T, 

but we will not prove this here. 
To apply these results, we observe first that without drift, by (4), the 

discrimination ratio (1-R)/R for large IxIlL behaves as 1+(4/ir)tan-1(L/Ixl), and 
directionality is quickly lost even for only moderate displacement of the cell from the 
source. On the other hand, taking cell size to be approximately 10 microns, so that 
L -5x 10-4cm, D 10-6cm2/sec for proteins, and c -4 cell diameter/sec 
-4x 10-3 cm/sec, yields T = Lc/2D -1, and by (8) and (9) 

(1-R)/R- 5, 

considerably magnifying the directionality. For T = 1/2, the ratio is approximately 3, 
and even for T = 1/4, (10) gives (1-R)/R -1.6. We conclude that, without drift, 
the concentration does not vary detectably around the cell, but that drift increases this 
variation substantially. Thus our model suggests that drift may play an important 
role in the cell's steering mechanism. 

3. Proofs. Let zt (c, x, y) be a Brownian motion in two dimensions with drift 
c > 0 in the x -direction, starting from a point (x, y): 

zt(c,x,y) = (Wt(1)+ct+x, W$(2+y) , t >0, 

where WH(/) and W(2) are independent Wiener processes. Let r be the first time to hit 
the segment IL = {x=0, ly I (L), with - = oo if IL is never hit, and let f be the 
function defined on the boundary of the plane slit along IL by 

f(0-,y) = 1, 

f (0+,y) = i, IYI L. 
This choice of values will make it possible to compute simultaneously the probabilities 
of hitting IL from either side. Introducing the random variable f [z1(c, x, y)I and 
setting 

u (x, y) = E f [z1(c, x, y)J) 

we see from the definition of f that the real and imaginary parts of u represent the 
probabilities that z (c, x, y) first hits IL from the left and right, respectively. The 
function u is now defined and bounded in the slit plane, and by properties of 
Brownian motion, u is continuous, with boundary values 1 and i, respectively, on the 
left and right sides of the slit. Moreover [3, pp. 1-31, u satisfies the differential 
equation 

t 1) 2CUX + (UXX+UYY) = i (X, Y) o IL 

with the boundary condition 
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u(x,y) =f(x,y) , (x,y) E IL 

In this equation, the diffusion coefficient D has been normalized to 1/2; thus in 
physical units, c should be replaced by c/2D, a quantity having dimension (length)-'. 

When there is no drift, (01) shows that u is harmonic, and so can be found by a 
linear transformation from the angle subtended at (x, y) by IL, which has values ?i7r 
on the two sides of IL. Specifically, 

1+i 1___ __iL 
(12) u(X,y)= - arg lvi, v =X+iy- 2 2wLr -L 

Since Q(O, L, x) = Re u(x, O) + Im u(x, O) while R(O, L, x) =Im u(x, O), (3) 
and (4) follow immediately. 

For c > 0, we seek a solution to (01) as a superposition of exponentials esx-iry; 
here, s and r have dimension (length)-', so that the exponent is dimensionless. To 
satisfy (11) we require 

2cs + (S2-r 2) = O 

or 

s= -c + ? 

We now write 
00 

J- f a(r) e(c+2)x e -ry dr x < 0, 

u(x,Y)= 0 

E 1 r b(r) e(-c-V/)x e-iry dr x > 0, 

the different exponential factors being chosen so as to ensure boundedness of u; a (t) 
and b (t) have dimension of (length). (For symmetry, we will throughout use the 
Fourier and inverse Fourier transforms with the factor 1V/2'-.) Since u (x, y) and 
uX (x, y) are continuous across x = 0, lY I > L, we require 

00 

(13) f [a(r)-b(r)Je-irY dr = 0, lyI > L 

00~~~~0 

r {-cIa(r)-b(r)l + Vl r+2[a(r)+b(r)11e-irY dr = 0, | | > L 

so that 
00 

(14) f vl 2[a (r)+b (r)le-irYdr = 0, ly > L 

Moreover, from the boundary conditions on u (x, y), 

00 
(15) L.fa(r)e-irydr - 1 , jYI L, 

(16) L. f b(r)eiErYdr = iE, IYI A L. 
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Taken together, (15), (16), and (13) show that 

