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Compressed Sensing and Affine Rank Minimization Under Restricted
Isometry

Abstract
This paper establishes new restricted isometry conditions for compressed sensing and affine rank
minimization. It is shown for compressed sensing that δ<;i>kA<;/i>+θ<;i>k<;/i>,<;i>kA<;/i> <; 1
guarantees the exact recovery of all <;i>k<;/i> sparse signals in the noiseless case through the constrained
<;i>l<;/i><;sub>1<;/sub> minimization. Furthermore, the upper bound 1 is sharp in the sense that for any ε
> 0, the condition δ<;i>kA<;/i> + θ<;i>k<;/i>,<;i>kA<;/i> <; 1+ε is not sufficient to guarantee such exact
recovery using any recovery method. Similarly, for affine rank minimization, if
δ<;i>rM<;/i>+θ<;i>r<;/i>,<;i>rM<;/i> <; 1 then all matrices with rank at most <;i>r<;/i> can be
reconstructed exactly in the noiseless case via the constrained nuclear norm minimization; and for any ε > 0,
δ<;i>rM<;/i> +θ<;i>r<;/i>,<;i>rM<;/i> <; 1+ε does not ensure such exact recovery using any method.
Moreover, in the noisy case the conditions δ<;i>kA<;/i>+θ<;i>k<;/i>,<;i>kA<;/i> <; 1 and
δ<;i>rM<;/i>+θ<;i>r<;/i>,<;i>rM<;/i> <; 1 are also sufficient for the stable recovery of sparse signals and
low-rank matrices respectively. Applications and extensions are also discussed.
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Abstract

This paper establishes new restricted isometry conditions for compressed sensing and

affine rank minimization. It is shown for compressed sensing that δAk + θAk,k < 1 guarantees

the exact recovery of all k sparse signals in the noiseless case through the constrained ℓ1

minimization. Furthermore, the upper bound 1 is sharp in the sense that for any ǫ > 0,

the condition δAk + θAk,k < 1 + ǫ is not sufficient to guarantee such exact recovery using any

recovery method. Similarly, for affine rank minimization, if δMr + θMr,r < 1 then all matrices

with rank at most r can be reconstructed exactly in the noiseless case via the constrained

nuclear norm minimization; and for any ǫ > 0, δMr + θMr,r < 1 + ǫ does not ensure such

exact recovery using any method. Moreover, in the noisy case the conditions δAk + θAk,k < 1

and δMr + θMr,r < 1 are also sufficient for the stable recovery of sparse signals and low-rank

matrices respectively. Applications and extensions are also discussed.

Keywords: Affine rank minimization, compressed sensing, Dantzig selector, constrained ℓ1 min-

imization, low-rank matrix recovery, constrained nuclear norm minimization, restricted isometry,

sparse signal recovery.
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1 Introduction

Compressed sensing has received much recent attention in signal processing, applied mathematics

and statistics. A closely related problem is affine rank minimization. The central goal in these

problems is to accurately reconstruct a high dimensional object of a certain special structure,

namely a sparse signal in compressed sensing and a low-rank matrix in affine rank minimization,

through a small number of linear measurements. Interesting applications of compressed sensing

and affine rank minimization include coding theory [1, 13], magnetic resonance imaging [22],

signal acquisition [16, 29], radar system [4, 21, 32] and image compression [27, 30].

In compressed sensing, one wishes to recover a signal β ∈ R
p based on (A, y) where

y = Aβ + z. (1)

Here A ∈ R
n×p is a given sensing matrix and z ∈ R

n is the measurement error. In affine rank

minimization, one observes

y = M(X) + z (2)

where M : Rm×n → R
q is a known linear map, X ∈ R

m×n is an unknown matrix, and z ∈ R
q

is an error vector. The goal is to reconstruct X based on y and the linear map M. In these

problems, the dimension is typically much larger than the number of measurements, i.e., p≫ n

and min(m,n) ≫ q. A rather remarkable fact is that, when the signal β is sparse and the matrix

X has low rank, they can be reconstructed exactly in the noiseless case and stably in the noisy

case using computational efficient algorithms, provided that the sensing matrix A and the linear

map M satisfy certain restricted orthogonality conditions.

For the reconstruction of β and X, the most intuitive approach is to find the sparsest signal

or the lowest-rank matrix in the feasible set of possible solutions, i.e.,

minimize ‖β‖0, subject to Aβ − y ∈ B

minimize rank(X), subject to M(X) − y ∈ B

where ‖β‖0 denote the ℓ0 norm of β, which is defined to be the number of nonzero coordinates,

and B is a bounded set determined by the error structure. However, it is well-known that

such methods are NP-hard and thus computationally infeasible in the high dimensional settings.
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Convex relaxations of these methods have been proposed and studied in the literature. Candès

and Tao [13] introduced an ℓ1 minimization method for the sparse signal recovery and Recht, et

al [27] proposed a nuclear norm minimization method for the matrix reconstruction,

(P 1
B) β̂ = argmin

β
{‖β‖1 subject to Aβ − y ∈ B} , (3)

(P 2
B) X∗ = argmin

X
{‖X‖∗ subject to M(X)− y ∈ B} , (4)

where ‖X‖∗ is the nuclear norm of X which is defined to be the sum of all singular values of

X. Here B = {0} in the noiseless case and B is the feasible set of the error vector z when z is

bounded. These methods have been shown to be effective for the recovery of sparse signals and

low-rank matrices in a range of settings. See, e.g., [13, 14, 18, 27, 15].

One of the most commonly used frameworks for compressed sensing is the Restricted Isometry

Property (RIP) introduced in [13]. The RIP framework was later extended to the affine rank

minimization problem by Recht et al in [27]. A vector is said to be k-sparse if |supp(v)| ≤ k,

where supp(v) = {i : vi 6= 0} is the support of v. We shall use the phrase“r-rank matrices” to

refer to matrices of rank at most r. For matrices X = (xij) ∈ R
m×n, and Y = (yij) ∈ R

m×n,

define the inner product of X and Y as 〈X,Y 〉 = trace(XTY ) =
∑m

i=1

∑n
j=1 xijyij . The norm

associated with this inner product is the Frobenius norm, ‖X‖F =
√

〈X,X〉 =
√
∑m

i=1

∑n
j=1 x

2
ij .

The following definitions are given by [13, 27, 23].

Definition 1.1. Let A ∈ R
n×p and let 1 ≤ k, k1, k2 ≤ p be integers. The restricted isometry

constant (RIC) of order k is defined to be the smallest non-negative number δAk such that

(1− δAk )‖β‖22 ≤ ‖Aβ‖22 ≤ (1 + δAk )‖β‖22 (5)

for all k-sparse vectors β. The restricted orthogonality constant (ROC) of order (k1, k2) is

defined to be the smallest non-negative number θAk1,k2 such that

|〈Aβ1, Aβ2〉| ≤ θAk1,k2‖β1‖2‖β2‖2 (6)

for all k1-sparse vector β1 and k2-sparse vector β2 with disjoint supports.

Similarly, let M : Rm×n → R
p be a linear map and let 1 ≤ r, r1, r2 ≤ min(m,n) be integers.

The restricted isometry constant (RIC) of order r is defined to be the smallest non-negative

number δMr such that

(1− δMr )‖X‖2F ≤ ‖M(X)‖22 ≤ (1 + δMr )‖X‖2F (7)
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for all m×n matrix X of rank at most r. The restricted orthogonality constant (ROC) of order

(r1, r2) is defined to be the smallest non-negative number θMr1,r2 such that

|〈M(X1),M(X2)〉| ≤ θMk1,k2‖X1‖F ‖X2‖F (8)

for all matrices X1 and X2 which have rank at most r1 and r2 respectively, and satisfy XT
1 X2 = 0

and X1X
T
2 = 0.

In addition to RIP, another widely used criterion is the mutual incoherence property (MIP)

defined in terms of µ = maxi 6=j |〈Ai, Aj〉|. See, for example, [19, 7]. The MIP is a special case

of the restricted orthogonal property as µ = θ1,1 when the columns of A are normalized.

