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On Recovery of Sparse Signals via ℓ1 Minimization

T. Tony Cai∗ Guangwu Xu† and Jun Zhang‡

Abstract

This article considers constrained ℓ1 minimization methods for the recovery of

high dimensional sparse signals in three settings: noiseless, bounded error and Gaus-

sian noise. A unified and elementary treatment is given in these noise settings for

two ℓ1 minimization methods: the Dantzig selector and ℓ1 minimization with an ℓ2

constraint. The results of this paper improve the existing results in the literature

by weakening the conditions and tightening the error bounds. The improvement on

the conditions shows that signals with larger support can be recovered accurately.

This paper also establishes connections between restricted isometry property and the

mutual incoherence property. Some results of Candes, Romberg and Tao (2006) and

Donoho, Elad, and Temlyakov (2006) are extended.

Keywords: Dantzig selector, ℓ1 minimization, Lasso, overcomplete representation, sparse

recovery, sparsity.

1 Introduction

The problem of recovering a high-dimensional sparse signal based on a small number of

measurements, possibly corrupted by noise, has attracted much recent attention. This

problem arises in many different settings, including model selection in linear regression,

constructive approximation, inverse problems, and compressive sensing.

Suppose we have n observations of the form

y = Fβ + z (1.1)
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where the matrix F ∈ R
n×p with n ≪ p is given and z ∈ R

n is a vector of measurement

errors. The goal is to reconstruct the unknown vector β ∈ R
p. Depending on settings,

the error vector z can either be zero (in the noiseless case), bounded, or Gaussian where

z ∼ N(0, σ2In). It is now well understood that ℓ1 minimization provides an effective way

for reconstructing a sparse signal in all three settings.

A special case of particular interest is when no noise is present in (1.1) and y = Fβ.

This is an underdetermined system of linear equations with more variables than the number

of equations. It is clear that the problem is ill-posed and there are generally infinite many

solutions. However, in many applications the vector β is known to be sparse or nearly

sparse in the sense that it contains only a small number of nonzero entries. This sparsity

assumption fundamentally changes the problem, making unique solution possible. Indeed

in many cases the unique sparse solution can be found exactly through ℓ1 minimization:

(P ) min ‖γ‖1 subject to Fγ = y. (1.2)

This ℓ1 minimization problem has been studied, for example, in Fuchs [11], Candes and

Tao [4] and Donoho [6]. Understanding the noiseless case is not only of significant interest

on its own right, it also provides deep insight into the problem of reconstructing sparse

signals in the noisy case. See, for example, Candes and Tao [4, 5] and Donoho [6, 7].

When noise is present, there are two well known ℓ1 minimization methods. One is ℓ1

minimization under the ℓ2 constraint on the residuals:

(P1) min ‖γ‖1 subject to ‖y − Fγ‖2 ≤ ǫ. (1.3)

Writing in terms of the Lagrangian function of (P1), this is closely related to finding the

solution to the ℓ1 regularized least squares:

min
γ

{
‖y − Fγ‖2

2 + ρ‖γ‖1

}
. (1.4)

The latter is often called the Lasso in the statistics literature (Tibshirani [13]). Tropp [14]

gave a detailed treatment of the ℓ1 regularized least squares problem.

Another method, called the Dantzig selector, is recently proposed by Candes and Tao

[5]. The Dantzig selector solves the sparse recovery problem through ℓ1-minimization with

a constraint on the correlation between the residuals and the column vectors of F :

(DS) min
γ

‖γ‖1 subject to ‖F T (y − Fγ)‖∞ ≤ λ. (1.5)

Candes and Tao [5] showed that the Dantzig selector can be computed by solving a linear

program and it mimics the performance of an oracle procedure up to a logarithmic factor

log p.
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It is clear that regularity conditions are needed in order for these problems to be well

behaved. Over the last few years, many interesting results for recovering sparse signals have

been obtained in the framework of the Restricted Isometry Property (RIP). In their seminal

work [4, 5], Candes and Tao considered sparse recovery problems in the RIP framework.