(17) a(r) -b(r) = (- 2 sin Lr 

while 
00 

(18) +/ f[a(r)+b(r)le_irYdr = 0i) IYI s L 

Now (14) and (18) can be viewed as conditions to determine a and b. Putting these 
in more convenient rescaled form, we see that our problem has been reduced to that of 
solving 

00 

(19) ? V+tT2Tp(t)e-iYt dt =0 , lyI > T, 
_00 

(20) f p(t)e-Y' dt = 1 IYI , T 

with T = Lc, for on setting 

(21) a (r)+b (r) = p ( r ) f2(x0+0) 
C C 

we satisfy (14) and (18); we note also that this rescaling by c makes the variables t 
and T of (19) dimensionless. Then, combining (21) with (17) we can determine a 
and b separately, hence also u (x, y). We should note that, in (14), the integrand is 
not necessarily required to be integrable; rather, the integral is, by its derivation, 
interpreted as the result of a limiting rocess. Thus we view (19) also as asserting 
only that, in a decomposition of +jj(t) into exponentials, only frequencies 
ly I < T appear, or, equivalently, that p (+t2p() is extendable from the reals as an 
entire function of exponential type no greater than T. 

We now proceed to show, by two distinct approaches, that equations (19) and (20) 
have a solution. The first of these is constructive; the second, abstract but more 
general. To start, suppose that V%1 Vi+tH p (t) is the (inverse) Fourier transform 
of some bounded measure d,u which, by (19), is necessarily supported in ly I ( T. 

(22) 2 i (t) = 2Z | eist dT(S) 27r2 -T 

Then on writing 
2 1- 

ISP(t) = 6J i t i+t2p(t) 1 2-x 
T~~~2i7 

=VYi [ J=feistd,i(s)1] [V/ 2IT7] 

and applying the Fourier transform, we obtain, by (20) 
T 

(23) fKo(y-vd,Av = 1 , ly I T, 
-T 

with Ko the Bessel function defined by 
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00 

Ko(y) = , dv 

It is not hard to see that Ko(y) has the form -logy + b (y), with b continuous, and 
for this case the existence of a solution d,u to (23) was asserted in [6]. As no proof 
was given, however, we supply a construction. 

LEMMA 1. Suppose K(t) (not identically constant) is nonnegative, even, 
integrable, and for t > 0 is nonincreasing and convex. Then the equation 

T 

(24) f K(t-s)d,u(s) = 1 , a.e., Itl < T 
-T 

has a unique solution which is a positive measure. 
Remark. We expect that equality holds everywhere in (24) but we have no proof 

that the convolution is continuous. 
Proof. The idea of the proof is to differentiate (24) so as to convert it into an 

equation of the second kind, which can be solved by iteration. Suppose first that K" is 
continuous for x ? 0, K"(O+) < oo, K'(-T) > 0, and K'(U-) < oo; we will 
construct a solution of the form 

dp,(s) =A {6(s+T) + (s-T) + f (s)ds) 

with f continuous. To this end, let 

M(x) = 2K'(O0), x 0 , M(O) = 0 , 

and 

g(x) - 
K"(x-T)+K"(x+T) 

2K'(O-) lxi | T. 

Let M denote the integral operator on [-T,T] with kernel M(x-y). We find, taking 
the discontinuity of K' at 0 into account, that 

T 

IMh|I sup Ih f IM(x-y)Idy 

and 
T x T 

IxSIUT IM(xy)dy s fM(x-y)dy + M(x-y)dy 

IxT -K'(x-7T)-K'(x+) } 
=sup llI - K, I y <1. 

Consequently, (I-M)-1 exists and is a bounded operator on the space of bounded 
continuous functions in Ix I < T; indeed, setting 

f = (I-M)-Yg = g+Mg+M2g+... 

we see that f is positive, Ix I < T. Now consider 
T 

h (x) = Kx-y)dpXy) 
-T 
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with d,u as above. We find 
T 

h'(x) = A[K'(x-T)+K'(x+T)+ K'(x-y)f(y)dyl. 