Roughly speaking, the RIC δAk and ROC θAk1,k2 measure how far subsets of cardinality k of

columns of A are to an orthonormal system. It is obvious that δk and θk1,k2 are increasing in

each of their indices. It is noteworthy that our definition of ROC in the matrix case is different

from the one given in [23].

Sufficient conditions in terms of the RIC and ROC for the exact recovery of k-sparse signals

in the noiseless case include δAk + θAk,k + θAk,2k < 1 [13]; δA2k + θAk,2k < 1 [14]; δA1.5k + θAk,1.5k < 1 [5],

δA1.25k + θAk,1.25k < 1 [6], and θA1,1 <
1

2k−1 when δA1 = 0 [19, 20, 7]. Sufficient conditions for the

exact recovery of r-rank matrices include δ2r+αr +
1√
β
θ2r+αr,βr < 1 where 2α ≤ β ≤ 4α [23]. It

is however unclear if any of these conditions can be further improved.

In this paper we establish more relaxed RIP conditions for sparse signal and low-rank matrix

recovery. More specifically, we show that the condition

δAk + θAk,k < 1 (9)

guarantees the exact recovery of all k-sparse signals in the noiseless case via the constrained ℓ1

minimization (3) with B = {0}. Furthermore, we show that the constant 1 in (9) is sharp in the

sense that for any ǫ > 0, the condition δAk + θAk,k < 1+ ǫ is not sufficient to guarantee such exact

recovery using any method. Similarly it is shown that the condition

δMr + θMr,r < 1 (10)

is sufficient for the exact reconstruction of all r-rank matrices in the noiseless case through

the constrained nuclear norm minimization (4) with B = {0}, and that for any ǫ > 0, the
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condition δMr + θMr,r < 1+ ǫ is not sufficient to guarantee such exact recovery using any method.

Moreover, in the noisy case the conditions (9) and (10) also guarantee the stable recovery of

sparse signals and low-rank matrices respectively. In addition to the sufficient conditions (9)

and (10), extensions to the more general RIP conditions are also considered.

The new RIP conditions are weaker than the known RIP conditions in the literature. The

techniques and results developed in the present paper have a number of applications in signal

processing, including the design of compressed sensing matrices, signal acquisition, and analysis

of compressed sensing based radar system. We discuss these applications in Section 4.

The rest of the paper is organized as follows. In Section 2, we first introduce the basic

notations and definitions and then present the main results for both sparse signal recovery and

low-rank matrix recovery. Extensions of the results δAk + θAk,k < 1 and δMr + θMr,r < 1 to the more

general RIP conditions are also considered. Section 3 discusses the relationship between our

results and other known RIP conditions. Section 4 illustrates some applications of the results

in signal processing. The proofs of the main results are given in Section 5.

2 New RIP Conditions

We present the main results in this section. It will be first shown that the conditions δAk +θ
A
k,k < 1

and δMr + θMr,r < 1 are sharp for the exact recovery in the noiseless case and stable recovery in

the noisy case. The more general RIP conditions will be considered at the end of this section.

Let us begin with basic notation. For v ∈ R
p, vmax(k) is defined as the vector v with all but

the largest k entries in absolute value set to zero, and v−max(k) = v − vmax(k). For a matrix

X ∈ R
m×n (without loss of generality, assume thatm ≤ n) with the singular value decomposition

X =
∑m

i=1 aiuiv
T
i where the singular values ai are in descending order a1 ≥ a2 ≥ · · · ≥ am ≥ 0,

we define Xmax(r) =
∑r

i=1 aiuiv
T
i and X−max(r) = X −Xmax(r). We should also note that the

nuclear norm ‖ · ‖∗ of a matrix equals the sum of the singular values, and the spectral norm ‖ · ‖
of a matrix equals its largest singular value. Their roles are similar to those of ℓ1 norm and ℓ∞

norm in the vector case, respectively. For a linear operator M : Rm×n → R
q, we denote its dual

operator by M∗ : Rq → R
m×n.

5



It follows from [25] that the results for the low-rank matrix recovery are parallel to those

for the sparse signal recovery. So we shall present the results for the two problems together in

this section. The following theorem shows that the conditions (9) and (10) guarantee the exact

recovery of all k-sparse signals and r-rank matrices through the constrained ℓ1 minimization and

constrained nuclear norm minimization respectively.

Theorem 2.1. Let β ∈ R
p be a k-sparse vector and y = Aβ. If δAk +θAk,k < 1, then β̂ = β, where

β̂ is the minimizer of (3) with B = {0}. Similarly, let X be an r-rank matrix and y = M(X).

If δMr + θMr,r < 1, then X∗ = X, where X∗ is the minimizer of (4) with B = {0}.

We now turn to the noisy case. Although our main focus is on the recovery of sparse signals

and low-rank matrices, we shall state the results for general signals and matrices that are not

necessarily sparse or low-rank.

We consider two bounded noise settings: ‖z‖2 ≤ ǫ, and ‖AT z‖∞ ≤ ǫ (signal case) and

‖M∗(z)‖ ≤ ǫ (matrix case). The case of Gaussian noise, which is of significant interest in

statistics, can be essentially reduced to the bounded noise case. See, for example, Section 4 in

[6] for more discussions. In the theorems below, we shall write δ for δAk and δMk and write θ for

θAk,k and θMk,k. We first consider the case where the ℓ2 norm of the error vector z is bounded.

Theorem 2.2. Consider the signal recovery model (1) with ‖z‖2 ≤ ǫ. Let β̂ be the minimizer

of (3) with B = {z ∈ R
n : ‖z‖2 ≤ η} for some η ≥ ǫ. If δAk + θAk,k < 1 for some k ≥ 1, then

‖β̂ − β‖2 ≤
√

2(1 + δ)

1− δ − θ
(ǫ+ η) +

2‖β−max(k)‖1√
k

( √
2θ

1− δ − θ
+ 1

)

. (11)

Similarly, consider the matrix recovery model (2) with ‖z‖2 ≤ ǫ. Let X∗ be the minimizer of (4)

with B = {z ∈ R
q : ‖z‖2 ≤ η} for some η ≥ ǫ. If δMr + θMr,r < 1 for some r ≥ 1, then

‖X∗ −X‖F ≤
√

2(1 + δ)

1− δ − θ
(ǫ+ η) +

2‖X−max(r)‖∗√
r

( √
2θ

1− δ − θ
+ 1

)

. (12)

We now consider the case where the error vector z is in a polytope defined by ‖AT z‖∞ ≤ ǫ

and ‖M∗(z)‖ ≤ ǫ. This case is motivated by the Dantzig Selector method considered in [14] for

the Gaussian noise case.
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Theorem 2.3. Consider the signal recovery model (1) with ‖AT z‖∞ ≤ ǫ. Let β̂ be the minimizer

of (3) with B = {z ∈ R
n : ‖AT z‖∞ ≤ η} for some η ≥ ǫ. If δAk + θAk,k < 1 for some k ≥ 1, then

‖β̂ − β‖2 ≤
√
2k

1− δ − θ
(ǫ+ η) +

2‖β−max(k)‖1√
k

( √
2θ

1− δ − θ
+ 1

)

. (13)

Similarly, suppose we have the signal and matrix recovery model (2) with ‖M∗(z)‖ ≤ ǫ. Let β̂,

X∗ be the minimizer of (4) with B = {z ∈ R
q : ‖M∗(z)‖ ≤ η} for some η ≥ ǫ. If δMr + θMr,r < 1

for some r ≥ 1, then

‖X∗ −X‖F ≤
√
2r

1− δ − θ
(ǫ+ η) +

2‖X−max(r)‖∗√
r

( √
2θ

1− δ − θ
+ 1

)

. (14)

Theorems 2.1, 2.2, and 2.3 shows that the conditions δAk + θAk,k < 1 and δMr + θMr,r < 1

are respectively sufficient for the exact and stable reconstruction of sparse signals and low-rank

matrices via the constrained ℓ1 minimization and nuclear norm minimization. The following

theorem shows that the upper bound 1 in these conditions is in fact sharp.