They provided beautiful solutions to the problem under some conditions on the restricted

isometry constant and restricted orthogonality constant (defined in Section 2). Several

different conditions have been imposed in various settings.

In this paper, we consider ℓ1 minimization methods for the sparse recovery problem

in three cases: noiseless, bounded error and Gaussian noise. Both the Dantzig selector

(DS) and ℓ1 minimization under the ℓ2 constraint (P1) are considered. We give a unified

and elementary treatment for the two methods under the three noise settings. Our results

improve on the existing results in [2, 3, 4, 5] by weakening the conditions and tightening

the error bounds. In all cases we solve the problems under the weaker condition

δ1.5k + θk,1.5k < 1

where k is the sparsity index and δ and θ are respectively the restricted isometry constant

and restricted orthogonality constant defined in Section 2. The improvement on the condi-

tion shows that signals with larger support can be recovered. Although our main interest

is on recovering sparse signals, we state the results in the general setting of reconstructing

an arbitrary signal.

Another widely used condition for sparse recovery is the so called Mutual Incoherence

Property (MIP) which requires the pairwise correlations among the column vectors of F to

be small. See [8, 9, 11, 12, 14]. We establish connections between the concepts of RIP and

MIP. As an application, we present an improvement to a recent result of Donoho, Elad,

and Temlyakov [8].

The paper is organized as follows. In Section 2, after basic notation and definitions are

reviewed, two elementary inequalities, which allow us to make finer analysis of the sparse

recovery problem, are introduced. We begin the analysis of ℓ1 minimization methods for

sparse recovery by considering the exact recovery in the noiseless case in Section 3. Our

result improves the main result in Candes and Tao [4] by using weaker conditions and

providing tighter error bounds. The analysis of the noiseless case provides insight to the

case when the observations are contaminated by noise. We then consider the case of

bounded error in Section 4. The connections between the RIP and MIP are also explored.

The case of Gaussian noise is treated in Section 5. The Appendix contains the proofs of

some technical results.
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2 Preliminaries

In this section we first introduce basic notation and definitions, and then develop some

technical inequalities which will be used in proving our main results.

Let p ∈ N. Let v = (v1, v2, · · · , vp) ∈ R
p be a vector. The support of v is the subset of

{1, 2, · · · , p} defined by

supp(v) = {i : vi 6= 0}.
For an integer k ∈ N, a vector v is said to be k-sparse if |supp(v)| ≤ k. For a given vector v

we shall denote by vmax(k) the vector v with all but the k-largest entries (in absolute value)

set to zero and define v−max(k) = v − vmax(k), the vector v with the k-largest entries (in

absolute value) set to zero. We shall use the standard notation ‖v‖q to denote the ℓq-norm

of the vector v.

Let the matrix F ∈ R
n×p and 1 ≤ k ≤ p, the k-restricted isometry constant δk of F is

defined to be the smallest constant such that

√

1 − δk‖c‖2 ≤ ‖Fc‖2 ≤
√

1 + δk‖c‖2 (2.1)

for every vector c which is k-sparse. If k + k′ ≤ p, we can define another quantity, the

k, k′-restricted orthogonality constant θk,k′, as the smallest number that satisfies

|〈Fc, Fc′〉| ≤ θk,k′‖c‖2‖c′‖2, (2.2)

for all c and c′ such that c and c′ are k-sparse and k′-sparse respectively, and have disjoint

supports. Candes and Tao [4] showed that the constants δk and θk,k′ are related by the

following inequalities,

θk,k′ ≤ δk+k′ ≤ θk,k′ + max(δk, δk′).

Another useful property is as follows.

Proposition 2.1 If k +
∑l

i=1 ki ≤ p, then

θk,
Pl

i=1 ki
≤

√
√
√
√

l∑

i=1

θ2
k,ki

.