On differentiating again, remembering that K'(x) has a jump discontinuity at x = 0 
while f is continuous, we obtain 

T 

h"(x) = A[K"(x-T)+K"(x+T)-2K'(O-)f (x)+ K"(x-y)f (y)dy] 
-T 

= A 2K'(O) [g-f +Mf I = 0, 

by definition of f. But h is even, so h is a constant; the choice 
A = [2K(T)+fTTK(y)f (y)dyFIl makes h (x) -1 and so produces a solution 
of (24). 

We now remove the extraneous hypotheses by approximation. Thus assume only 
that K(T) > 0. Then we can choose kernels Kn to which the preceding argument 
applies, with K, (x) t K (x), Ix I K T. We find corresponding measures A, such that 
KnA, = 1, n > 1. Writing 

T 

(f, A) f f(y)dAi(y), 

we see from the monotonicity of the kernels that 

(1, A.n) = (Kn+l,.n+l, An) = (IAn+1, Kn+l,An) > (IAn+1, KnAn) = (1, iAn+i) 

so that the total mass of An decreases. By the Helly-Bray argument [4, p. 2611 a 
subsequence converges weakly to some measure d,u. It is no surprise that this limit is 
a solution. For when n > m, Kn > Km, hence 1 = KnAun > KmA.n, thus by weak 
convergence 1 > Kmt,u and letting m -- oo, 1 > K,u by monotone convergence. Now 
choosing v to be any measure for which Kv is continuous, we find 

(1, P) = (Knttn, P) = (KnP, ttn) -< (Kv, Asn) --1 (Kv, ,u) K5 (v, 1). 

This shows that K,u = 1 a.e. For the final restriction, if K(T) = 0, let 
KE = K+E, E>O, and construct ,t, for which K,/At, = 1. Then Ktt, + E(1,41) = 1. If 
E (1,/,u) = 1, then K1i, = 0 and this, as we show next, implies that A,E- 0, a 
contradiction. Thus we may take ,t = /, A/[ 1 -E (1, ALE)]. 

To prove that At is unique we invoke the positive definiteness of K. Specifically, let 
us extend K (t) into Ix I > T in any way which maintains the hypotheses, and so that 
K (t) is a constant y > 0 outside a compact set. We form the Fourier transform of 
K I(t) = K (t) --y, and integrate by parts twice to obtain 

K1(, = f K1(t)e" dt =2 K1(t)d (sin st) 
-00 S 0 

00 

2 f(i-cos st)dK'(t) > 0. 
s2o 0 

Consequently, 
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(KAt, A) = _y -(0) 12 + f r (s)I.(s) I2dS > 0 

Since K1(t) and d,u vanish outside a compact set, their Fourier transforms are 
analytic functions of s and if not identically zero can vanish at only a denumerable 
number of points. Thus if (KA,u,) = 0, necessarily d,- 0. Applied to the difference 
of two solutions of (24), this argument establishes the uniqueness of d,. This 
completes the proof of Lemma 1. 

For the second approach to (19) and (20), let us consider the space of functions 
L2(W) square-integrable with respect to the weight W(x) = 1/2%1i+x2. Thus we 
admit into the space functions like (+ Ix I)-1/2, which are not square-integrable. By 
the completeness of L2, Cauchy sequences in this metric converge as well, so that 
L2(W) is a Hilbert space with scalar product 

00 

[f,g] = f (x)g (x) dx 

Let us denote by ET the collection of functions which are the restrictions to the real 
axis of entire functions of the complex variable (x+iy), having exponential type at 
most T, and by H(T) the set of those functions in ET which are also in L2(W). 
Given f (x) E H (T), the function f , (x) _ f (x) sin E x/E x is square-integrable for 
each E > 0, since 

