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Translated from Russian Journal

A NEW LOOK AT PRICING OF THE "RUSSIAN OPTION"*

L. A. SHEPP AND A. N. SHIRYAEV$

(Translated by M. V. Khatuntseva)

Abstract. The "Russian option" was introduced and calculated with the help of the solution
of the optimal stopping problem for a two-dimensional Markov process in [10]. This paper proposes
a new derivation of the general results [10]. The key idea is to introduce the dual martingale measure
which permits one to reduce the "two-dimensional" optimal stopping problem to a "one-dimensional"
one. This approach simplifies the discussion and explain the simplicity of the answer found in [10].

Key words, diffusion model of the (B, S)-market, bank account, rational option price, rational
expiration time, optimal stopping rules, smooth sewing condition, the Stephan problem, diffusion
with reflection

1. Statement of the problem on pricing of the "Russian option".

1. Following Samuelson [9], Black and Scholes [2], and Merton [8], we consider the
"diffusion" (B, S)-market consisting of two assets: riskless bank account B
and risky stock S

We assume that the bank account B (Bt)t>_0 is a determinate function

(1.1) Bt Boerr, Bo > O, r >= O,

satisfying the equation

(1.2) dBt rBtdt.

In order to describe the evolution of the stock price S (St)t>o as a random
process we shall consider following the spirit of the modern "general theory of the
random processes" the canonical filtered Wiener space (,’,F (9t)t>0, P) with
components:

a space of continuous functions w (wt)t>_o with w0 0; " C a Borel
a-algebra generated by cylindric sets; P a Wiener measure on (t,’); F (Jzt)t>=o

9a filtration, i.e. a flow of a-algebras St, t _>_ 0, where $’t is a a-algebra Ns>t 8 with

Js a(wu, u <= s) completed by the sets of P-null probability from 9.
Let W (Wt)t>=o be a canonical process with Wt Wt(w) such that Wt (w) wt.

The process W is a standard Wiener process (Brownian motion) with respect to the
measure P whose one characterization is the following (Lvy theorem, see [16, Theorem
4.1]): W is a continuous martingale (with respect to (F,P)), i.e., E(Wtl.Tzs) Ws (P-
a.s.) and E((Wt Ws)21’) t- s (P-a.s.), s __< t.

To describe the evolution of a stock price we shall assume (following [9], [2], [8]
and also [18] and [20] in this issue) that the stock S (St)t>o, St St(w), is a
diffusion random process satisfying the stochastic differential equation

dSt St (#dt + adWt
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104 L. A. SHEPP AND A. N. SHIRYAEV

with appreciation rate lz E It, volatility a > 0, and initial value So s > 0.
Concerning the parameters # and a in (1.3) (cf. [20, 1]) we note that the co-

efficient a is defined by a continuously observable process S in an arbitrarily small
time interval [0,t0], to > 0 (see, for example, [16, Lemma 4.3]). The appreciation
rate # is defined "worse". In this connection the result obtained by Black and Scholes
[2] (see also [20]) turned out to be unexpected. It states that the rational price of a
standard call option of European type does not depend on the parameter # E It, the a

priori opinion on a value of which may be very fuzzy, and in order to obtain a "good"
estimation for # one need some time of observation.

Section 6 in [20] says that the mentioned above "Black and Scholes effect" of
independence of # is explained by the fact that for the standard call option of European
type with expiration time T > 0 its payment function fT(W) (-- (ST(w)-K)+) depends
on w 12 not directly but only via the values ST(W).

By the same reason a similar effect takes place in the case of the "Russian option"
considered in [10], for which the system of payment functions f (ft(w))__>0 is of the
following type:

(1.4) f e- max [maxSu, s0],
J

where A > 0, 0 _>- 1, s So > 0.

2. Let f (ft(w))t_>_0 be some non-negative progressively measurable random
process [16, p. 30], [17, p. ].

Let us consider an option of the American type with a system of payment functions

f (f(w))_>0 as a contract between a seller and a buyer by which the buyer can
exercise the option at any (Markov) time T -(w) with payment fr()(w), w
(For details see [18], [19], [20].) The following two general problems arise for such
options"

(1) What is the rational price (i.e., a fair price both from the seller’s and buyer’s
points of view) which the buyer must pay to gain a given contract?

