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Some Problems in Probabilistic Tomography

Abstract
Given probability distributions F1 , F2 , . . ., Fk on R and distinct directions θ1, . . ., θk, one may ask whether
there is a probability measure μ on R2 such that the marginal of μ in direction θj is Fj, j = 1, . . ., k. For example
for k = 3 we ask what the marginal of μ at 45° can be if the x and y marginals are each say standard normal? In
probabilistic language, if X and Y are each standard normal with an arbitrary joint distribution, what can the
distribution of X + Y or X - Y be? This type of question is familiar to probabilists and is also familiar (except
perhaps in that μ is positive) to tomographers, but is difficult to answer in special cases. The set of
distributions for Z = X - Y is a convex and compact set, C, which contains the single point mass Z ≡ 0 since X
≡ Y, standard normal, is possible. We show that Z can be 3-valued, Z=0, ±a for any a, each with positive
probability, but Z cannot have any (genuine) two-point distribution. Using numerical linear programming we
present convincing evidence that Z can be uniform on the interval [-ε, ε] for ε small and give estimates for the
largest such ε. The set of all extreme points of C seems impossible to determine explicitly.

We also consider the more basic question of finding the extreme measures on the unit square with uniform
marginals on both coordinates, and show that not every such measure has a support which has only one point
on each horizontal or vertical line, which seems surprising.
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THEORY PROBAB. APPL. Translated from Russian Journal

Vol. 41, No. 2

SOME PROBLEMS IN PROBABILISTIC TOMOGRAPHY*

D. APPLEGATE†, J. REEDS†, S. SCHEINBERG‡, L. SHEPP†, AND P. SHOR†

Abstract. Given probability distributions F1, F2, . . . , Fk on R and distinct directions θ1, . . . , θk,
one may ask whether there is a probability measure µ on R2 such that the marginal of µ in direction
θj is Fj , j = 1, . . . , k. For example for k = 3 we ask what the marginal of µ at 45◦ can be if the
x and y marginals are each say standard normal? In probabilistic language, if X and Y are each
standard normal with an arbitrary joint distribution, what can the distribution of X + Y or X − Y
be? This type of question is familiar to probabilists and is also familiar (except perhaps in that
µ is positive) to tomographers, but is difficult to answer in special cases. The set of distributions
for Z = X − Y is a convex and compact set, C, which contains the single point mass Z ≡ 0 since
X ≡ Y , standard normal, is possible. We show that Z can be 3-valued, Z = 0, ±a for any a, each
with positive probability, but Z cannot have any (genuine) two-point distribution. Using numerical
linear programming we present convincing evidence that Z can be uniform on the interval [−ε, ε] for
ε small and give estimates for the largest such ε. The set of all extreme points of C seems impossible
to determine explicitly.

We also consider the more basic question of finding the extreme measures on the unit square
with uniform marginals on both coordinates, and show that not every such measure has a support
which has only one point on each horizontal or vertical line, which seems surprising.

Key words. marginal distributions, extreme point, Radon

PII. S0040585X97975435

1. Introduction. Tomography [8] deals with the question of invertibility of the

Radon transform of an integrable function f on R
2
, i.e., given the line integrals of f ,

find f . A basic notion of probability theory is that of marginal distribution, which
is nothing but the line integrals of the density or measure in one direction. The
probabilistic approach has already shed some light on the question of uniqueness of
the Radon transform by the theorem of [4] that for any function f on R

n
, 0 6 f(x) 6 1,

there is a function g, which takes only 2 values, 0 and 1, for which f and g have exactly
the same Radon transform for any line having any one of a finite number of directions.
This shows that in the ordinary tomographic framework, the set of all densities g with
any n projections (or marginals) contains many elements. By a recent theorem [6] such
functions f and g are nearly identical after appropriate smoothing by some kernel.