OO 
* 

~~~~~~~~~~~~~~~~2 
(25) S IfE(x)I2dx = S f(x)12 1 2V sin Ex dx 

__0-0 2VYliYx (EX) 2 d 

(BfIf(x) 12 dx 

with B = maxx 2VYiYx sin2Ex/(Ex)2 < oo. Simultaneously, f, (x) extends to a 
function of exponential type at most T + E. Thus if f, (x) E H (T) form a Cauchy 
sequence converging to f (x) in L2(W), {fVfl(x)) is a Cauchy sequence in L2, 
converging to f (x) sin E x /E x. By the Paley-Wiener theorem, f (x) sin E x /e x is of 
exponential type at most T + E. On letting E -- 0, we see that f (x) is of exponential 
type at most T, so that H(T) is a closed subspace of L2(W), hence itself a Hilbert 
space. 

LEMMA 2. There exists a unique solution to (19) and (20). 
Proof. Given f (x) E H(T), we have seen that the corresponding 

fE (x) E L2nET+,E so by the Paley-Wiener theorem has Fourier transform supported 
in I u I < T+E. It follows by Schwarz's inequality and Parseval's theorem that 

T+E oo 
IfE (0) 12 I 1 f2 1 e)IfE(x)I2dx fE (u) du2 y2(T+E-0 

and so, by (25), 

If(0)12 = If E(0)12 < I(T+E)BrIf(X)12d 

This asserts that the linear operation which maps f (x) E H (T) into f (0) is a 
bounded linear functional in H(T), hence by the Riesz representation theorem there 
exists a unique h (x) E H (T) such that 
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00 

(26) f (0) = [f, h] = f (x) h (x) 
-C* 2 VrlY+~ 

for eachf E H(T). Now as h E H(T), 

p(x) h(x)/2x/7 

is in L2. If we choose f E H (T) also to be in L2, and apply Parseval's theorem to 
(26), we obtain 

T T 

f(0) = + f F(u)du = f F(u)P(u)du, 

with P (u) the Fourier transform of p (x). Since this must be true for each 
F(u) E L2, we conclude that P(u) =-1 a.e., lu I , T, equivalently that (20) 
holds (a.e). Simultaneously, since 21I7 p (x) = h (x) E H (T), (19) holds. Thus 
p (x) is the required solution. The argument applies equally well to any weight W(x) 
which decreases no faster than t-" for some n. This completes the proof of Lemma 2. 

As we have seen, we can determine u (x, y) from the solution of (19) and (20). 
However, less information is necessary to establish the asymptotic behavior (7) and 
(8). 

LEMMA 3. As x --oo-, the probability that the process hits IL is, 
asymptotically, 

Q(c, L, x) -[-Tg T], 

while the conditional probabilities that the process first hits IL on the near and far 
sides, given that it hits IL, are, respectively, 

1 - T 
2 rjA-T, T] 

with T = Lc and ,u the solution of (23). 
Proof. We know that 

Q(c, L, x) = Re + Imtu (x, 0)}, 

(27) R(c, L, x) = Im u(x, 0)IQ(c, L, x) 

Now when x < 0 

00 

u(x, 0) = a f a(r)e(-C+2r)x dr 

_00 

00 

2 | a()esIx\/u ds s+c 

by the evenness of a and the substitution s = c c. As the kernel 
VT7;e-SIxI/7s approaches (0) when Ix|I - oo, 
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u (x, 0) fF a (0) 

But from (19), (21), and (22), 

aO=2[1-i 2i f2+ 0 ) pO) 

0 {(1-i) 2L + ( +0 ,+i) T TJ} 

and Lemma 3 now follows from (27). 
In returning to the measure A, we should note that the study of Hilbert spaces of 

functions of exponential type, square-integrable on the reals with respect to a weight, 
is of interest in its own right [21. In that context, the determination of the evaluation 
element (or of p4-T, TI which measures its norm) from the integral equation which 
corresponds to (23) is a central problem. A broad theory of such equations, which 
allows efficient construction of solutions, has recently been developed [7]. Here, 
however, we will restrict ourselves to (23) and treat it by a Wiener-Hopf method. 

THEOREM. Let du(x) be the solution of 
T 

(28) f Ko(y-x)dgA(x) = 1, IYI ( T. 

Then ,A-T, Ti = (1+2T)/Ir + o(e2T). For small T, u[-T, Ti --1/log T. 
Proof. The equation has the general character of a Wiener-Hopf problem, in 