(2) What is the rational time in which it is "reasonable" for buyer to exercise the
option?

The general theory of option pricing ([4], [5], [7], [1], [18], [19], and [20]) gives the
following answers to these questions.

Let C,(#, f) be a rational option cost (see Definition 4 in [19, 1] and Definition 4
in [20, 2]) under the assumption that the option (of the American type) can be
exercised at any Markov time with values from the interval [0, T]. Then

(1.5) C,(#, f)= B0 sup E-r fr
0<_r<T B’

where E"-r is expectation with respect to the measure p,-r defined below in (2.3).
In the case where the expiration time can take any values from the set [0, oc) we

denote by C* (#, f) the rational price. In analogy to (1.5),

(1.6) C* (,, f) B0 sup Eu-r f*.
0<_,< B

Therefore, the rational pricing reduces (in view of (1.1)) to the solution of the
following optimal stopping problems:

(1.7) " sup Eu-re
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A NEW LOOK AT PRICING OF THE "RUSSIAN OPTION" 105

and

(1.8) sup EU-re-rfr’’.
0=<<oo

It turn out that the optimal time T, (in the problem (1.7)) is exactly the rational
time at which the buyer must exercise the option (see [19] and [20]). Similarly, if T* is
a finite (P-r-a.s.) Markov time for which sup is attained in (1.8), then exactly this
time is the rational expiration time.

From the general theory and the practice of solutions of the optimal stopping
problem it is well known that the problem (1.7) on a finite interval [0, T] is more
difficult than the problem (1.8) on an infinite interval [0, oc). This is also the case in
the case of the "Russian option" for the function (1.4) under consideration.

Section 2 shows that the costs C* (#, f), C,(#, f) do not depend on values of the
parameter # E R. For the given function f defined in (1.4), we shall for brevity denote
these rational costs by (*, C,.

Our general goal is to give a new proof of the following results of our paper [10].
THEOREM. The rational cost C* of the "Russian option" with payment function

f (ft(w))t>=o given in (1.4) and (Markov) expiration times with values from [0,
is defined by

1) o o+(1-Xl) -- 1_-<o<,(1.9) C*=S0. .-
o, o >= ,

or, which is the same,

c* So. { X2xl --X1"
1<_-o<,

o=>,
where Xl, x2, being the roots of the quadratic equation (4.13), are defined by (4.15),
(4.16), and

(1.11)
1/(X2--Xl)

The rational time is

=inf{t=>0" Ct>=
where

max{max_<t Su
(1.13) t > 0.

The proof of this result is given in 3. Section 2 introduces a so-called dual
martingale measure (see algo [20, 7]), permitting a new representation for C-(#, f)
and C* (#, f). Section 3 studies the properties of the process (t)t>=o in the phase
space [1, x)) which turns out to be a diffusion Markov process with reflection at the
point {1}.

Note that the idea of using a dual martingale measure is also applied in the papers
[14] and [15] published in this issue.
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106 L. A. SHEPP AND A. N. SHIRYAEV

2. Dual martingale measure.

1. Along with the Wiener process W (Wt)t>o we introduce for # E R, t >= 0,
the processes

+ "-

(2.2) Zt-r(w) exp tt
a

r
Wt (w)

Let P PT be a restriction of the Wiener measure P on T. For t 0 we
introduce new meures P-r suming

(2.3) P-() Z-r(w)Pt(dw).

Since EZt-r(w) 1, the measure Pt-r is probabilistic and due to the consistency of
the family {Pt-r, t __> 0} we can establish that a probabilistic measure p-r on
exists such that its restriction Pt’-rl coincides with Pt t >= 0 (see [20, 1]).

With respect to the measure Wt-r (Wt-r)t__>0 the process p-r is a Wiener
process

(2.4) Law(W’-IP"-r) Law(WIP (= P)

(Girsanov’s theorem, [16], [6]).
In order to underline the dependence of the process S (St)t>_o satisfying equa-

tion (1.3) on tt we also write S(tt) (St(tt))t>__o and S(#,co) (St(#,w))t>=o if one
also needs to underline the dependence on co E ft.