In particular, θk,
Pl

i=1 ki
≤

√
∑l

i=1 δ2
k+ki

.

Proof of Proposition 2.1. Let c be k-sparse and c′ be (
∑l

i=1 ki)-sparse. Suppose their

supports are disjoint. Decompose c′ as

c′ = c′1 + c′2 + · · · + c′l

4



such that c′i is ki-sparse for i = 1, · · · , j and supp(c′)i ∩ supp(c′)j = ∅ for i 6= j. We have

|〈Fc, Fc′〉| = |〈Fc,

l∑

i=1

Fc′i〉| ≤
l∑

i=1

|〈Fc, Fc′i〉|

≤
l∑

i=1

θk,ki
‖c‖2‖c′i‖2 = ‖c‖2

√
√
√
√

l∑

i=1

θ2
k,ki

√
√
√
√

l∑

i=1

‖c′i‖2
2

=

√
√
√
√

l∑

i=1

θ2
k,ki

‖c‖2‖c′‖2.

This yields θk,
Pl

i=1 ki
≤

√
∑l

i=1 θ2
k,ki

. Since θk,k′ ≤ δk+k′, we also have θk,
Pl

i=1 ki
≤

√
∑l

i=1 δ2
k+ki

.

Remark: Different conditions on δ and θ have been used in the literature. For example,

Candes and Tao [5] imposes δ2k + θk,2k < 1 and Candes [2] uses δ2k <
√

2 − 1. A direct

consequence of Proposition 2.1 is that δ2k <
√

2 − 1 is in fact a strictly stronger condition

than δ2k + θk,2k < 1 since Proposition 2.1 yields θk,2k ≤
√

δ2
2k + δ2

2k =
√

2δ2k which means

that δ2k <
√

2 − 1 implies δ2k + θk,2k < 1.

We now introduce two useful elementary inequalities. These inequalities allow us to

perform finer estimation on ℓ1, l2 norms.

Proposition 2.2 Let w be a positive integer. For any descending chain of real numbers

a1 ≥ a2 ≥ · · · ≥ aw ≥ aw+1 ≥ · · · ≥ a2w ≥ 0,

we have
√

a2
w+1 + a2

w+2 + · · · + a2
2w ≤ a1 + a2 + · · ·+ aw + aw+1 + · · ·+ a2w

2
√

w
.

Proof of Proposition 2.2. Since ai ≥ aj for i < j, we have

(a1 + a2 + · · · + a2w)2 = a2
1 + a2

2 + · · ·a2
2w + 2

∑

i<j

aiaj

≥ a2
1 + a2

2 + · · ·a2
2w + 2

∑

i<j

a2
j

= a2
1 + 3a2

2 + · · ·+ (2w − 1)a2
w +

+(2w + 1)a2
w+1 + · · ·+ (4w − 3)a2

2w−1 + (4w − 1)a2
2w

=
(
a2

1 + (4w − 1)a2
2w

)
+

(
3a2

2 + (4w − 3)a2
2w−1

)
+ · · ·

+
(
(2w − 1)a2

w + (2w + 1)a2
w+1

)

≥ 4wa2
2w + 4wa2

2w−1 + · · ·4wa2
w+1.
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Proposition 2.2 can be used to improve the main result in Candes and Tao [5] by

weakening the condition to δ1.75k + θk,1.75k < 1. However, the next proposition, which we

will use in proving our main results, is more powerful for our applications.

Proposition 2.3 Let w be a positive integer. Then any descending chain of real numbers

a1 ≥ a2 ≥ · · · ≥ aw ≥ aw+1 ≥ · · · ≥ a3w ≥ 0

satisfies

√

a2
w+1 + a2

w+2 + · · ·+ a2
3w ≤ a1 + · · ·+ aw + 2(aw+1 + · · ·+ a2w) + a2w+1 + · · ·+ a3w

2
√

2w
.