Logan [10], building on a technique of De Acosta using jointly stable distributions
[1], [5], showed there is a pair of standard Cauchy variables X and Y , P{X ∈ dx} =

P{Y ∈ dx} = dx/π(1 + x
2
), −∞ < x < ∞, for which X + Y is also Cauchy but

is centered at a > 0, and gave upper and lower bounds on the maximum value of a.
The De Acosta–Logan phenomenon is possible only because Cauchy variables have no
mean.

Another result in the overlap between probability and tomography, shows that
in delicate cases when the unknown function f is restricted to satisfy inequalities, f
may be uniquely determined by only two marginals. Indeed, [3] showed that if g is

any function on R
2

with 0 6 g 6 1 and if g has the same line integrals as does f ,

*Received by the editors July 4, 1994.
http://www.siam.org/journals/tvp/41-2/97543.html
†AT&T Bell Laboratories, Murray Hill, NJ 07974.
‡Department of Mathematics, University of California at Irvine, Irvine, CA 92697.
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200 d. applegate, j. reeds, s. scheinberg, l. shepp, and p. shor

the indicator of the unit disk, for lines which are either horizontal or vertical, then
f = g a.e.

Here we study another specific question belonging to the intersection of proba-
bility and tomography. We would like to describe the class, C, of all distributions F
for Z = X + Y when X and Y each separately have a standard normal distribution
function (d.f.). Not much more can apparently be said about C besides the general
statements that it is a compact and convex set of zero mean distributions. C is al-
ternatively defined by the (hard to apply in the positive direction) duality condition
that

(1.1)

∫
hdF > 0 whenever h(x+ y) > ξ(x) + ξ(y) for all x and y,

where ξ is any bounded measurable function for which Eξ(η) = 0 when η is a stan-
dard normal random variable (r.v.). To see that (1.1) is necessary for F to be the
distribution of an F ∈ C note that h(X + Y ) > ξ(X) + ξ(Y ) so that (1.1) follows
since ξ(X) and ξ(Y ) have zero mean. The converse is also true but we omit the proof,
because: (a) it’s apparently not easy, (b) we do not use the converse assertion, (c) it’s
well known, and (d) we do not really have a proof.

Remark 1. That the set C of all distributions of Z = X + Y , where X and Y
are normal, is convex follows using mixing: if Z1 = X1 + Y1 and Z2 = X2 + Y2, then
Z = X + Y , where (X,Y ) = (Xj , Yj) with probability 1

2 , j = 1, 2, has the average of
the distributions of Z1 and Z2. That C is also compact in the weak topology is easy
to see. It follows from the Krein–Milman theorem that C has extreme points. Since
−Y is also standard normal, the set C is also defined by Z = X − Y .

Remark 2. Any normal N (0, σ
2
) with σ 6 2 belongs to C because we can take

X and Y jointly normal. The distribution N (0, 2) is an extreme point of C because if

it is a mixture of others then each must have variance 4, but if E(X + Y )
2

= 4 then
EXY = 1 and so X ≡ Y since equality holds in Schwartz’s inequality so that N (0, 2)
is extreme. This gives an extreme point with full support, R.

We show in section 2 that if Z ∈ C (we allow ourselves to talk of a r.v. being in
C if its distribution is in C) then

P
{
|Z| < a+ ε

}
> 0 for a = Φ

−1

(
3

4

)
− 1

2
, for ε > 0

and show that this a is best possible. That is, the support of a distribution in C must
intersect (−a, a) for a > Φ

−1
( 3
4 ) − 1

2 , where Φ is the standard normal cumulative
distribution function (d.f.).

We show in section 2 that Z cannot have a genuine two-point distribution although
it may have a three-point distribution; for any a > 0, Z may be concentrated on
{−a, 0,+a} with P{Z = 0} < 1 and P{Z = a} = P{Z = −a}. We find the minimum
value of P{Z = 0} among all Z ∈ C supported on {−a, 0,+a} and note that this is
an extreme point of C for each a > 0.