Note that the solution of equation (1.3) can be written in the form

(e.5)

or, equivalently, as

(2.6)

St(#) So exp #- - t + aWt

where

(2.7) g(aW)t exp a Wt -- t

is the stochastic Dolean exponent (see, e.g., [17, Chap. 2, 4]).
By the It6 formula [17, Chap. 2, 3], [6,Chap. 1, 4f],

(2.8) d ( S # ) a (S (Bt ) dWtBt
or in integral form

S # dW "(2.9) St(#) So + a
Bt Bo By

Hence with respect to the measure pt,-r the process

(2.10) S(#) (St(#))B Bt t>_o
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A NEW LOOK AT PRICING OF THE RUSSIAN OPTION 107

is a martingale and hence we shall name the measure p-r a martingale measure.
From (2.8) it is easy to see that (P-r-a.s.)

(2 11) St(.) So exp aW-r a So g(a W*-")tBt Bo 2
t -o

or, equivalently,

(2.12) St (#) So exp aW-rq- r-- t

From (2.9) or (2.11) it follows that

(2 13) E,-r(S(#) Bo)B, "-o 1.

which permits us to define a new probabilisic meure -r on (,) with

(2.14) -(A) EU-(St(")"So BI(A)) A e .
In particular this implies that

(.lSl ( xp v t (, e ,
since p0 p.

Let "- be a measure on (a,) such hat its restrictions "-lt -,
t 0. (The existence of such a measure can be established in the same way as that of
the measure P"-.)

Along with the process W"- defined by (2.1) we introduce a new process W"-
(W-r)t0 with

t

It is easy to convince oneself that the process -r with respect to the measure

W"-r (W-r)t0 is a Wiener process. he equality (2.12) yields

(.1 s(.l so xp -+ + t

and, by the It6 formula,

(.la) aSt() St() [(r + )at +

( s(.l s(l
Bt Bt

The last equation implies that the process "- is a martingale with respect to
the measure B/S() (Bt/St())to. his circumstance permits one to call this

measure a dl (with respect to P"-) martingale measure.
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108 L. A. SHEPP AND A. N. SHIRYAEV

It is useful to note that (2.20) implies

(2.21) St(#) ---So exp atg-r -Vta =-oS e(_a-r)t
Comparing this representation with (2.11) we find just as it must be that the

product of the right-hand sides of (2.11) and (2.21) equals one (by (2.16)).
2. Let f (ft(w))t__>0 be a progressively measurable random process. Then the

value fr is J:-measurable [16, Lemma 1.8] for any finite Markov time T T(W). Since,
on the sets A E $’,

(2.22) "-(A)= E"-(S(#) Bo I(A))So By

we have

B-- K S0 S,(#) S,(#-----"

This and (1.5), (1.6) imply new representations for C(#, f) and C*(t, f) using
the dual martingale measures

(2.24) C(#,f)-So sup .-r fr
s (u)

and

C*(#,f)=So sup .-r fr
o<__<o S(a)"

In the case where ft ft(w) (as, for example, for the "Russian option") depends on w

via values of S(#, w) (formally, ft is a ’ts(g’)-measurable function, where ’tS(g’)
a(Su(g,w),u t)), the values C(,f) and C*(,f) do not depend on since, by
(2.17),

Law(S() "-) Law(S(r) ),
where - 0.

Denoting by C nd C* the common (with respect to #) values C(#, f) and
C* (#, f) we find that

(2.26) C, So sup f(S(r))

and

(2.27) C*=So sup fr(S(r))
o_< <oo S (r)

This result, in particular, means that for the pricing problem on the diffusion
(B, S)-market under consideration it is sufficient to deal with the value of a parameter
which is equal to r, i.e., is equal to the interest rate of a bank account B (Bt)t>o.
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A NEW LOOK AT PRICING OF THE "RUSSIAN OPTION" 109

3. In what follows we shall write St St(r). Then for the "Russian option" with
the function ft defined in (1.4) we find that (cf. with (1.12))

(2.28) C*--So sup e-X,
0<_7-<c

where the process (t)>o is defined by (1.12).
Thus, finding, C* is reduced to the solution of the optimal stopping problem for

the process ()>0. The next section studies the structure of this process.