The proof of Proposition 2.3 is given in the Appendix.

3 Signal Recovery in the Noiseless Case

As mentioned in the introduction we shall consider recovery of sparse signals in three cases:

noiseless, bounded error, and Gaussian noise. We begin in this section by considering the

problem of exact recovery of sparse signals when no noise is present. This is an interesting

problem by itself and has been considered in a number of papers. See, for example, Fuchs

[11], Donoho [6], and Candes and Tao [4]. More importantly, the solutions to this “clean”

problem shed light on the noisy case. Our result improves the main result given in Candes

and Tao [4]. The improvement is obtained by using the technical inequalities we developed

in previous section. Although the focus is on recovering sparse signals, our results are

stated in the general setting of reconstructing an arbitrary signal.

Let F ∈ R
n×p with n < p and suppose we are given F and y where y = Fβ for some

unknown vector β. The goal is to recover β exactly when it is sparse. Candes and Tao [4]

showed that a sparse solution can be obtained by ℓ1 minimization which is then solved via

linear programming.

Theorem 3.1 (Candes and Tao [4]) Let F ∈ R
n×p. Suppose k ≥ 1 satisfies

δk + θk,k + θk,2k < 1. (3.1)

Let β be a k-sparse vector and y := Fβ. Then β is the unique minimizer to the problem

(P ) min ‖γ‖1 subject to Fγ = y.
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We shall show that this result can be further improved by a transparent argument. A direct

application of Proposition 2.3 yields the following result which improves Theorem 3.1. by

weakening the condition from

δk + θk,k + θk,2k < 1,

to

δ1.5k + θk,1.5k < 1.

Theorem 3.2 Let F ∈ R
n×p. Suppose k ≥ 1 satisfies

δ1.5k + θk,1.5k < 1

and y = Fβ. Then the minimizer β̂ to the problem

(P ) min ‖γ‖1 subject to Fγ = y

obeys

‖β̂ − β‖2 ≤ C0k
− 1

2‖β−max(k)‖1

where C0 = 2
√

2(1−δ1.5k)
1−δ1.5k−θk,1.5k

.

In particular, if β is a k-sparse vector, then β̂ = β, i.e., the ℓ1 minimization recovers β

exactly.

Proof of Theorem 3.2: The proof relies on Proposition 2.3 and makes use of the ideas

from [3, 4, 5]. In this proof, we shall also identify a vector v = (v1, v2, · · · , vp) ∈ R
p as a

function v : {1, 2, · · · , p} → R by assigning v(i) = vi.

Let β̂ be a solution to the ℓ1 minimization problem (P). Let T0 = {n1, n2, · · · , nk} ⊂
{1, 2, · · · , p} be the support of βmax(k) and let h = β̂ − β. Write

{1, 2, · · · , p} \ {n1, n2, · · · , nk} = {nk+1, nk+2, · · · , np}

such that |h(nk+1)| ≥ |h(nk+2)| ≥ |h(nk+3)| ≥ · · · . Fix an integer t > 0 and let

T1 = {nk+1, nk+2, · · · , n(t+1)k}, T2 = {n(t+1)k+1, n(t+1)k+2, · · · , n(2t+1)k}, · · · .

For a subset E ⊂ {1, 2, · · · , m}, we use IE to denote the characteristic function of E,

i.e.,

IE(j) =

{

1 if j ∈ E,

0 if j /∈ E.
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For each i, let hi = hITi
. Then h is decomposed to h = h0 + h1 + h2 + · · · . Note that

Ti’s are pairwise disjoint, supp(hi) ⊂ Ti, and |T0| = k, |Ti| = tk for i > 0. Without loss of

generality, we assume k is divisible by 4.