We give a nonrigorous but very convincing demonstration based on numerical
linear programming that Z = U(−ε, ε), i.e., the uniform distribution on the interval
(−ε, ε) belongs to C for ε > 0 sufficiently small. The output of the approximating
linear programming problem indicates that no explicit realization of U(−ε, ε) as X+Y
with X and Y normal is likely to be found.

Finally in section 3, we consider the perhaps more basic problem to find the set of
extreme points of the set S of measures µ on the unit square whose x and y marginalsD
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some problems in probabilistic tomography 201

are each uniform on (0, 1). It is easy to see that µ may be supported on the graph
of any one-one measurable function and that such a µ is extreme in S. However, we
show by example that there are extreme measures in S whose support is a set which
intersects a.e. horizontal and vertical line in at least two points.

2. Measures in C with small support. We first show that except for Z ≡ 0,
no Z concentrated on only two points can belong to C, i.e., one cannot have a measure
on R

2
supported on two diagonal lines whose x and y marginals are standard normal.

For clarity, we first prove this for the points ±1, i.e., that Z = ±1 each with probability
1
2 does not belong to C. The proof is easy: if X + Y = ±1, then on the sample space
where X and Y are defined, the r.v.

(2.1) W = cosπX + cosπY ≡ 0

since cos(u ± π) = − cosu. But the mean value of W is 2E cosπX = 2 exp(−π2
/2)

which is not zero. This proof is really an application of condition (1.1). In the general
case of Z = a, b, b 6= a,

(2.2) W = cos
2πX

b− a + cos
2π

b− a

(
Y − b+ a

2

)
≡ 0

while

(2.3) EW = exp

(
− 2π

2

(b− a)2

)(
1 + cosπ

(
b+ a

b− a

))
6= 0

since we may assume a < 0 < b because Z has mean zero and the cosine does not
= −1 in (−π, π).

We next show that for any a > 0 there is a pair of standard normal r.v.’s X
and Y for which Y = X − a, X, X + a everywhere, i.e., Z = Y −X is concentrated
only on {−a, 0, a}; a similar construction is possible of course for Z = X + Y . Our
construction will be explicit and will make P{X = Y } as small as possible. We have
seen in section 1 that X ≡ Y is possible and for each a our construction gives an
extreme point of C.

Suppose we can find a nonnegative function p(x), −∞ < x <∞, for which

(2.4) p(x) + p(x− a) 6 ϕ(x) ≡ 1√
2π

exp

(
− x

2

2

)
, −∞ < x <∞.

Then we define the measure µ supported on the three lines y = x−a, y = x, y = x+a
as follows:

(2.5)

µ
{
(x, y): y = x− a, x ∈ dx

}
= p(x− a) dx,

µ
{
(x, y): y = x, x ∈ dx

}
=
(
ϕ(x)− p(x)− p(x− a)

)
dx,

µ
{
(x, y): y = x+ a, x ∈ dx

}
= p(x) dx.

Adding the three lines in (2.5) we get µ{(x, y): x ∈ dx} = ϕ(x)dx so that the x-
marginal of µ is standard normal. Similarly, from (2.5),

µ
{
(x, y): y ∈ dy

}
= p(y) dy +

(
ϕ(y)− p(y)− p(y − a)

)
dy + p(y − a) dy

= ϕ(y) dy(2.6)D
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202 d. applegate, j. reeds, s. scheinberg, l. shepp, and p. shor

so that the y-marginal of µ is also N (0, 1). Clearly, µ is positive by (2.4), and since
µ is concentrated on the lines y − x = −a, 0, a, it is clear that Z = Y −X takes only
the values −a, 0, a. We want to find the p in (2.4) with the largest integral in order
to make P{Z = 0} = 1− 2

∫∞
−∞ p(x)dx a minimum.

We need the following lemma, perhaps of interest in itself, which solves a linear
programming problem.