3. The structure of the process (t)t__>o.

1. First we show that this process is Markov with respect to the measure P.
Since

(3.1)
max{maxu_<t Su, S00}

we have

(3.2)

Soo }max
St+A St+A

{ max,_<t S,, Soo maxt<=$t+Su/St}max :t’ St" St+A/St’ St+/St

{ 1
max " S+/S’ S+/S

Note that for the Wiener process 0 (with respect to the measure ) we
have, for all t < u __< t + A,

(3.3) s = xp (u-t)St

by (2.17).
Consequently, (3.2) implies

(3.4) Law(t+zx It; P) Law(t+lCt; P),

which proves the Markov character of the process (t, ’t, P)t>=o.
2. Let us study the structure of this process in more detail. To this end we

denote

(3.5) Mt max{maxSu, So},
where S= S,(r) and s So.

(Mt)t>=o is a nondecreasing process of locally bounded variation. Thus, in view

of (2.12), (with # r, W) we find by the It5 formula that

(3.6) dCt d Mtd t + dMt -t[rdt + adWt] +
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110 L. A. SHEPP AND A. N. SHIRYAEV

or in integral form

(3.7)

Similarly, for any function g g(), => 1, of class C2,
_" o,. )a2t2dt,dg(t) g’(t) dCt + tt

or

(3.9)

g(bt) g(o) + Lg(b) du a (2u) bd

g dM+ () S I( 1) du,

where the differential operator is

0e
n -re --7 +

0
In the last integral we have introduced the indicator I(u 1) of the set {(w, u)
(w) 1} since, as can be readily seen, Cu(W) > 1 (in the sense that f I( >
1) dMu 0, t > 0) for dM(w) O.

Now we show that, for any t > 0,

(3.11) I(u 1)du 0 (P-a.s.).

Indeed, let {t >= 0: bt(w) 1} and let h(dt) dt be the Lebesgue measure.
Then, by the Fubini theorem,

I(t(w) 1) dt E I(t(w) 1) dt

(3.12) fo (max{maxu<=t Su’ l) dt.

Taking into account (2.12) (with # r) and the properties of the Wiener process
0 the probability distribution law Law(tl) has a density, and so the last

integral in (3.14) equals zero which proves (3.11).
According to the property (3.11) the process (t)t>=0 spends (P-a.s.) zero time at

the point 1 and hence this point is an instantly reflecting or nonsticky boundary (see
[, Chap. IV, 7]).

Denote

(3.13) W, I(u 1) S-----’ t >= 0.

It is clear that the non-negative process (t)t>o increases only when the process
(t)t>0 hits at the boundary point {1}. According to the Definition 7.1 of [11, Chap.
IV, 7], (3.9) and (3.11) imply that the process (t)t>0 is a diffusion with instant re-

flection at the point {1} on a phase (state) set E [1, x). The respective infinitesimal
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A NEW LOOK AT PRICING OF THE RUSSIAN OPTION" 111

operator of this process on functions g E C2 coincides with the differential operator
(3.10) and the following condition holds at the boundary point

=0,

gwhere g’ (1+) lim ().
4. The Stephan problem connected with the optimal stopping of the

process ()>=0.
1. According to (3.6) and (3.13) the process ()>_0 satisfies the differential

equation with reflection,

(4.1) d -,(rdt + adW) + d,,

with initial condition 0.
Let PC denote a probability distribution of the process (t)t>__0 (under the as-

sumption that 0 >_- 1). Let also

(4.2) () supe-:r

where E is the expectation with respect to the measure PC and sup is taken over all

finite (-a.s.) Markov times T T(W). (We assume that e-X()() 0 on the
set {w" T(w) c}.)

By (2.28),

(4.3) C* S0(0),
where 0 is a constant of (1.4) contained in the definition of the payment function

f
According to the general theory of optimal stopping rules for Markov processes

(see, for example, [21, Chap. III]) it is natural to expect that the structure of the
optimal stopping time in the problem (4.2) has the following form:

(4.4) inf {t _>_ 0" (t)
The results of our paper [10] suggests that in fact the structure of must be quite

simple:

(4.5) - inf {t >__ 0" Ct ->_ },
where is some constant. In other words, one can say that is a first arrival time
of the process ()>__0 into the set of "stopping of observations" D

(or, simply, of the "stopping region"). It is natural to call C (" 1 _<_ < } the
"region of continuation of observations" (or, simply, the "continuation region").