For each i > 1, we divide hi into two halves in the following manner

hi = hi1 + hi2 with hi1 = hiITi1
, and hi2 = hiITi2

,

where Ti1 is the first half of Ti, i.e.,

Ti1 = {n((i−1)t+1)k+1, n((i−1)t+1)k+2, · · · , n((i−1)t+1)k+ k
2
},

and Ti2 = Ti \ Ti1.

We shall treat h1 as a sum of four functions and divide T1 into 4 equal parts T1 =

T11 ∪ T12 ∪ T13 ∪ T14 with

T11 = {nk+1, nk+2, · · · , nk+tk
4
}, T12 = {nk+tk

4
+1, · · · , nk+tk

2
},

T13 = {nk+tk
2
+1, · · · , nk+t 3k

4
} and T14 = {nk+t 3k

4
+1, · · · , nk+tk}.

We then define h1i for 1 ≤ i ≤ 4 by h1i(j) = h1IT1i
. It is clear that h1 =

4∑

i=1

h1i.

Note that
∑

i≥1

‖hi‖1 ≤ ‖h0‖1 + 2‖β−max(k)‖1. (3.2)

In fact, since ‖β‖1 ≥ ‖β̂‖1, we have

‖β‖1 ≥ ‖β̂‖1 = ‖β + h‖1 = ‖βmax(k) + h0‖1 + ‖h − h0 + β−max(k)‖1

≥ ‖βmax(k)‖1 − ‖h0‖1 +
∑

i≥1

‖hi‖1 − ‖β−max(k)‖1.

Since ‖β‖1 = ‖βmax(k)‖1 + ‖β−max(k)‖1, this yields
∑

i≥1 ‖hi‖1 ≤ ‖h0‖1 + 2‖β−max(k)‖1.

The following claim follows from our Proposition 2.3.

Claim

‖h13 + h14‖2 +
∑

i≥2

‖hi‖2 ≤
∑

i≥1 ‖hi‖1√
tk

≤ ‖h0‖2√
t

+
2‖β−max(k)‖1√

tk
. (3.3)

In fact, from Proposition 2.3 and the fact that ‖h11‖1 ≥ ‖h12‖1 ≥ ‖h13‖1 ≥ ‖h14‖1, we have

‖h12‖1 + 2‖h13‖1 + ‖h14‖1 ≤
2

3

(
2‖h11‖1 + 2‖h12‖1 + ‖h13‖1 + ‖h14‖1

)
.
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It then follows from Proposition 2.3 that

‖h13 + h14‖2 ≤ ‖h12‖1 + 2‖h13‖1 + ‖h14‖1

2
√

tk
2

≤ 2

3

2‖h11‖1 + 2‖h12‖1 + ‖h13‖1 + ‖h14‖1

2
√

tk
2

≤ 2‖h11‖1 + 2‖h12‖1 + ‖h13‖1 + ‖h14‖1

2
√

tk
.

Proposition 2.3 also yields

‖h2‖2 ≤
‖h13 + h14‖1 + 2‖h21‖1 + ‖h22‖1

2
√

tk

and

‖hi‖2 ≤
‖h(i−1)2‖1 + 2‖hi1‖1 + ‖hi2‖1

2
√

tk

for any i > 2. Therefore,

‖h13 + h14‖2 +
∑

i≥2

‖hi‖2 ≤ 2‖h11‖1 + 2‖h12‖1 + ‖h13‖1 + ‖h14‖1

2
√

tk

+
‖h13 + h14‖1 + 2‖h21‖1 + ‖h22‖1

2
√

tk

+
‖h22‖1 + 2‖h31‖1 + ‖h32‖1

2
√

tk
+ · · ·

≤ 2‖h1‖1 + 2‖h2‖1 + 2‖h3‖1 + · · ·
2
√

tk

=

∑

i≥1 ‖hi‖1√
tk

by (3.2)
≤ ‖h0‖1 + 2‖β−max(k)‖1√

tk
≤ ‖h0‖2√

t
+

2‖β−max(k)‖1√
tk

.
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In the rest of our proof we write h11 + h12 = h′
1. Note that Fh = F β̂ − Fβ = 0. So