Lemma 1. Suppose ϕn > 0 is a unimodal sequence, −∞ < n < ∞,
∑
ϕn < ∞,

and we seek pn, −∞ < n <∞, with pn > 0 and pn + pn−1 6 ϕn which will maximize∑
pn. Then this maximum is either the even or the odd sum of ϕ:

(2.7) sup
∑

pn = min

(∑
ϕ2n,

∑
ϕ2n+1

)
.

Proof. Since p2n + p2n−1 6 ϕ2n for all n,
∑
pn 6

∑
ϕ2n and similarly p2n+1 +

p2n 6 ϕ2n+1 so that
∑
pn can be no larger than the right side of (2.7). To show this

can be attained, we may suppose that the mode of ϕ is at zero.
Case 1:

∑
ϕ2n 6

∑
ϕ2n+1 (later we will consider the opposite case). Let

(2.8) pn =

{
ϕn − ϕn−1 + ϕn−2 − ϕn−3 + · · · > 0 for n 6 0,
ϕn+1 − ϕn+2 + ϕn+3 − ϕn+4 + · · · > 0 for n > 0.

Then pn + pn−1 = ϕn for n 6 0 and pn + pn+1 = ϕn+1 for n > 0 by (2.8). Also
p1 + p0 6 ϕ1 because

∑
ϕ2n 6

∑
ϕ2n+1 so p works.

Case 2:
∑
ϕ2n >

∑
ϕ2n+1. Then

(2.9) pn =

{
ϕn − ϕn−1 + ϕn−2 − ϕn−3 + · · · > 0 for n < 0,
ϕn+1 − ϕn+2 + ϕn+3 − ϕn+4 + · · · > 0 for n > 0,

works in a similar way. This proves the lemma.
Remark. The proof of the lemma generalizes to show that if the constraints on p

are pn + · · ·+ pn−r 6 ϕn and pn > 0, −∞ < n <∞, for r > 2 then

(2.10) sup
∑

pn = min
06k<r

∑
ϕrn+k.

Now suppose that µ is any measure supported on the three lines y = x − a,
y = x, y = x + a, which has standard normal marginals. Then µ is easily seen to
have a density with respect to linear Lebesgue measure on the lines so that there are
nonnegative functions p+, p0, p0 for which

(2.11)

µ
{
(x, y): y = x+ a, x ∈ dx

}
= p+(x) dx,

µ
{
(x, y): y = x, x ∈ dx

}
= p0(x) dx, −∞ < x <∞,

µ
{
(x, y): y = x− a, x ∈ dx

}
= p−(x) dx.

We want to minimize
∫
p0

(x)dx = µ{x = y}. The marginal condition gives

(2.12)
p+(x) + p0(x) + p−(x) = ϕ(x),

p+(x− a) + p0(x) + p−(x+ a) = ϕ(x)

and subtracting we obtain p+(x)−p+(x−a) = p−(x+a)−p−(x). If we add this with
x replaced by x − a, x − 2a, x − 3a, . . . we get p+(x) = p−(x + a), −∞ < x < ∞, soD
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some problems in probabilistic tomography 203

that we need p+(x) + p+(x− a) + p0(x) = ϕ(x), −∞ < x <∞. Since p0(x) > 0 and
this takes up the slack, we want to have

p+(x) + p+(x− a) 6 ϕ(x), −∞ < x <∞,

and to maximize
∫
p+(x)dx. By the lemma, since ϕ(x+ na) is unimodal, for each x

∞∑
n=−∞

p+(x+ na) 6 min

(∑
n

ϕ(x+ 2na),
∑
n

ϕ(x+ a+ 2na)

)
and equality holds for the choice of p+ given in the proof of the lemma. It follows
easily that

sup
p+

∫
p+(x) dx =

∫ a

0

min

( ∞∑
n=−∞

ϕ(x+ 2na),
∞∑

n=−∞
ϕ(x+ a+ 2na)

)
dx.