2. If we assume a priori that the function V() is sufficiently smooth, then
according to the general theory of optimal stopping rules [21, Chap. III] the function

V() satisfies, for 1 < < , the differential equation

(4.6) LV()

where L is the differential operator (3.10) with the boundary condition

(4.7) o
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112 L. A. SHEPP AND A. N. SHII:tYAEV

(cf. with (3.14)).
Remark. Heuristically, the equation (4.6) may be obtained in the following way.
If E C, then the observations must not be immediately terminated and

must be carried out at least on a "small" time interval It, t / At]. Then, in view of
the Markov property of the process ()>__0,

(4.8) () [-(+ zx)] + o(),

where ACt Ct+zxt Ct, Ct . Expanding ( + ACt and e
-/t

into a Fourier
series,

ff( +) () + ff’() +
--hAS

ff"() + o(),

and taking into account that in some probabilistic sense "(ACt)2 a2t2At + o(At),"
we obtain from (4.8) and (4.9) letting At 0 the following equation:

,,()= #(),(4.10) -#’() + 2
which coincides with (4.6).

Similarly, if

(4.11) (, t) sup

then this function satisfies in the "continuation region" the equation

ov(,t)(4.12) A v(, t) + ot
L V(, t).

3. We shall look for the solution of (4.6) in the form V(b) . Then for x we
obtain the quadratic equation

2(4.13) x Ax B 0

with

2r 2A
(4.14) A=lq

2, B=-.
Solving equation (4.13) we find its roots

(4.15) xl 2 + B,

(4.16) x2 - + + B.

Note that x < 0, x2 > 1.
If equation (4.6) "operates" in the region of with 1 < < , then in this region

its solution V() has the following form:

(4.17) V() Cxl + C2x,
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A NEW LOOK AT PRICING OF THE "RUSSIAN OPTION" 113

where C1 and C2 are some constants.
Therefore, if we assume that the continuation region C is of the form C {

1 _<_ < }, where is a constant that must be defined together with C1 and C2,
then to define these constants one must have three additional conditions.

One of these conditions,

(4.18) v() ,
(4.19)

is quite obvious since it means that the "gain from the continuation of observations"
must coincide with the "gain from stopping the observations".

The "smooth pasting" condition

(4.0) v’(-) ,
is less evident and means that the derivatives of the left- and right-hand sides of (4.18)
must coincide ("gains of continuation and stopping of observations must piece together
smoothly"; for details see [21, Chap. III, 8])."

From (4.19) and (4.20)it follows that

(4.21) xCxl- + x2C2’d/’’2- 1.

Finally, the third condition to define , C1 and C2 is the condition (4.7) which,
in view of (4.17), leads to the relation

(4.22) C x2 C2.
Xl

Conditions (4.19) and (4.21)yield

c" (z ) +c"- (x ) 0,

and by (4.22) we obtain

(4.24)
X2 X 1

x x2 1

/(x2-xl)

Remark. The values V 1- x2 (< 0) and 2 1- xl (> 1) are the roots of the
equation

(4.5) ( + ) 0.+ -If in this equation we let r be # and + r be r, then we obtain exactly (2.2)
of [10].

Denoting "Yl 1 x2, "Y2 1 x, we can rewrite (4.24) in the form

(4.26)

which coincides with (2.3) at the critical point a (= ) in [10].
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114 L. A. SHEPP AND A. N. SHII:tYAEV

From (4.21) and (4.23)it follows that

C1=
x. "-1 1

C2= 1-xl N1
X2 X l/)’’xi-1 X2 X l/)x2-1.