0 = |〈Fh, F (h0 + h′
1)〉|

= |〈F (h0 + h′
1), F (h0 + h′

1)〉 + 〈F (h13 + h14), F (h0 + h′
1)〉 +

∑

i≥2

〈Fhi, F (h0 + h′
1)〉|

(2.1,2.2)

≥ (1 − δ( 1
2
t+1)k)‖h0 + h′

1‖2
2 − θ 1

2
tk,( 1

2
t+1)k‖h13 + h14‖2‖h0 + h′

1‖2

−
∑

i≥2

θtk,( 1
2
t+1)k‖hi‖2‖h0 + h′

1‖2

≥ ‖h0 + h′
1‖2

(

(1 − δ( 1
2
t+1)k)‖h0 + h′

1‖2 − θtk,( 1
2
t+1)k

(
‖h13 + h14‖2 +

∑

i≥2

‖hi‖2

)
)

(3.3)

≥ ‖h0 + h′
1‖2

(

(1 − δ( 1
2
t+1)k)‖h0 + h′

1‖2 − θtk,( 1
2
t+1)k

‖h0‖2√
t

− θtk,( 1
2
t+1)k

2‖β−max(k)‖1√
tk

)

≥ ‖h0 + h′
1‖2

{(

1 − δ( 1
2
t+1)k −

θtk,( 1
2
t+1)k√
t

)

‖h0 + h′
1‖2 − θtk,( 1

2
t+1)k

2‖β−max(k)‖1√
tk

}

.

Take t = 1. Then

‖h0 + h′
1‖2 ≤

2θk,1.5k

1 − δ1.5k − θk,1.5k
k− 1

2‖β−max(k)‖1

It then follows from (3.3) that

‖h‖2
2 = ‖h0 + h′

1‖2
2 + ‖h13 + h14‖2

2 +
∑

i≥2

‖hi‖2
2 ≤ ‖h0 + h′

1‖2
2 + (‖h13 + h14‖2 +

∑

i≥2

‖hi‖2)
2

≤ 2(‖h0 + h′
1‖2 + 2k− 1

2‖β−max(k)‖1)
2 ≤ 2

(
2(1 − δ1.5k)

1 − δ1.5k − θk,1.5k

k− 1
2‖β−max(k)‖1

)2

.

Remarks.

1. Candes and Tao [5] considers the Gaussian noise case. A special case with noise

level σ = 0 of Theorem 1.1 in that paper improves Theorem 3.1 by weakening the

condition from δk + θk,k + θk,2k < 1 to δ2k + θk,2k < 1.

2. This theorem improves the results in [4, 5]. The condition δ1.5k + θk,1.5k < 1 is weaker

than δk + θk,k + θk,2k < 1 and δ2k + θk,2k < 1.

3. Note that the condition δ1.75k <
√

2 − 1 implies δ1.5k + θk,1.5k < 1. This is due to the

fact δ1.5k + θk,1.5k ≤ δ1.5k +
√

δ2
1.75k + δ2

1.75k ≤ (
√

2 + 1)δ1.75k by Proposition 2.1. The

condition δ1.5k + δ2.5k < 1, which involves only δ, can also be used.

4. The quantity t in the proof can be any number such that tk ∈ N. As pointed out in

[4, 5], other values of t may be used for obtaining some interesting results.
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4 Recovery of Sparse Signals in Bounded Error

We now turn to the case of bounded error. The results obtained in this setting have direct

implication for the case of Gaussian noise which will be discussed in Section 5.

Let F ∈ R
n×p and let

y = Fβ + z

where the noise z is bounded, i.e., z ∈ B for some bounded set B. In this case the noise z

can either be stochastic or deterministic. The ℓ1 minimization approach is to estimate β

by the minimizer β̂ of

min ‖γ‖1 subject to y − Fγ ∈ B.