It is known [2, p. 341] that the standard normal density ϕ satisfies

(2.13)

{∑∞
−∞ ϕ(x+ na)(−1)

n > 0 if 0 6 x < a
2 ,

6 0 if a
2 < x < a,

so that

sup
p+

∫
p+(x) dx =

∫ a/2

0

∞∑
−∞

ϕ(x+ 2na) dx+

∫ a

a/2

∞∑
−∞

ϕ(x+ a+ 2na) dx

=

∞∑
n=−∞

Φ

(
a

2
+ 2na

)
− Φ(2na) + Φ

(
(2n+ 1) a

)
− Φ

(
2n+

3a

2

)

=

∞∑
n=−∞

(
Φ(na)− Φ

((
n− 1

2

)
a

))
(−1)

n−1
(2.14)

which answers the question as to what is the smallest value of P{X = Y } if X and Y
are standard normal and Y = X or Y = X ± a. Note that as a → ∞, the right side
of (2.14) is very small so P{X = Y } must be close to one, while as a → 0 the right
side of (2.14) is nearly 1

2 so that P{X = Y } can be made very small.
We next show that no Z ∈ C can omit a symmetric interval about 0 of length

greater than a = 2Φ
−1

( 3
4 )− 1 and that this a is best possible. Let f : [0, 1]→ [0, 1] be

defined by

(2.15) f(x) =

{
x+ 1

2 , 0 6 x 6 1
2 ,

x− 1
2 ,

1
2 < x 6 1,

and note that if θ is any r.v. uniform on [0, 1], so is f(θ). If X is any standard normal

r.v. and we set Y = Φ
−1

(f(Φ(X))), Φ(x) =
∫ x
−∞ ϕ, then Φ(X) is uniform on [0, 1],

and so is f(Φ(X)), and hence Y is again standard normal. Since
∣∣f(x) − x

∣∣ > 1
2

everywhere, we see that

(2.16)
∣∣Φ(Y )− Φ(X)

∣∣ > 1

2

on the space Ω on which X is defined. But (2.16) implies that |Y −X| > 2a−1, where
Φ(a) = 3

4 , since the closest that x and y can be to each other when |Φ(y)−Φ(x)| > 1
2
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204 d. applegate, j. reeds, s. scheinberg, l. shepp, and p. shor

is when y = −x = ±(Φ
−1

( 3
4 ) − 1

2 ). This proves that there exist X,Y such that

Z = Y −X omits the interval (−a, a) with a = Φ
−1

( 3
4 ).

Suppose that X and Y are any pair of N (0, 1) r.v.’s on some space. Then for
ε > 0,

(2.17)

P

{
X ∈

(
Φ
−1

(
1

4
− ε
)
, Φ
−1

(
3

4
+ ε

))}
=

1

2
+ 2ε,

P

{
Y ∈

(
Φ
−1

(
1

4
− ε
)
, Φ
−1

(
3

4
+ ε

))}
=

1

2
+ 2ε.

But the two events in (2.17) must overlap by 4ε in measure so there is a set of

measure 4ε on which both X and Y lie in the interval (Φ
−1

( 1
4 − ε), Φ

−1
( 3
4 + ε)). But

if P{|X − Y | > a} = 1 then a must be smaller that Φ
−1

( 3
4 + ε) − Φ

−1
( 1
4 − ε) →

Φ
−1

( 3
4 )− Φ

−1
( 1
4 ) as ε ↓ 0 so the example omitting (Φ

−1
( 1
4 ),Φ

−1
( 3
4 )) is best possible

as claimed.

The last question on the smallness of the support of Z = Y −X where X and Y
are N (0, 1) is whether Z can be uniform on (−ε, ε) for some ε > 0. Since EZ

2 6 4
we see that ε 6

√
12 if U(−ε, ε) ∈ C. We can get a slightly better upper bound using

(1.1). Indeed if we set f(x) = cosαx then

f(y) + f(y − θ) = cosαy (1 + cosαθ) + sinαy sinαθ

6
√

(1 + cosαθ)
2

+ sin
2
αθ = 2

∣∣∣∣ cos
αθ

2

∣∣∣∣
so setting y = Y , θ = Z = Y −X

(2.18) f(X) + f(Y ) 6 2

∣∣∣∣ cos
α

2
Z

∣∣∣∣.
But if Z = U(−ε, ε) then taking expectations in (2.18), we get

(2.19) 2 exp

(
− α

2

2

)
6 2

1

ε

∫ ε

0

∣∣∣∣ cos
α

2
u

∣∣∣∣ du
and setting αε = π gives a better bound than

√
12,

ε 6 π√
2 log π

2

= 3.31 · · · <
√

12 = 3.46.