Theorem 2.4. Let 1 ≤ k ≤ p/2. There exists a sensing matrix A ∈ R
n×p such that δAk +θAk,k = 1

and for some k-sparse signals u, v ∈ R
p with u 6= v, Au = Av. Consequently, there does not

exist any method that can exactly recover all k-sparse signals β based on (A, y) with y = Aβ.

Let 1 ≤ r ≤ min(m,n)/2. There exists a linear map M such that δMr + θMr,r = 1 and for

some matrices U, V ∈ R
m×n with rank(U), rank(V ) ≤ r, and M(U) = M(V ). Therefore, it is

impossible for any method to recover all r-rank matrices exactly based on (M, y) with y = M(X).

Remark 2.1. Theorem 2.4 implies that for any ǫ > 0, δAk + θAk,k < 1 + ǫ fails to guarantee the

exact recovery of all k-sparse signals. These results immediately show that for any ǫ > 0, the

condition δAk +θAk,k < 1+ ǫ or δMr +θMr,r < 1+ ǫ is not sufficient to ensure in the noisy case stably

recovery of all k-sparse signals and all r-rank matrices.

Remark 2.2. The results on the bounded noise case can be applied to immediately yield the

corresponding results for the Gaussian noise case by using the same argument as in [5, 6]. We

illustrate this point for the signal recovery. Suppose z ∼ Nn(0, σ
2) in (1). Define BDS = {z :

‖ΦT z‖∞ ≤ σ
√
2 log p} and Bℓ2 = {z : ‖z‖2 ≤ σ

√

n+ 2
√
n log n}. Then, with probability at

least 1− 1√
π log p

, the Dantzig selector β̂DS given by (3) with B = BDS satisfies

‖β̂DS − β‖2 ≤ 2
√
2

1− δ − θ
σ
√

2k log p+
2‖β−max(k)‖1√

k

( √
2θ

1− δ − θ
+ 1

)

, (15)
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and the ℓ2 constraint minimizer β̂ℓ2 defined in (3) with B = Bℓ2 satisfies

‖β̂ℓ2 − β‖2 ≤
2
√

2(1 + δ)

1− δ − θ
σ

√

n+ 2
√

n log n+
2‖β−max(k)‖1√

k

( √
2θ

1− δ − θ
+ 1

)

(16)

with probability at least 1− 1/n. We refer readers to [5, 6] for further details.

Extensions to More General RIP Conditions

We have shown that the conditions δAk + θAk,k < 1 and δMr + θMr,r < 1 are sufficient respectively

for sparse signal recovery and for low-rank matrix recovery. The same techniques can be used

to extend the results to a more general form,

δAa + Ca,b,kθ
A
a,b < 1,where Ca,b,k = max

{

2k − a√
ab

,

√

2k − a

a

}

, 1 ≤ a ≤ k, (17)

δMa + Ca,b,rθ
M
a,b < 1,where Ca,b,r = max

{

2r − a√
ab

,

√

2r − a

a

}

, 1 ≤ a ≤ r. (18)

Theorem 2.5. In the noiseless case, Theorem 2.1 holds with the conditions δAk + θAk,k < 1 and

δMr + θMr,r < 1 replaced by (17) and (18) respectively.

In the noisy case, we have the following two theorems parallel to Theorems 2.2 and 2.3.

Theorem 2.6. Consider the signal recovery model (1) with ‖z‖2 ≤ ǫ. Let β̂ be the minimizer

of (3) with B = {z ∈ R
n : ‖z‖2 ≤ η} for some η ≥ ǫ. If δAa + Ca,b,kθ

A
a,b < 1 for some positive

integers a and b with 1 ≤ a ≤ k, then

‖β̂ − β‖2 ≤
√

2(1 + δ)k/a

1− δ − Ca,b,kθ
(ǫ+ η) + 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1− δ − Ca,b,kθ)(2k − a)
+

1√
k

)

. (19)

Similarly, consider the matrix recovery model (2) with ‖z‖2 ≤ ǫ. Let X∗ be the minimizer of (4)

with B = {z ∈ R
q : ‖z‖2 ≤ η} for some η ≥ ǫ. If δMa + Ca,b,rθ

M
a,b < 1 for some positive integers

a and b with 1 ≤ a ≤ r, then

‖X∗ −X‖F ≤
√

2(1 + δ)r/a

1− δ − Ca,b,rθ
(ǫ+ η) + 2‖X−max(r)‖∗

( √
2rCa,b,rθ

(1− δ − Ca,b,rθ)(2r − a)
+

1√
r

)

. (20)

Theorem 2.7. Consider the signal recovery model (1) with ‖AT z‖∞ ≤ ǫ. Let β̂ be the minimizer

of (3) with B = {z ∈ R
n : ‖AT z‖∞ ≤ η} for some η ≥ ǫ. If δAa +Ca,b,kθ

A
a,b < 1 for some positive

8



integers a and b with 1 ≤ a ≤ k, then

‖β̂ − β‖2 ≤
√
2k

1− δ − Ca,b,kθ
(ǫ+ η) + 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1− δ − Ca,b,kθ)(2k − a)
+

1√
k

)

. (21)

Similarly, suppose we have the signal and matrix recovery model (2) with ‖M∗(z)‖ ≤ ǫ. Let β̂,

X∗ be the minimizer of (4) with B = {z ∈ R
q : ‖M∗(z)‖ ≤ η} for some η ≥ ǫ. If δMa +Ca,b,rθ

M
a,b <

1 for some integers a and b with 1 ≤ a ≤ r, then

‖X∗ −X‖F ≤
√
2r

1− δ − Ca,b,rθ
(ǫ+ η) + 2‖X−max(r)‖∗

( √
2rCa,b,rθ

(1− δ − Ca,b,rθ)(2r − a)
+

1√
r

)

. (22)

The next theorem shows that the upper bound 1 in the conditions δAa + Ca,b,kθ
A
a,b < 1 and

δMa + Ca,b,rθa,b < 1 cannot be further improved.

Theorem 2.8. Let 1 ≤ k ≤ p/2, 1 ≤ a ≤ k, and b ≥ 1. Let Ca,b,k be defined as (17). Then

there exists a sensing matrix A ∈ R
n×p such that δAa + Ca,b,kθ

A
a,b = 1 and for some k-sparse

signals u, v ∈ R
p with u 6= v, Au = Av. Consequently, there does not exist any method that can

exactly recover all k-sparse signals β based on (A, y) with y = Aβ.

Similarly, let 1 ≤ r ≤ min(m,n)/2, 1 ≤ a ≤ k and b ≥ 1. Let Ca,b,r be defined as (18). Then

there exists a linear map M such that δMa +Ca,b,rθ
M
a,b = 1 and for some matrices U, V ∈ R

m×n

with rank(U), rank(V ) ≤ r, and M(U) = M(V ). Consequently, it is impossible for any method

to exactly recover all r-rank matrices based on (M, y) with y = M(X).

Same as Theorem 2.4, Theorem 2.8 implies that in the noisy case stably recovery of all

k-sparse signals and all r-rank matrices cannot be guaranteed by δAa + Ca,b,kθ
A
a,b < 1 + ǫ or

δMa + Ca,b,rθ
M
a,b < 1 + ǫ for any ǫ > 0.