Thus we can formulate the following result.
LEMMA. In a class of twice continuously differentiable functions V V(x) the

solution (V, ) of the "Stephan problem" (or the problem with moving boundary )"

L V()= A V(), 1 < < ,
(4.71 , y’ y’y() (-) (1+1 0,

is given by formulae:

where

(4.29)
X2 X 1

x x2 1

Remark. Simple transformations show that, along with (4.28), the following
equivalent (more compact) representation holds for V()"

(4.32)

__
x

V() -x_x’,
4. In connection with the Stephan problem (4.27) whose solution gives (as will

be shown later) the solution of the optimal stopping problem

"()= sup e-
0__<<oo

it is natural to point out the corresponding Stephan problem for

(4.33) "(, T) sup e-rCr’’.
0_<’_<T

Let T be fixed, 0 <__ t =< T, and let (V(,t), )T(t))o<_t<T be the solution of the
following Stephan problem:

ov(,t)(4.34) Av(, t) + at LV(, t)
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A NEW LOOK AT PRICING OF THE RUSSIAN OPTION" 115

on the set {(, t)" 1 __< =< CT(t), 0 __< t __< T}; then

OVOY (T(t)--, t) 1, (1+, t)- 0,(4.35) Y(T(t), t) T(t),

where T(t) is a function of the type (T-t) and (s), s __> O, is an increasing function.
It is highly probable (although it is not discussed here rigorously) that the solution

of the problem (4.33) coincides with the solution of the problem (4.35) and, in partic-
ular, V(,T) V(,T), and the optimal time T min{0 __< t _<_ T" Ct _-> (T- t)}.

Here (T) --. , T --* c, where is a solution of the problem (4.27).
5. Proof of the theorem.

1. Comparing (4.3) with (1.9), we see that the statement (1.9) of the theorem
consists in the following:

(5.1)

where V V() is a solution of the Stephan problem (4.27) defined in the previous
lemma.

In order to prove (5.1) it is sufficient to state that

(A1) for any finite (P-a.s., => 1) time T,

e-rbr _<_ Y(), > 1,

(A2) the time inf{t >__ 0" Ct > } is (P-a.s., => 1) finite and

y().

If these properties are fulfilled, then they imply the statement (1.11) of the the-
orem on optimality (and rationality) of the tithe

The It5 formula, by which, for any finite Markov time T,

-’r e-Ue V() V(0)+ [(LV)(,) ,V(,)] du

)u(5.2) e aY’()d + e- () d99,

can be applied to the function Y() defined by (4.28).
Note that the definition of V() implies that nY() AV() <__ 0 for all b >= 1.

Furthermore, the last integral in (5.2) equals zero since the function 99u increases for
1 and V’(1) 0. Thus it follows from (5.2) that the integral

It ae-uV (u)d

is a local martingale (as a stochastic integral over the Wiener process [17, Chap. 2,
2]; [6, Chap. I, 4d]) and is uniformly bounded from below:

(5.3) It >= e-tV(t) V(0) _-> -V(0).

Therefore, (It)t>_o is a supermartingMe and EIr _-< EI0 0 (the Doob theorem
[16, Chap. 2, 4]).
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116 L. A. SHEPP AND A. N. SHIRYAEV

Thus, taking the mathematical expectation E in both parts of (5.2), we obtain
(the supermartingale property) that

=< v()
for any >__ 1 and finite (P-a.s.) Markov time . The last inequality together with
the evident inequality b _<_ V() prove property (A1).

Now we ps to the proof of property (A2). om (5.2),

(5.4) e-(ta)V() V(o)+ e-[(LV)()
d0

If o , then F 0 and property (A2) is evidently fulfilled. Let o < , then
(nY)(u) AY(u) 0 for u 5 t A F(w), w e fl, and thus

(5.5) V() V(o) e-(tA)V(A) V(o) I -V(0).

The process (ItA)t0 is a local martingale, uniformly bounded (by (5.5)) from
below and above.

In what follows we shall show that P( < ) 1 for 1. Thus, since

I I0 0 by the Doob theorem, (5.4) implies e-V() U().
But (V() ) 1. Hence e- V() which proves property

(i2).