A better upper bound however is ε 6 3.18845 which can be obtained by numerical
linear programming as described below. We are unable to find ε exactly or to even
prove rigorously that U(−ε, ε) ∈ C for ε sufficiently small. Indeed the output of
the linear program for realizing the (X,Y ) distribution at the largest value of ε (see
Fig. 1) indicates that this distribution is extremely complicated and is unlikely to be
expressible in explicit form. The converse of (1.1) allows us to restate U(−ε, ε) ∈ C in
the following equivalent (but apparently useless) form: U(−ε, ε) ∈ C if for all bounded
measurable F

(2.20) 2

∫
F (x)ϕ(x) dx 6 1

2ε

∫ ε

−ε
sup

−∞<x<∞

(
F (x) + F (x+ θ)

)
dθ.
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some problems in probabilistic tomography 205

Fig. 1.

Indeed if we let a = {f(x) + g(y) + h(y − x)} be the set of bounded measurable

a = a(x, y) mapping R
2

to R of the form

(2.21) a(x, y) = f(x) + g(y) + h(y − x)

as f , g, h run through the set of bounded measurable functions, then if we define the
functional L on a, by L(1) = 1, and for a in (2.21),

(2.22) L(a) =

∫ (
f(x) + g(x)

)
ϕ(x) dx+

1

2ε

∫ ε

−ε
h(u) du

we may verify that L(a) > 0 if a > 0. The Hahn–Banach theorem allows us to extend
L to the set of all bounded measurable a which then gives a positive measure µ for
which L(a) =

∫
a dµ. This µ gives a measure on R

2
and so Z(x, y) = y − x under µ

then realizes U(−ε, ε). Unfortunately, (2.20) seems no easier to use as a way to directly
construct Z than any other method. We resorted to numerical linear programming
described as follows.

From (1.1) and (2.20), U(−ε, ε) 6∈ C if there exist bounded measurable functions
F and G such that

(2.23)

∫ ∞
−∞

F (x)ϕ(x)dx = 0,

∫ ε

−ε
G(θ)dθ < 0,

F (x) + F (x+ θ) 6 G(θ), −ε 6 θ 6 ε, −∞ < x <∞.

Without loss of generality, we can assume F (x) = F (−x) and G(θ) = G(−θ) and
replace (2.23) by

(2.24)

∫ ∞
0

F (x)ϕ(x) dx = 0,

∫ ε

0

G(θ) dθ < 0,

F
(
|x|
)

+ F (x+ θ) 6 G(θ), 0 6 θ 6 ε, −θ < x <∞.

This is clearly an infinite linear program. We obtained a finite approximation by
selecting a set of breakpoints 0 = x0, x1, . . . , xn and requiring F to be piecewise linearD
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206 d. applegate, j. reeds, s. scheinberg, l. shepp, and p. shor

with these breakpoints, i.e.,

F (x) =

 fi(xi+1 − x) + fi+1(x− xi)
xi+1 − xi

, xi 6 x 6 xi+1,

fn, x > xn.

In this case G(θ) is also piecewise linear with the same breakpoints. Thus (2.24)
becomes a (finite) linear program on the variables f0, . . . , fn, g0, . . . , gn. We set xi =
i
nxn and considered a range of values for n and xn, finding for each the smallest ε for

which the linear program is feasible. For all xn = 5, 10, and 20 and n = 2
3
, 2

4
, . . . , 2

10

the same minimum, ε = 3.18845 was achieved, with the function

F (x) =

{
1− 4

3.18845
|x|, −3.188445 6 x 6 3.18845,

f(x± 6.37688) otherwise.