Remark 2.3. We established the more general RIP conditions δAa + Ca,b,rθ
A
a,b < 1 and δMa +

Ca,b,rθ
M
a,b,r < 1. For fixed a, among these conditions, the one with b = 2k − a or b = 2r − a is

the weakest. We shall illustrate this for the signal case. By Lemma 5.4,

δa + Ca,2k−a,kθa,2k−a ≤ δa + Ca,2k−a,k

√

2k − a

min{b, 2k − a}θa,min{b,2k−a}

= δa +

√

2k − a

a
·
√

2k − a

min{b, 2k − a}θa,min{b,2k−a}

= δa + Ca,b,kθa,min{b,2k−a} ≤ δa + Ca,b,kθa,b

Hence, for all b ≥ 1, δa + Ca,b,kθa,b < 1 implies δa + Ca,2k−a,kθa,2k−a < 1.
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3 Relationship to Other Restricted Isometry Conditions

In the last section, we have established the sufficient conditions δAk + θAk,k < 1 and δMr + θMr,r < 1

for the exact recovery in the noiseless case and stable recovery in the noisy case. We discuss in

this section the relationships between these conditions and other restricted isometry conditions

introduced in the literature.

By the simple fact that for k1 ≤ k2 and k
′
1 ≤ k′2, δ

A
k1

≤ δAk2 and θAk1,k′1
≤ θAk2,k′2

, it is easy to see

that the condition δAk +θ
A
k,k < 1 is weaker than δAk +θ

A
k,k+θ

A
k,2k < 1, δA2k+θ

A
2k,k < 1, δA1.5k+θ

A
1.5k,k <

1 and δA1.25k+θ
A
1.25k,k < 1, which were mentioned in the introduction. Note that setting a = b = 1

in the condition δa + Ca,b,kθa,b < 1 yields a sufficient condition δA1 + (2k − 1)θ1,1 < 1 which is

more general than the MIP condition θ1,1 <
1

2k−1 when δA1 = 0 given in [19] and [20] for the

noiseless case and [7] for the noisy case.

There are also several sufficient conditions in the literature that are based on the RIC δ alone,

such as δA3k+3δA4k < 2 [10], δA2k <
√
2−1 [11]; δA2k < 0.472 [6]; δAk < 0.307 [8]; δA2k < 0.493 [26] and

δAk < 1/3 and δA2k < 1/2 [9]. For the matrix recovery, sufficient conditions include δM4r <
√
2− 1

[15]; δM5r < 0.607, δM4r < 0.558, and δM3r < 0.4721 [23]; δM2r < 0.4931 and δMr < 0.307 [31],

and δMr < 1/3 and δM2r < 1/2 [9]. In particular, Cai and Zhang [9] showed that δAk < 1/3 and

δMr < 1/3 are sharp RIP conditions for the exact recovery. It is interesting to compare these

results on δAk , δ
A
2k, δ

M
r , and δM2r with δAk + θAk,k < 1 and δMr + θMr,r < 1.

The following lemma provides a bound for the ROC θ in terms of the RIC δ and can be used

to compare different RIP conditions.

Lemma 3.1. Let A ∈ R
n×p. Then we have

θAk,k ≤







2δAk , when k is even, k ≥ 2;

2k√
k2−1

δAk , when k is odd, k ≥ 3.
(23)

In addition, both coefficients, 2 in the even case and 2k√
k2−1

in the odd case, cannot be further

improved.

Similarly, in the matrix case, for a linear map M : Rm×n → R
q,

θMr,r ≤







2δMr , when r is even, r ≥ 2;

2r√
r2−1

δMr , when r is odd, r ≥ 3.
(24)
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In addition, the coefficient 2 in the even case cannot be further improved.

With Lemma 3.1, we can naturally obtain the following result which shows that the condi-

tions δAk + θAk,k < 1 and δMr + θMr,r < 1 are mostly weaker than the RIP conditions δAk < 1/3 and

δMr < 1/3 respectively.

Proposition 3.1. If δAk < 1/3 for some integer k ≥ 2, then

δAk + θAk,k < 1, when k is even;

δAk + θAk,k <
1

3
+

2k

3
√
k2 − 1

≈ 1 +
1

3k2
, when k is odd.

(25)

Similarly in the matrix case, if δMr < 1/3 for some integer r ≥ 2, then

δMr + θMr,r < 1, when k is even;

δMr + θMr,r <
1

3
+

2r

3
√
r2 − 1

≈ 1 +
1

3r2
, when k is odd.

(26)

Sufficient conditions in terms of δA2k and δM2r are also commonly used in the literature. To the

best of our knowledge, the weakest bounds on δA2k and δM2r for the exact recovery are δA2k ≤ 1/2

and δM2r ≤ 1/2 given by Cai and Zhang [9]. It is easy to see that the conditions δAk +θAk,k < 1 and

δMr + θMr,r < 1 given in the present paper are strictly weaker than these conditions respectively.

Proposition 3.2. If δA2k < 1/2 for some integer k ≥ 1, then δAk +θ
A
k,k < 1. Similarly, if δM2r < 1/2

for some integer r ≥ 1, then δMr + θMr,r < 1.

This is an immediate consequence of the results given in Section 2 and the following lemma

given in [15].

Lemma 3.2. Suppose A ∈ R
n×p and M is a linear map from R

m×n to R
q, then

θAk,k ≤ δA2k, θMr,r ≤ δM2r . (27)

4 Applications

As mentioned earlier, compressed sensing and affine rank minimization have a wide range of

applications. The techniques and results developed in this paper naturally have a number of

11



applications in signal processing, including the design of compressed sensing matrices, signal

acquisition, and analysis of compressed sensing based radar system. We discuss some of these

applications in this section.

An important problem in compressed sensing is the design of sensing matrices that guarantee

the exact recovery in the noiseless case and stable recovery in the noisy case. Different types of

matrices have been shown to satisfy the previously known sufficient RIP or MIP conditions with

high probability. Examples include i.i.d. Gaussian matrices [13, 14], general random matrix

satisfying concentration inequality [3], Toeplitz-structured matrices [2], structurally random

matrices [17] and the matrices from transmission waveform optimization [32]. These matrices

are thus provably suitable for compressed sensing. A direct consequence of the weaker RIP

condition obtained in this paper is that a smaller number of measurements are required to

guarantee the exact or stable recovery of sparse signals.

Take for example i.i.d. Gaussian or Bernoulli random matrices. Theorem 5.2 in [3] shows

that if a random sensing matrix A = (aij) ∈ R
n×p satisfies

aij
iid∼ N (0, 1/n), or aij

iid∼







1/
√
n w.p. 1/2

−1/
√
n w.p. 1/2

, or aij
iid∼







√

3/n w.p. 1/6

0 w.p. 1/2

−
√

3/n w.p. 1/6

,

then for any positive integer m < n and 0 < t < 1, the RIC δAm of the matrix A satisfies

P (δAm < t) ≥ 1− 2

(
12ep

mt

)m

exp

(

−n( t
2

16
− t3

48
)

)

. (28)

It is helpful to compare the condition δAk + θAk,k < 1 in terms of these random sensing matrices

to the best known RIP conditions in the literature: δk < 1/3 and δ2k < 1/2 [9]. Suppose for

some given 0 < ǫ < 1 one wishes the sensing matrix A to satisfy the RIP condition δAk < 1/3 or

δA2k < 1/2 with probability at least 1− ǫ. Then, based on (28), for given k and p the number of

measurements n must satisfy respectively

n ≥ 162 [k(log(p/k) + 4.6) − log(ǫ/2)] and n ≥ 153.6

[

k(log(p/k) + 3.5)− log(ǫ/2)

2

]

.

On the other hand, it is easy to see that δAk + θAk,k < 1 is implied by δAk + δA2k < 1 which is in

turn implied by the condition δAk < 0.4 and δA2k < 0.6. Note that for given k and p, n ≥ n1 with

n1 = 115.4 [k(log(p/k) + 4.4)− log(ǫ/4)]

12



guarantees δAk < 0.4 with probability at least 1− ǫ/2, and n ≥ n2 with

n2 = 111.1

[

k(log(p/k) + 3.3)− log(ǫ/4)

2

]

ensures δA2k < 0.6 with probability at least 1 − ǫ/2. Hence, δAk + δA2k < 1 holds with probability

at least 1− ǫ if the number of measurements n satisfies

n ≥ max{n1, n2}. (29)

Therefore, for large k and p, the required number of measurements to ensure δAk + θAk,k < 1 is

less than 71.2% (115.4/162) and 75.1% (115.4/153.6) of the corresponding required number of

measurements to ensure δAk < 1/3 and δA2k < 1/2, respectively.