We shall specifically consider two cases: B = {z : ‖F Tz‖∞ ≤ λ} and B = {z : ‖z‖2 ≤ ǫ}.
Our results improve the results in Candes and Tao [4, 5] and Donoho, Elad and Temlyakov

[8].

We shall first consider

y = Fβ + z where z satisfies ‖F Tz‖∞ ≤ λ.

Let β̂ be the solution to the (DS) problem, i.e., β̂ is obtained by solving

min
γ∈Rp

‖γ‖1 subject to ‖F T
(
y − Fγ

)
‖∞ ≤ λ. (4.1)

The Dantzig selector β̂ has the following property.

Theorem 4.1 Suppose β ∈ R
p and y = Fβ + z with z satisfying ‖F T z‖∞ ≤ λ. If

δ1.5k + θk,1.5k < 1, (4.2)

then the solution β̂ to (4.1) obeys

‖β̂ − β‖2 ≤ C1k
1
2 λ + C2k

− 1
2‖β−max(k)‖1 (4.3)

with C1 = 2
√

3
1−δ1.5k−θk,1.5k

, and C2 = 2
√

2(1−δ1.5k)
1−δ1.5k−θk,1.5k

.

In particular, if β is a k-sparse vector, then ‖β̂ − β‖2 ≤ C1k
1
2 λ.

Proof of Theorem 4.1 . We shall use the same notation as in the proof of Theorem 3.2.

Since ‖β‖1 ≥ ‖β̂‖1, letting h = β̂ − β and following essentially the same steps as in the

first part of the proof of Theorem 3.2, we get

|〈Fh, F (h0 + h′
1)〉| ≥ ‖h0 + h′

1‖2

{(

1 − δ1.5k − θk,1.5k

)

‖h0 + h′
1‖2 − θk,1.5k

2‖β−max(k)‖1√
k

}

.
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If ‖h0 + h′
1‖2 = 0, then h0 = 0 and h′

1 = 0. The latter forces that hj = 0 for every

j > 1, and we have β̂ − β = 0. Otherwise

‖h0 + h′
1‖2 ≤

|〈Fh, F (h0 + h′
1)〉|

(
1 − δ1.5k − θk,1.5k

)
‖h0 + h′

1‖2

+
2θk,1.5k‖β−max(k)‖1

(
1 − δ1.5k − θk,1.5k

)√
k
.

To finish the proof, we observe the following.

1. |〈Fh, F (h0 + h′
1)〉| ≤

√
1.5k 2λ‖h0 + h′

1‖2.

In fact, let FT0∪T10∪T11 be the n×(1.5k) submatrix obtained by extracting the columns

of F according to the indices in T0 ∪ T10 ∪ T11, as in [5]. Then

|〈Fh, F (h0 + h′
1)〉| = |〈(F β̂ − y) + z, FT0∪T10∪T11(h0 + h′

1)〉|
= |〈F T

T0∪T10∪T11

(
(F β̂ − y) + z

)
, h0 + h′

1〉|
≤ ‖F T

T0∪T10∪T11

(
(F β̂ − y) + z

)
‖2‖h0 + h′

1‖2

≤
√

1.5k 2λ‖h0 + h′
1‖2.

2. ‖β̂ − β‖2 ≤
√

2
(
‖h0 + h′

1‖2 +
2‖β

−max(k)‖1√
k

)
.

In fact,

‖β̂ − β‖2
2 = ‖h‖2

2 = ‖h0 + h′
1‖2

2 + ‖h13 + h14‖2
2 +

∑

i≥2

‖hi‖2
2

≤ ‖h0 + h′
1‖2

2 +
(
‖h13 + h14‖2 +

∑

i≥2

‖hi‖2

)2

by (3.3)
≤ ‖h0 + h′

1‖2
2 +

(

‖h0‖2 +
2‖β−max(k)‖1√

k

)2

≤ 2

(

‖h0 + h′
1‖2 +

2‖β−max(k)‖1√
k

)2

.