which the convolution is prescribed only over the support of the unknown function. 
Accordingly, we will treat it by extending the convolution to IyI > T and, using 
projections, reason about the (unknown) values thus introduced. 

To begin with, let us recall that, as in (22), on setting 
T 

h(t) = feist dA(s) 
-T 

p(t) 
h h(t) 

equation (28) is equivalent, under Fourier transformation, to asserting that 
P(u) = I1/, IuI , T. Now p(t) E L2, so P, likewise in L2, can be decomposed 
into three mutually orthogonal components obtained by restricting P to the intervals 
(-oo, -T),[-T, T], and (T, oo), respectively. On writing p as the inverse transform 
of P, we obtain correspondingly 

(29) p (t) = q-(t) + e { e te T] + qN(t) 

in which the components remain mutually orthogonal (the Fourier transform being 
unitary in L2), and the middle one is determined by (20). Thus 

00 00 00 

(30) iP (t) 12dt = q-(t) 2dt + r tq+(t) 12dt + (2T) . 
_00 _00 _02 
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We need a bound for the integrals on the right-hand side of (30); we can assume 
them equal by symmetry. For this purpose we observe that, as in Lemma 2, h (t) is 
the representing element for evaluation at t = 0 in the Hilbert space H(T). From 
(26) 

h(0) = [h, h= dt 

and since this quantity is the square of the norm of the linear functional, we have 
equivalently 

c0 Ih (t) 12 dtIf (0) 12 (31) Jdt =(su 0 002VY t I t)1 fI(0I/2v 1i747dt 
_00 

Since 
00 00 

(32) If (t) 12 I2v/2dt > f If (t) /20(1 +t2) dt 

(33) sup 0 If (0)1 2 f su 0U If (0) 12 
f EET7C If (t) 12/ 2 dt E If (t) 12/21 +t2 dt 

f_oo _o 

The last quantity can be viewed as the square of the norm of the functional f - f (0) 
in the Hilbert space of functions f E ET, with the norm given by 
[f If(t) 12/2(1+t2) dt ]l?. By the argument of Lemma 2, this equals q(O), where 
q E ET and the Fourier transform of q(t)/2(1+t2) coincides with 1/V"i for 
Iu I < T. Since 1/2(1+t2) is the Fourier transform of (V/'_/4) e-Ixl, this latter 
requirement is in turn equivalent to 

(34) f2 e I xY1dv(x) = 1, IYI < T 

with 
T 

(35) q (t) = fei"X dv(x) 

This is useful because (34) can be solved explicitly, to give 

dv(x) =-[6(T)+b(-T)+11, lxl < T, 
7r 

so that from (35) 

(36) q(0) =-(2+2T) 
7r 

On combining (31),(33), and (36) we find 

yCIh(012 dt < (2+2T) 
-00a2vT2d sr 

and since by (32) 
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p(t)2dt = f (t) (t) lp (t 12 t 4(h+t2) 2dt~K I_ 2Vi - d 

we obtain finally 

|p |(t)12 dt < 2(2+2T). 

Applied to (30), this bound shows that 
00 

(37) qI-(t) 2d t < 1 
_00 2ir 

Next, let us return to (28), which we replace by 
T 

fKo(y-x)d1,(x) = e-EY l IY E T 

with E > 0. The solution exists by the argument of Lemma 2 applied to evaluation at 
-ic instead of at 0. This is done in order to modify the decomposition (29) to 

h,iT =t e-_ e(E 
+it) T 

e(E 
+it) T 

q(t (38) 
h2() 

_ 

t 
(t) + 12 r 1E(it ] + q 

for moving the zero of the denominator of the middle term away from the real axis 
will enable us to obtain asymptotics by the technique of Wiener-Hopf equations on a 
half-line. We are grateful to the referee for pointing out that this approach can be 
motivated physically in the following way. Let us make T = Lc large by increasing 
the drift, and picture the diffusion as starting a little above the negative real axis, at 
y = e; then in order to clear the left side of the segment IY I < L, the particle 
requires an upward displacement exceeding (L-e) or a downward one exceeding 
(L +E) before reaching the segment. As the magnitude of the horizontal drift 
increases, the time allowed for this is progressively shorter, and the latter event 
becomes increasingly unlikely by comparison with the former. Thus, in effect, the 