The results given in this paper can also be used for certain theoretical analysis in signal

processing. One example is the signal acquisition problem studied in [16]. Davenport et al [16]

considered acquiring a finite window of a band-limited signal x(t) given by

x(t) = Ψ(α) =

p−1
∑

j=0

αtψj(t),

where ψj(t) = ei2πjt (i is the imaginary unit) are the Fourier basis functions, and α = [α0, α1, · · · , αp−1]

is k sparse. Suppose the measurements y1, · · · , yn are acquired as

yj = 〈φj(t), x(t)〉 + z = 〈φj(t),
p−1
∑

l=0

αlψl(t)〉+ z =

p−1
∑

l=0

αl〈φj(t), ψl(t)〉+ z ,
p−1
∑

l=0

rjlαl + z

where z is measurement error. Then it can be written as

y = Rα+ z, (30)

which is exactly (1). When R = (rij) with rij i.i.d. Gaussian or Bernoulli, as discussed above,

the measurement matrix R satisfies the RIP condition of order k or 2k with high probability

provided that

n & κ0k log(p/k), (31)

in which case stable recovery of the signal x(t) can be achieved through ℓ1 minimization.

The lower bound of κ0 in (31) is typically computed through simulations [16, 29]. Our results

yield a theoretical lower bound for κ0, namely κ0 ≥ 115.4 based on equation (29). It is also

helpful to provide an upper bound for the error of recovery. Suppose that z ∼ Nn(0, σ
2) and
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Condition (31) is satisfied. Then (15) and (16) yield that the Dantzig selector and ℓ2 constraint

minimizer given in Remark 2.2 satisfy, with high probability,

‖x̂(t)DS − x(t)‖2 = ‖α̂DS − α‖2 ≤ C1σ
√

k log p+ C2

‖α−max(k)‖1√
k

‖x̂(t)ℓ2 − x(t)‖2 = ‖α̂ℓ2 − α‖2 ≤ C3σ
√
n+ C2

‖α−max(k)‖1√
k

where C1, C2, C3 are constants specified in Remark 2.2.

In addition, the results obtained in this paper are also useful in the analysis of compressed

sensing based radar system [4]. Suppose the object of interest is represented by u(t) and the

transmitted radar pulse for detecting the object is sT (t). Then the received radar signal is

sR(t) = c
∫
sT (t − τ)u(τ)dt. Baraniuk and Steeghs [4] discretizes this equation and the com-

pressed sensing based radar model then becomes

sR(mD∆) = c
N∑

n=1

p(mD − n)u(n∆), m = 1, · · · ,M

which is the same as the compressed sensing model (1) in the noiseless case. Whether it is

possible to recover the signal u(t) with accuracy requires checking the condition on the matrix

A = (amn)M×N with amn = p(mD−n). Weaker RIP condition makes it easier to guarantee the

recovery of the signal u(t).

5 Proofs

We now prove the main results of the paper. Throughout this section, we shall call a vector an

“indicator vector” if it has only one non-zero entry and the value of this entry is either 1 or −1.

We first state and prove a key technical tool used in the proof of the main results. It provides

a way to estimate the inner product 〈α, β〉 and 〈X1,X2〉 by the ROC when only one component

is sparse or low-rank.

Lemma 5.1. Let k1, k2 ≤ p and λ ≥ 0. Suppose α, β ∈ R
p have disjoint supports and α is

k1-sparse. If ‖β‖1 ≤ λk2 and ‖β‖∞ ≤ λ, then

|〈Aα,Aβ〉| ≤ θAk1,k2‖α‖2 · λ
√

k2. (32)
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Let r1, r2 ≤ min{m,n} and λ ≥ 0. Suppose X1,X2 ∈ R
m×n satisfy XT

1 X2 = 0, X1X
T
2 = 0, and

rank(X1) ≤ r1. If ‖X2‖∗ ≤ λr2 and ‖X2‖ ≤ λ, then

|〈M(X1),M(X2)〉| ≤ θMk1,k2‖X2‖F · λ√r2. (33)

Proof of Lemma 5.1. We first state the following result which characterizes the property of

X and Y when XTY = 0 and XY T = 0. The result follows directly from Lemma 2.3 in [27]

and we thus omit the proof here.

Lemma 5.2. For X,Y ∈ R
m×n, XTY = 0, XY T = 0 if and only if there exist orthonormal

bases {ui ∈ R
m : 1 ≤ i ≤ m} and {vi ∈ R

n1 ≤ i ≤ n} such that the singular value decompositions

of X and Y have the form

X =
∑

i∈T1

aiuiv
T
i and Y =

∑

i∈T2

biuiv
T
i

where T1 and T2 are disjoint subsets of {1, · · · ,min(m,n)}, ai, bj ≥ 0.

We shall only prove Lemma 5.1 for the signal case as the proof for the matrix case is essentially

the same. Suppose ‖β‖0 = l, then β is an l-sparse vector. When l ≤ k2, by the definition of

δAk1,k2 , |〈A(α), A(β)〉| ≤ θAk1,k2‖α‖2‖β‖2 ≤ θAk1,k2‖α‖2
√
k2λ since ‖β‖∞ ≤ λ. Thus (32) holds for

l ≤ k2.

Now consider the case l > k2. We shall prove by induction. Assume that (32) holds for l−1.

For l, suppose β can be written as X2 =
∑l

i=1 ciui, where c1 ≥ c2 ≥ · · · ≥ cl > 0, {ui}li=1 are

indicator vectors (defined in the beginning of this section) with different supports. Notice that
∑l

i=1 ci ≤ λk2 ≤ (l − 1)λ, so 1 ∈ D , {1 ≤ j ≤ l − 1 : cj + cj+1 + · · · + cl ≤ (l − j)λ}, which
means that D is non-empty. We can pick the largest element j ∈ D, which implies

cj + cj+1 + · · ·+ cl ≤ (l − j)λ, cj+1 + cj+2 + · · ·+ cl > (l − j − 1)λ. (34)

(It is noteworthy that even if the largest j in D is l − 1, (34) still holds). Define

dw =

∑l
i=j ci

l − j
− cw, j ≤ w ≤ l (35)

and

γw =
dw

∑l
i=j di

j−1
∑

i=1

ciui +

l∑

i=j,i 6=w

dwui ∈ R
p, j ≤ i ≤ l. (36)
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It is easy to check that
∑l

w=j γw = β,
∑l

i=j ci = (l − j)
∑l

i=j di. By (34), for all j ≤ w ≤ l,

dw ≥ dj =

∑l
i=j+1 ci

l − j
− l − j − 1

l − j
cj ≥

∑l
i=j+1 ci − (l − j − 1)λ

l − j
> 0.

We also have

‖γw‖1 =
dw

∑l
i=j di

j−1
∑

i=1

ci + (l − j)dw =
dw

∑l
i=j di

(

j−1
∑

i=1

ci +
l∑

i=j

ci) =
dw

∑l
i=j di

‖β‖1 ≤ dw
∑l

i=j di
λk2,

and

‖γw‖∞ = max{ dw
∑l

i=j di
c1, · · · ,

dw
∑l

i=j di
cj−1, dw} ≤ max{ dw

∑l
i=j di

λ,
dw(
∑l

i=j ci)

(l − j)(
∑l

i=j di)
} ≤ dw

∑l
i=j di

λ.