This constancy suggests that this is indeed the true minimum for the infinite linear
program, and that for ε < 3.18845, U(−ε, ε) ∈ C (from the argument following
(2.20)). For ε < 3.18845, the dual to (2.37) provides an approximation to an (X,Y )
distribution placing U(−ε, ε) ∈ C. However, as was observed earlier, this distribution,
shown in Fig. 1, is not readily understood.

To prove the upper bound using the linear program, we can proceed as follows.

For any α, consider the function, F (x) = F (x± 2α) defined by

F (x) = 1− 4

α
|x|, −α 6 x 6 α,

= −1 +
16

π
2

∞∑
k=0

cos((2k + 1)πx/α)

(2k + 1)
2

and

G(θ) = sup
−∞<x<∞

F (x) + F (x+ θ)

=

{
2− 4

α
|θ|, −α 6 θ 6 α,

G(θ ± 2α) otherwise,

=
16

π
2

∞∑
k=0

cos((2k + 1)πx/α)

(2k + 1)
2 .

Clearly, ∫ α

−α
G(θ) dθ = 0.

But, ∫ ∞
−∞

F (x)ϕ(x) dx = −1 +
16

π
2

∞∑
k=0

exp(−((2k + 1)π/α)
2
/2)

(2k + 1)
2 > 0

for α > 3.18845. From (2.20), this means U(−ε, ε) 6∈ C for ε > 3.18845.

3. Extremal measures in the uniform (doubly stochastic) case. Let S

denote the set of measures on the square, [0, 1]
2
, whose marginals on x and y are eachD
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Fig. 2.

uniform on [0, 1]. S is a convex and compact set of measures. Examples of µ ∈ S are
given in Figures 2a–2e.

In each case µ is uniform on the line segments pictured (excluding the boundary
of the square). We show 2a–2c and 2e are each extreme points of S. Indeed if
µ = (µ1 +µ2)/2 in both of 2a–2b there is only one point along vertical lines so that µ1

and µ2 have mass only in the support of µ so that µ1 = µ2 = µ and µ is extreme. In
case 2c, this is true for 0 6 x 6 1

2 and for 1
2 6 y 6 1 separately, so a similar argument

shows that 2c is also an extreme point of S. Since 2d can be written as a convex
combination of 2a and its rotation by 90

◦
, 2d is a point of S, but is not an extreme

point of S.

In the remainder of this section we show that example 2e is an example of an
extreme point of S even though its support has more than one point on each horizontal
and vertical line. This seems to be the first such example. Lindenstrauss [7] gave a

characterization of an extreme doubly stochastic measure µ on [0, 1]
2

as one such that
the set of all functions f(x)+ g(y), where f and g are in L

′
([0, 1], dx), are norm-dense

in L
′
(µ). Lindenstrauss [7] gives an example of such a µ supported on two (piecewise

affine) graphs, one over [0, 1) and the other over [c, 1) (for any c between 0 and 1)
for which not every L

′
(µ) function can be written as f(x) + g(y). Vitale [9] has

given another characterization of the extreme measures in terms of approximability
by measures obtained from Borel rectangles. Vitale [9] discusses the example, 2f (due
to Shiflett), of an extreme doubly stochastic measure. Note that 2f does not have the
property of 2e that each horizontal and vertical line has multiple intersections with
the support and so it is easy to prove by the above argument that 2f is extreme.

Let Ph: (x, y) 7→ y be the horizontal projection from R
2

to R
1
. Let 1

2 < a < 1.
Divide the unit square into five regions Ri as illustrated in Fig. 3.

Regions R1 through R4 are congruent rectangles with side lengths a and 1 − a;
region R5 is a square with side 2a− 1.