2. It only remains to prove the P-a.s. finiteness of the time

} for any 1.
Note that, for integral T 1,

PC max Ct > > max >
OgtgT OutT

ONNtNT

P e(+/) max e

(g.6) { max [ 0,...,

where C [log -(r+ /2)]/. Bu it is evident thag for real C the probability
of he right-hand side of (g.6) tends to 1 T . Thus the process (t)tO attains

ay level with probability 1 and, in particular, the level which proves the finiteness

(P-a.s., 1) of the time 7.
he theorem is proved.

g. In the optimal stopping problem (4.2) under consideration we assume that
he sup is taken over all Markov times r. We could also consider a simplified version
of this problem supposing

where sup is only taken over Markov times r of the type r inf{t t a}, a 1.
In other words, le

(s.s) sup
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A NEW LOOK AT PRICING OF THE "RUSSIAN OPTION" 117

where

It is well known [13, Theorem 13.20] that this function is twice continuously differen-
tiable in Ca (" 1 < < a} and

(5.10) LYe(C) )Ya() E Ca,
(5.11) Va(a a.

According to (3.14), the condition of instant reflection

(5 12) OVa
0 (l+) 0

is fulfilled at the point - 1.
As in 4, using on the general solution a() Clxl / C2x2 of the equation

(5.10), we find that

(5.13) Va() I a 1 <_ < a,
x2axl Xlax2, >a.

One can immediately prove that SUPa Ya() is attained for a . Needless to
say that this fact also follows from our theorem according to which the optimal t_ime

(in the class of all finite Markov times) is a time of the type Ta for some a (-- ).
6. The "Russian option" with dividends. In the context of the outlined

results on the Russian option pricing we now consider the case, studied in [3], where
a capital inflow from the outside takes place in the form of dividends.

In accordance with the notations and concepts (notions) of [20, 2] also published
in this issue, we let r (, ") be a strategy with (t)t>_o, /= (/t)t>_o, and X
(X[)t>=o a capital correspofiding to this strategy. In the "problem with dividends" a

change of capital occurs according to (2.8) in [20]"

(6.1) dX[ (tt) tdBt + /tdSt(#) + dD,,

where in the case under consideration it is assumed that

(6.2) dDt 6St(#) dr,

with 5 < r.
From (6.1) and (6.2)it follows that

dX[ (#) rX[ (#) dt + atSt(#) dWt-r+,(6.3)

where

(6.4) Wt-+ #-r+St+Wt"
The process Wu-r+ (Wt-r+)t>__0 is a Wiener process with respect to the

measure p-r+ defined by (2.3) if we replace r by r- 5, and

(6.5) dyt(#) a/tSt(#) dWt-r+5,
Bt
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118 L. A. SHEPP AND A. N. SHIRYAEV

where

(6.6) y, (#)
X; (#___).
Bt

Let us denote by Ctiv(5; #, A) a rational option price of the American type with
payment function (1.4). Then, starting from (6.5), using the same method as in the
proof of Theorem 1 in [20], we find that

(6.7) Cnv (5; #, A) sup E"-r+e-rf(S(#)),
0_<_-<oo

where

u<_t

0, 0 --> 1, s So > 0.
Since

Law(S(#)]P"-r+5) Law(S(r
(6.7) and (1.4) yield

(6.8)

sup Ee-rf(S(r 6))
O<-r<c

sup Ee-(-++)’max [maxS(r-6), s0].
Or< ur

Denoting by C* (#, A) the rational price of the initial problem (without dividends,
i.e., for 6 0) we obtain from (6.8) that

Note now that, as was stated above, q2* (#, ) C* (r, ) for all # e R and C* (r, )
is the function Xr(r, r+A) defined by the right-hand side of (1.9) or, equivalently, (1.10).

Then one can see from (6.8) that Civ(6; #, )) V(r 6, (r 6) + ( + 6))
V(r- 5, r + A). In on other way this result established in [3] can be stated in the
following way: the formula for the rational price in the problem with dividends is
obtained from the formulas for the rational price in the problem without dividends by
replacing r by r- 6, and by + 6. Then, for all # E R,

C*(#,/) V(r, r + ),

where V(r, r + ) is a function in the right-hand side of (1.9) or (1.10).
Thus, for each # E R,

i.e., the solution of "the problem with dividends" defined according to (6.2) is obtained
from the solution of "the problem without dividends" in which one replaces r by r- 6
and by , + 6 (cf. with [3]).
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