The last inequality follows from the first part of (34). Finally, since γw is (l − 1)-sparse, the

induction assumption yields that

|〈Aα,Aβ〉| ≤
l∑

w=j

|〈Aα,Aγw〉| ≤ θAk1,k2‖α‖2
l∑

w=j

dw
∑l

i=j di
λ
√

k2 = θAk1,k2‖α‖2λ
√

k2

which gives (32) for l. �

Proof of Theorems 2.1 and 2.5. It suffices to prove Theorem 2.5 as Theorem 2.1 is a spacial

case of Theorem 2.5. We first state two lemmas. Lemma 5.3, which characterizes the null space

properties, is from [28] and [24]. Lemma 5.4, which reveals the relationship between ROC’s of

different orders, is from [6].

Lemma 5.3. In the noiseless case, using (3) with B = {0} one can recover all k-sparse signals

β if and only if for all h ∈ N (A)\{0},

2‖hmax(k)‖1 < ‖h‖1.

Similarly in the noiseless case, using (4) with B = {0} one can recover all matrices X of

rank at most r if and only if for all R ∈ N (M)\{0},

2‖Rmax(r)‖∗ < ‖R‖∗.

Lemma 5.4. For any µ ≥ 1 and positive integers k1, k2 such that µk2 is an integer, then

θk1,µk2 ≤ √
µθk1,k2
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As mentioned before, by [25], the results for the sparse signal recovery imply the correspond-

ing results for the low-rank matrix recovery. So we will only prove the signal case. By Lemma

5.3, it suffices to show that for all vectors h ∈ N (A) \ {0}, ‖hmax(k)‖1 < ‖h−max(k)‖1.

Suppose there exists h ∈ N (A)\{0} such that ‖hmax(k)‖1 ≥ ‖h−max(k)‖1. Let h =
∑p

i=1 ciui,

where {ci}pi=1 is a non-negative and non-increasing sequence; {ui}pi=1 are indicator vectors (de-

fined at the beginning of this section) with different supports in R
p. Then we have

∑k
i=1 ci ≥

∑p
i=k+1 ci. Hence, ‖h−max(a)‖∞ = ca+1 ≤

∑a
i=1 ci
a =

‖hmax(a)‖1
a and

‖h−max(a)‖1 =
k∑

i=a+1

ci+

p
∑

i=k+1

ci ≤
k − a

k

k∑

i=1

ci+

k∑

i=1

ci ≤
k − a

a

a∑

i=1

ci+
k

a

a∑

i=1

ci =
2k − a

a
‖hmax(a)‖1.

We set λ =
‖hmax(a)‖1

a , k1 = a, k2 = 2k − a, It then follows from Lemma 5.1 that

|〈A(hmax(a)), A(h−max(a))〉| ≤ θAa,2k−a

√
2k − a‖hmax(a)‖2·

‖hmax(a)‖1
a

≤ θAa,2k−a

√

2k − a

a
‖hmax(a)‖22.

On the other hand, Lemma 5.4 yields

θa,2k−a ≤
√

2k − a

min{b, 2k − a}θa,min{b,2k−a} ≤ max

{√

2k − a

b
, 1

}

θa,b.

Hence,

0 = |〈A(hmax(a)), A(h)〉| ≥ |〈A(hmax(a)), A(hmax(a))〉| − |〈A(hmax(a)), A(h−max(a))〉|

≥ (1− δAa )‖hmax(a)‖22 − θAa,2k−a

√

2k − a

a
‖hmax(a)‖22

≥ (1− δAa −max

{

2k − a√
ab

,

√

2k − a

a

}

θAa,b)‖hmax(a)‖22

= (1− δAa − Ca,b,kθ
A
a,b)‖hmax(a)‖22

which contradicts the fact that h 6= 0 and δAa + Ca,b,kθ
A
a,b < 1. �

Proof of Theorems 2.2, 2.3, 2.6 and 2.7. Again, it suffices to prove Theorems 2.6 and 2.7.

We need the following Lemma 5.5 from [9] which provides an inequality between the sums of

the ρth power of two sequences of nonnegative numbers based on the inequality of their sums.

Lemma 5.5. Suppose m ≥ r, a1 ≥ a2 ≥ · · · ≥ am ≥ 0, and
∑r

i=1 ai ≥
∑m

i=r+1 ai. Then for all

ρ ≥ 1,
m∑

j=r+1

aρj ≤
r∑

i=1

aρi . (37)
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More generally, suppose λ ≥ 0, a1 ≥ a2 ≥ · · · ≥ am ≥ 0, and
∑r

i=1 ai + λ ≥∑m
i=r+1 ai, then for

all ρ ≥ 1,
m∑

j=r+1

aρj ≤ r

(

ρ

√∑r
i=1 a

ρ
i

r
+
λ

r

)ρ

. (38)

We first prove Theorem 2.2. Set h = β̂−β andR = X∗−X. The following inequalities are well

known, ‖h−max(k)‖1 ≤ ‖hmax(k)‖1+2‖β−max(k)‖1 and ‖R−max(r)‖∗ ≤ ‖Rmax(r)‖∗+2‖X−max(r)‖∗.
See, e.g., [18] (signal case) and [31] (matrix case). Again, we only prove the signal case. By the

boundedness of z and the definition of the feasible set for β̂,

‖Ah‖2 ≤ ‖Ah − y‖2 + ‖y −Aβ̂‖2 ≤ ǫ+ η. (39)

On the other hand, suppose h =
∑p

i=1 ciui, where {ci}pi=1 are non-negative and non-decreasing,

{ui}pi=1 are indicator vectors with different supports. Then

m∑

i=k+1

ci ≤
k∑

i=1

ci + 2‖β−max(k)‖1. (40)

Hence, ‖h−max(a)‖∞ = ca+1 ≤
∑a

i=1 ci
a =

‖hmax(a)‖1
a ≤ ‖hmax(a)‖1

a +
2‖β

−max(k)‖1
2k−a and

‖h−max(a)‖1 =
k∑

i=a+1

ci +

p
∑

i=k+1

ci ≤
k − a

k

k∑

i=1

ci +
k∑

i=1

ci + 2‖β−max(k)‖1

≤ k − a

a

a∑

i=1

ci +
k

a

a∑

i=1

ci + 2‖β−max(k)‖1 =
2k − a

a
‖hmax(a)‖1 + 2‖β−max(k)‖1.

Now set λ =
‖hmax(a)‖1

a +
2‖β

−max(k)‖1
2k−a , k1 = a, and k2 = 2k − a. Lemma 5.1 then yields

|〈A(hmax(a)), A(h−max(a))〉| ≤ θAa,2k−a

√
2k − a‖hmax(a)‖2 ·

(‖hmax(a)‖1
a

+
2‖β−max(k)‖1

2k − a

)

.

On the other hand,

|〈Ah,Ahmax(a)〉| ≤ ‖Ah‖2‖Ahmax(a)‖2 ≤ (ǫ+ η)
√
1 + δ‖hmax(a)‖2. (41)

Now we denote θa,2k−a as θ̃, then

(ǫ+ η)
√
1 + δ‖hmax(a)‖2 ≥ |〈Ah,Ahmax(a)〉| ≥ ‖Ahmax(a)‖22 − |〈Ah−max(a), Ahmax(a)〉|

≥ (1− δ)‖hmax(a)‖22 − θ̃‖hmax(a)‖2 ·
√
2k − a

(‖hmax(a)‖1
a

+
2‖β−max(k)‖1

2k − a

)

≥ (1− δ −
√

2k − a

a
θ̃)‖hmax(a)‖22 − θ̃‖hmax(a)‖2

2‖β−max(k)‖1√
2k − a

.
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Hence

‖hmax(a)‖2 ≤
√
1 + δ(ǫ+ η)

1− δ −
√

(2k − a)/aθ̃
+

θ̃

1− δ −
√

(2k − a)/aθ̃

2‖β−max(k)‖1√
2k − a

. (42)

Applying Lemma 5.5 with ρ = 2 and λ = 2‖h−max(k)‖1 yields

‖h‖2 =

√
√
√
√

k∑

i=1

c2i +

p
∑

i=k+1

c2i ≤

√
√
√
√
√

k∑

i=1

c2i + (

√
√
√
√

k∑

i=1

c2i +
2‖β−max(k)‖1√

k
)2

≤

√
√
√
√2

k∑

i=1

c2i +
2‖β−max(k)‖1√

k
≤

√
√
√
√

2k

a

a∑

i=1

c2i +
2‖β−max(k)‖1√

k

≤
√

2(1 + δ)k/a(ǫ+ η)

1− δ −
√

(2k − a)/aθ̃
+

( √

2k/aθ̃

1− δ −
√

(2k − a)/aθ̃

2√
2k − a

+
2√
k

)

‖β−max(k)‖1.