Let

D1 be the line segment from (0, 1− a) to (a, 0),

D2 be the line segment from (a, 0) to (1, a),

D3 be the line segment from (1, a) to (1− a, 1),

D4 be the line segment from (1− a, 1) to (0, 1− a),
D5 be the line segment from (1− a, 1− a) to (a, a).

The Di are shown as solid lines in Fig. 3.

Let λ
∣∣
Di

be one-dimensional Lebesgue measure supported by Di, let A(Ri) be

the area of Ri and let L(Di) be the length of Di and let

µ =

5∑
i=1

A(Ri)

L(Di)
λ
∣∣∣
Di

be a weighted combination of the λ
∣∣
Di

.

Theorem 1. µ is an extreme point in S.D
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208 d. applegate, j. reeds, s. scheinberg, l. shepp, and p. shor

Fig. 3

Proof. That µ ∈ S follows from the fact that the marginals of A(Ri)
L(Di)

λ
∣∣
Di

are the

same as those of two-dimensional Lebesgue measure restricted to Ri, and since the
unit square is the disjoint union of the Ri.

Now suppose µ = (µ1 + µ2)/2 for µi ∈ S. Clearly the µi are supported on

∪5
i=1Di. Write µ1 = µ + δ, µ2 = µ − δ for some the signed measure δ. To show µ is

extreme it suffices by the previous discussion in this section, to show that δ restricted
to D1 ∪D2 ∪D3 ∪D4 is the zero measure.

To this end define a map

T :
4⋃
i=1

Di →
4⋃
i=1

Di

as follows. Restricted to D1, T is horizontal projection into D2, that is, if (x, y) ∈ D1,
then T (x, y) = (u, y) ∈ D2. Restricted to D2, T is vertical projection into D3, so if
(x, y) ∈ D2 then T (x, y) = (x, v) ∈ D3. Restricted to D3, T is horizontal projection
into D4 and restricted to D4, T is vertical projection into D1.

It is clear that T restricted to each Di is affine. Since 1
2 < a, T (D1) is a proper

subset of D2, T (D2) is a proper subset of D3, and so on, so T
4

= T ◦ T ◦ T ◦ T acts
as an affine strict contraction on each of Di, 1 6 i 6 4.

Since the marginals of µ1 and µ2 are the same as those of µ, we see that the
marginals of δ must be the (one-dimensional) zero measure.

Suppose A ⊂ D1 and let A0 = [0, 1]×Ph(A) be the cylinder set whose horizontal
projection is the same as that of A. Then δ(A0) = 0. But since δ is supported

by ∪5
i=1Di, and since Ph(D1) ⊂ Ph(D2), and since Ph(D2) is disjoint from Ph(D3 ∪

D4 ∪ D5), we see that δ(A0) = δ(A ∪ T (A)) = δ(A) + δ(T (A)), so for A ⊆ D1,
δ(T (A)) = −δ(A). Similarly for A ⊆ Di, 1 6 i 6 4.

Thus, if A ⊆ ∪4
i=1Di, δ(T

n
(A)) = (−1)

n
δ(A). So suppose A ⊆ D1 is an interval of

length k, with δ(A) 6= 0. Since T
4

is a strict contraction (with contraction coefficient

t < 1, say) we can see that the length of T
4n

(A) = kt
n

tends to 0 as n→∞. But thisD
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leads to a contradiction:

µ1

(
T

4n
(A)
)

= µ
(
T

4n
(A)
)

+ δ
(
T

4n
(A)
)

= µ
(
T

4n
(A)
)

+ δ(A)

so

lim
n→∞

µ1

(
T

4n
(A)
)

= lim
n→∞

A(R1)

L(D1)
· ktn + δ(A) = δ(A),

and similarly, limn→∞ µ2(T
4n

(A)) = −δ(A). So at least one of µ1 and µ2 fail to be in
S. So, for all intervals A ⊆ D1, δ(A) = 0, and δ is the zero measure on D1, and hence
on D2, D3 and D4 as well.
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