segment can be extended to y ( L without affecting the probability of interest, and 
the problem becomes posed on a half-line. 

Clearly, as e - 0, dM, . d,4 and for the quantity of interest we have from (38) 
T T r1 2T 

(39) fdg(s) = lim fdI, (s) = lim h, (0) = lim 2 [q (0) +qf+ (0)J + - 

-T f-?-T f-? f-? 

We now multiply (38) by eiTV to obtain 

(40) eiTt h( r (t) + r+(t) 

with 

I efT eiT 

rI(t) =q-(t)eiTtJ77i 17 eit 

r+(t) = q+(t)eiTt-/T + L e7'eIJt - i 
The2i - e+it 

The left-hand side of (40) remains square-integrable, since h, (t0 E H (T) and we will 
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assume that likewise r,(t) E L2. Since h,(t) can be extended into the complex 
(t +iu) plane to be an entire function of exponential type not exceeding T, 
eitT h, (t)/1tl7i is extendable to be analytic and bounded in the upper half-plane and 
so by the Paley-Wiener theorem it is a function of H+, i.e. one representable as 
f' H(s) e'ts ds, with H E L2. Analogously, since by definition 
q (t) = jTQ (s)ei'tsds, the frequencies of q (t) are contained in s < -T, so 
r_(t) is extendable analytically to the lower half-plane, hence is contained in the 
complementary subspace H-. Thus projecting (40) onto H2- we find 

(41) 0 = r_(t) + P[r+(t)], 

where P, the projection in L2 onto H-, is given explicitly by 

(42) (Pf) (t) = lim - 2 f u) du 
z -t 2iri __ U -z 

Imz<0 

The assumption that r ? E L2 represents no loss of generality, for we can ensure it by 
multiplying (40) by the convergence factor (1-e-I5t)/iSt; as the left-hand side of (40) 
so modified converges to Hj+ when 6 -- 0, we obtain (41) in the limit. To estimate 
Pr+ we deform the contour of integration into the upper half-plane. Specifically, let r 
denote the boundary of the semidisk of radius N in the upper half of the t = u +iv 
plane, from which the vertical slit 1 ( v ( N has been removed. Then r consists of: 
lul N; kI = N, 0 < arg r < ir/2; the slit u = 0, 1 ( v ( N traversed twice; 
ki = N, ir/2 < arg r < ir. Now in the region bounded by r, v'T7i is single-valued, 
and the second component of r+ has a simple pole at t= iE. Consequently, for 
Im z < 0, 

N 

143f r+(u) dr )d. 
-27ri 1 U-z 2 'ri r 2s7ri l2-i t v-z 

The first of these components is given by the residue of r+(r)/(A-z) at = is, 

I ( r+(?) d 1 1 e-E T-If 
27ri J t-z i 2x ie -z 

For the second, we use the definition 
00 

(44) qf(t) = f Q(s)est ds 
T 

with some Q(s) E L2, to see that eiT?qf+() = O(e-2Tv) in the upper half-plane; thus 
the second component of (43) approaches 0 as N -+ oo. We conclude from (41), 
(42), and (43) that 

(45) 

1 '&T 11eT., 7 i r +(iv) 
.- 7+q (t)eiTtFr7 = lim - 

e 
T 

E 
idv 2ir e +it z -t i 2-r 1E-Z 2Xi iv-z 

Imz <0 slit 

Letting t = 0 in (45) we find 
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q e-E 
T 1 1 e- ETVT=[? _ 1 r r+(iv) 

=27r + 2-7r e Ls 2 f+Ji iV 
slit 

(46) =--1 [-1RV ] 1 f r+(iv) dv 
2ir e 2-riv'WT Slit V 

Now the slit is given by v > 1, and is traversed twice. For an estimate of r+(iv), we 
see from (44) that 2ir f'IOQ(s)I2ds = fO |Iq+(t)12 dt, while by (37) the latter 
quantity is bounded by a constant. Then by Schwarz's inequality, 
Iq+(iv) I ( ce-TvIV 1;, so that 

(47) Ir+(iv)I < LIc v 

Finally, combining (39), (46), and (47), and using symmetry to conclude that 
lim qJ,- (0) = lim q f+ (0) , we obtain 
fEO -EO 

T ~1 +2T 
JdA(s) = + o (e-2T) 
-T Ir 

When T is small, we appeal to [4], where the solution of (27) with the kernel 
log(1l/y I) is given explicitly as 

dAW)= 1 1 
I 

ds 1 T < 1/2, 
log 2-7rVT y 

so that fIT dA(x) = 1/log(2/T). Since Ko(y) - log(1/|y|) as T -+ 0, the 
remaining estimate of the Theorem follows. 
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