Finally, it follows from Lemma 5.4 that

θ̃ = θa,2k−a ≤
√

2k − a

min{b, 2k − a}θa,min{b,2k−a} ≤ max

{√

2k − a

b
, 1

}

θa,b =

√
a

2k − a
Ca,b,kθa,b.

So ‖h‖2 ≤
√

2(1+δ)k/a(ǫ+η)

1−δ−Ca,b,kθ
+ 2‖β−max(k)‖1

( √
2kCa,b,kθ

(1−δ−Ca,b,kθ)(2k−a) +
1√
k

)

, which finishes the proof

of Theorem 2.2.

The proof of Theorem 2.7 is basically the same, where we only need to use the inequalities

‖ATAh‖∞ ≤ ‖AT (Aβ − y)‖∞ + ‖AT (y −Aβ̂)‖∞ ≤ (ǫ+ η) and

|〈Ah,Ahmax(a)〉| = |hTmax(a)A
TAh| ≤ ‖hmax(a)‖1‖ATAh‖∞ ≤ √

a‖hmax(a)‖2(ǫ+ η)

instead of (39) and (41). �

Proof of Theorem 2.4 and 2.8. Again, it suffices to prove Theorem 2.8. We first prove

the signal case. Set h1 = diag(

2k
︷ ︸︸ ︷

1√
2k
, · · · , 1√

2k
, 0, · · · , 0) ∈ R

p. Since ‖h1‖2 = 1, we can ex-

tend h1 into an orthonormal basis {h1, · · · , hp} of Rp. Define the linear map A : Rp → R
p

by Ax =
√

2
2−a/(2k)

∑p
i=2 cihi for all x =

∑p
i=1 cihi. The Cauchy-Schwarz Inequality yields

that |〈x, h1〉| ≤ ‖h1 · 1supp(x)‖2‖x‖2 ≤
√

a
2k‖x‖2 for all a-sparse vector x. Note that ‖Ax‖22 =

∑p
i=2 c

2
i =

2
2−a/(2k)

(
‖x‖22 − c21

)
= 2

2−a/(2k)

(
‖x‖22 − |〈x, h1〉|2

)
. So

(

1− a/(2k)

2− a/(2k)

)

‖x‖22 ≤ ‖Ax‖22 ≤
(

1 +
a/(2k)

2− a/(2k)

)

‖x‖22 and δAa ≤ a/(2k)

2− a/(2k)
.

Now we estimate θAa,b. For any a-sparse vector x1 and b-sparse vector x2 ∈ R
p with disjoint

supports, write x1 =
∑p

i=1 cihi and x2 =
∑p

i=1 dihi, we have a/(2k)
2−a/(2k)

∑p
i=1 cidi = 〈x1, x2〉 = 0.
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1. When b ≤ 2k−a, The Cauchy-Schwarz Inequality yields that |c1| = |〈h1, x1〉| ≤
√

a
2k‖x1‖2

and |d1| = |〈h1, x2〉| ≤
√

b
2k‖x1‖2. So

2− a/(2k)

2
|〈Ax1, Ax2〉| = |

p
∑

i=2

cidi| = | − c1d1| ≤
√
ab

2k
‖x1‖2‖x2‖2

and consequently θa,b ≤ 2
2−a/(2k) ·

√
ab
2k . Hence

δAa + Ca,b,kθ
A
a,b ≤

a/(2k)

2− a/(2k)
+ max

{

2k − a√
ab

,

√

2k − a

a

}

· 2

2− a/(2k)

√
ab

2k
≤ 1.

2. When b > 2k − a, if x1 = 0 or x2 = 0, it is clear that 〈Ax1, Ax2〉 = 0 ≤ C‖x1‖2‖x2‖2 for

any C ≥ 0. Without loss of generality, we assume that x1 and x2 are non-zero and are

normalized so that ‖x1‖2 = ‖x2‖2 = 1. Since x1 and x2 are a, b-sparse respectively and

x1 and x2 have disjoint supports, it follows from the Cauchy-Schwarz Inequality that for

all λ ≥ 0, |c1| = |〈h1, x1〉| ≤
√

a
2k‖x1‖2 =

√
a
2k and

|d1 ±
√

a

2k − a
c1| = |〈h1, x2 ±

√
a

2k − a
x1〉| ≤ ‖x2 ±

√
a

2k − a
x1‖2 =

√

2k

2k − a
.

Hence,

2− a/(2k)

2
|〈Ax1, Ax2〉| = |

mn∑

i=2

cidi| = | − c1d1|

= |c1| ·
(

max{|d1 +
√

a

2k − a
c1|, |d1 −

√
a

2k − a
c1|} − |

√
a

2k − a
c1|
)

≤ |c1| ·
(√

2k

2k − a
−
√

a

2k − a
|c1|
)

= −
√

a

2k − a

(√

k

2a
− |c1|

)2

+
k

2
√

a(2k − a)

≤
√

a(2k − a)

2k

where the last inequality follows from the facts that |c1| ≤
√

a/(2k) and a ≤ k. So

θAa,b ≤ 2
2−a/(2k) ·

√
a(2k−a)

2k and

δAa + Ca,b,kθ
A
a,b ≤

a/(2k)

2− a/(2k)
+ max

{

2k − a√
ab

,

√

2k − a

a

}

· 2

2− a/(2k)

√

a(2k − a)

2k
≤ 1.

To sum up, we have shown δAa + Ca,b,kθ
A
a,b ≤ 1. Furthermore, let

u = (

k
︷ ︸︸ ︷

1, · · · , 1, 0, · · · ) and v = (

k
︷ ︸︸ ︷

0, · · · , 0,
k

︷ ︸︸ ︷

−1, · · · ,−1, 0, · · · ),
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so u and v are both k-sparse and Au = Av, since A(u− v) = 0. Suppose y = Ax1 = Ax2, then

the k-sparse signals u and v are not distinguishable based on (y,A). Finally, δAa +Ca,b,kθ
A
a,b < 1

is impossible by Theorem 2.5, so we must have δAa + Ca,b,kθ
A
a,b = 1.

For the matrix case, the proof is essentially the same as the signal case. First we present

the following lemma which can be regarded as an extension of the Cauchy-Schwarz Inequality

〈B,X〉 ≤ ‖B‖F ‖X‖F with a constraint on rank(B).

Lemma 5.6. Let X ∈ R
m×n(m ≤ n) be a matrix with singular values λ1 ≥ λ2 ≥ · · · ≥ λm, then

for all B ∈ R
m×n with rank at most r,

|〈B,X〉| ≤ ‖B‖F

√
√
√
√

r∑

i=1

λ2i .

Then the matrix case can be proved by replacing the notations of vectors in the above proof

by matrices and by using Lemma 5.6 instead of the Cauchy-Schwarz’s Inequality in the proof of

the signal case. �

Proof of Lemma 3.1. For k-sparse vectors β, γ ∈ R
p with disjoint supports, we can write

them as β =
∑

i∈T1
aiei and γ =

∑

i∈T2
biei where ai > 0, bi > 0, T1 is the support of β, T2 is the

support of γ, and ei is the vector with ith entry equals to ±1 and all others entries equal to zero.

Correspondingly, suppose X,Y ∈ R
m×n with rank at most r, which satisfies XTY = XY T = 0.

Lemma 5.2 shows that they have singular value decompositions X =
∑

i∈T1
aiuiv

T
i and Y =

∑

i∈T2
biuiv

T
i , where the disjoint subsets T1 and T2 satisfy |T1|, |T2| ≤ r. We now consider the

even and odd cases separately.

Case 1. k, r ≥ 2 is even. We focus on the matrix case. The proof of the signal case is similar.

Without loss of generality, suppose X and Y are normalized so ‖X‖F = ‖Y ‖F = 1. Divide T1

and T2 into two parts, T1 = T11∪T12, T2 = T21∪T22, such that T11, T12, T21, T22 are disjoint and

|Tij | ≤ r/2 for i, j ∈ {1, 2}. Denote Xi =
∑

i∈T1i
aiuiv

T
i and Yi =

∑

i∈T2i
biuiv

T
i ,, i = 1, 2. Then

|〈M(X),M(Y )〉| ≤
2∑

i,j=1

|〈M(Xi),M(Yj)〉| =
1

4

2∑

i,j=1

∣
∣‖M(Xi + Yj)‖2F − ‖M(Xi − Yj)‖2F

∣
∣

≤ 1

4

2∑

i,j=1



(1 + δMr )
∑

i∈Tij∪Tij

a2i − (1− δMr )
∑

i∈Tij∪Tij

a2i



 = δMr (‖X‖2F + ‖Y ‖2F )

= 2δMr
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and consequently θMr,r ≤ 2δMr . Now in the example provided in the proof of Theorem 2.4, if

a = b = k, we have δAr = 1/3, θMr,r = 2/3, which means the coefficient “2” in the inequalities of

the even case in (24) cannot be improved.

Case 2. k, r ≥ 3 is odd. For the proof of (23) and (24), we only show the matrix case as

the signal case is similar. Since we can set ai = 0 or bi = 0 for i /∈ T1 or i /∈ T2, Without loss

of generality, we assume that |T1| = r, |T2| = r, ai, bi might be 0 for i ∈ T1 ∪ T2. Also without

loss of generality, we can assume X and Y are normalized so ‖X‖2F =
∑

i∈T1
a2i =

√
r−1
r+1 and

‖Y ‖2F =
∑

i∈T2
b2i =

√
r+1
r−1 . Then

∣
∣
∣
∣
4

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)

〈M(X),M(Y )〉
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

4

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)

〈M(
∑

i∈T1

aiuiv
T
i ),M(

∑

i∈T2

biuiv
T
i )〉

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∑

A⊆T1,|A|=(r+1)/2,
B⊆T2,|B|=(r−1)/2

[

‖M(
∑

i∈A
aiuiv

T
i +

∑

i∈B
biuiv

T
i )‖2 − ‖M(

∑

i∈A
aiuiv

T
i −

∑

i∈B
biuiv

T
i )‖2

]

∣
∣
∣
∣
∣
∣
∣
∣

≤
∑

A⊆T1,|A|=(r+1)/2,
B⊆T2,|B|=(r−1)/2

((1 + δMr )− (1− δMr ))

[
∑

i∈A
a2i +

∑

i∈B
b2i

]

= 2δMr





(
r − 1

(r − 1)/2

)(
r

(r − 1)/2

)
∑

i∈T1

a2i +

(
r − 1

(r − 3)/2

)(
r

(r + 1)/2

)
∑

i∈T2

b2i





= 2δMr

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)



r

(r − 1)/2

∑

i∈T1

a2i +
r

(r + 1)/2

∑

i∈T2

b2i





= 8δMr

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
r√

r2 − 1
= 4

(
r − 1

(r − 1)/2

)(
r − 1

(r − 3)/2

)
2r√
r2 − 1

δMr ‖X‖F ‖Y ‖F

which implies θMr,r ≤ 2r√
r2−1

δMr .

Next we will construct an example for the signal recovery in the odd case where θAk,k =

2k√
k2−1

δAk 6= 0. Suppose k ≥ 3 is odd and 2k ≤ p, denote

β1 =
1√
2k

(

2k
︷ ︸︸ ︷

1, 1, · · · , 1, 0, · · · ) ∈ R
p and β2 =

1√
2k

(

k
︷ ︸︸ ︷

1, 1, · · · , 1,
k

︷ ︸︸ ︷

−1, · · · ,−1, 0, · · · ) ∈ R
p. (43)

Similarly as in the proof of Theorem 2.4, we can extend β1 and β2 to an orthonormal basis of
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R
p as {β1, β2, · · · , βp}. Then for 0 < λ < 1, we define A : Rp → R

p by

Aβ =
√
1 + λa1β1 +

√
1− λa2β2 +

p
∑

i=3

aiβi

for β =
∑p

i=1 aiβi. It is clear that for all β ∈ R
p, (1 − λ)‖β‖22 ≤ ‖Aβ‖22 ≤ (1 + λ)‖β‖22. Let β

and γ be k-sparse vectors with disjoint supports and ‖β‖2 = ‖γ‖2 = 1. Then

|〈Aβ,Aγ〉| =
1

4

∣
∣‖A(β + γ)‖22 − ‖A(β − γ)‖22

∣
∣

≤ max

{
1 + λ

4
‖β + γ‖22 −

1− λ

4
‖β − γ‖22,

1 + λ

4
‖β − γ‖22 −

1− λ

4
‖β + γ‖22

}

=
2λ

4
(‖β‖22 + ‖γ‖22) = λ‖β‖2‖γ‖2

which implies θAk,k ≤ λ. It can be easily verified that when

β = (

k
︷ ︸︸ ︷

1, 1 · · · , 1, 0, · · · ) and γ = (

k
︷ ︸︸ ︷

0, 0, · · · , 0,
k

︷ ︸︸ ︷

1, 1, · · · , 1, 0, · · · ),

we have |〈Aβ,Aγ〉| = λ‖β‖2‖γ‖2. These together imply θAk,k = λ.

Denote β(i) as the ith entry of β. Now let us estimate δAk . For all k-sparse β ∈ R
p, suppose

β =
∑p

i=1 ciβi, then

‖Aβ‖22 = (1 + λ)|〈β, β1〉|2 + (1− λ)|〈β, β2〉|2 +
p
∑

i=3

|〈β, βi〉|2 = ‖β‖22 + λ(|〈β, β1〉|2 − |〈β, β2〉|2)

= ‖β‖22 + λ((
2k∑

i=1

β(i))2 − (
k∑

i=1

β(i) −
2k∑

i=k+1

β(i))2)/2k = ‖β‖22 +
4

2k
λ(

k∑

i=1

β(i))(
2k∑

i=j+1

β(i)).

Suppose T1 = supp(β)∩{1, · · · , k} and T2 = supp(β)∩{k+1, · · · , 2k}, then |T1|+ |T2| ≤ k and

|(
k∑

i=1

β(i))(

2k∑

i=k+1

β(i))| = |(
∑

i∈T1

β(i))(
∑

i∈T2

β(i))| ≤
√

|T1|
∑

i∈T1

β(i)2 · |T2|
∑

i∈T2

β(i)2

≤
√

|T1| · |T2|
2

∑

i∈T1∪T2

β(i)2 ≤
√

|T1|(k − |T1|)
2

‖β‖22 ≤

√
k−1
2

k+1
2

2
‖β‖22,

where the last inequality is due to the facts that |T1| is a non-negative integer and k is odd. It

then follows that for all k-sparse vector β ∈ R
p,

(1−
√
k2 − 1

2k
λ)‖β‖22 ≤ ‖Aβ‖22 ≤ (1 +

√
k2 − 1

2k
λ)‖β‖22.

It can also be easily verified that the equality above can be achieved for

β = (

(k+1)/2
︷ ︸︸ ︷

1, · · · , 1,
(k−1)/2
︷ ︸︸ ︷

0, · · · , 0,
(k−1)/2
︷ ︸︸ ︷

1, · · · , 1, 0, · · · )
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Hence δAk = λ
√
k2−1
2k . In summary, θAk,k = 2k√

k2−1
δAk in our setting, which implies that the constant

2k√
k2−1

in (23) is not improvable. �
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