We get the result by combining 1 and 2. This completes the proof.

We now turn to the second case where the noise z is bounded in ℓ2-norm. Let F ∈ R
n×p

with n < p. The problem is to recover the sparse signal β ∈ R
p from

y = Fβ + z

where the noise satisfies ‖z‖2 ≤ ǫ. We shall again consider constrained ℓ1 minimization:

min ‖γ‖1 subject to ‖y − Fγ‖2 ≤ η.

By using a similar argument, we have the following result.
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Theorem 4.2 Let F ∈ R
n×p. Suppose β ∈ R

p is a k-sparse vector and y = Fβ + z with

‖z‖2 ≤ ǫ. If

δ1.5k + θk,1.5k < 1, (4.4)

then for any η ≥ ǫ, the minimizer β̂ to the problem

min ‖γ‖1 subject to ‖y − Fγ‖2 ≤ η

obeys

‖β̂ − β‖2 ≤ C(η + ǫ) (4.5)

with C =
√

2(1+δ1.5k)
1−δ1.5k−θk,1.5k

.

Proof of Theorem 4.2 . Notice that the condition η ≥ ǫ implies that ‖β̂‖1 ≤ ‖β‖1, so

we can use the first part of the proof of Theorem 3.2. The notation used here is the same

as that in the proof of Theorem 3.2.

First, we have

‖h0‖1 ≥
∑

i≥1

‖hi‖1,

and

‖h0 + h′
1‖2 ≤

|〈Fh, F (h0 + h′
1)〉|

‖h0 + h′
1‖2

(
1 − δ1.5k − θk,1.5k

) .

Note that ‖Fh‖2 = ‖F (β − β̂)‖2 ≤ ‖Fβ − y‖2 + ‖F β̂ − y‖2 ≤ η + ǫ.

So

‖β̂ − β‖2 ≤
√

2‖h0 + h′
1‖2

≤
√

2
‖Fh‖2‖F (h0 + h′

1)‖2

‖h0 + h′
1‖2

(
1 − δ1.5k − θk,1.5k

)

≤
√

2
(η + ǫ)(1 + δ1.5k)‖h0 + h′

1‖2

‖h0 + h′
1‖2

(
1 − δ1.5k − θk,1.5k

)

≤
√

2(η + ǫ)(1 + δ1.5k)

1 − δ1.5k − θk,1.5k

.

Remarks:

1. Candes, Romberg and Tao [3] showed that, if δ3k + 3δ4k < 2, then

‖β̂ − β‖2 ≤
4√

3 − 3δ4k −
√

1 + δ3k

ǫ.

13



(The η was set to be ǫ in [3].) Now suppose δ3k +3δ4k < 2. This implies δ3k + δ4k < 1

which yields δ2.4k + θ1.6k,2.4k < 1, since δ2.4k ≤ δ3k and θ1.6k,2.4k ≤ δ4k. It then follows

from Theorem 4.2 that, with η = ǫ,

‖β̂ − β‖2 ≤
2
√

2(1 + δ1.5k′)

1 − δ1.5k′ − θk′,1.5k′

ǫ

for all k′-sparse vector β where k′ = 1.6k. Therefore Theorem 4.2 improves the above

result in Candes, Romberg and Tao [3] by enlarging the support of β by 60%.

2. Similar to Theorems 3.2 and 4.1, we can have the estimation without assuming that

β̂ is k-sparse. In the general case, we have

‖β̂ − β‖2 ≤ C(η + ǫ) +
2
√

2θk,1.5k(1 − δ1.5k)

1 − δ1.5k − θk,1.5k
k− 1

2‖β−max(k)‖1.

Connections between RIP and MIP

In addition to the restricted isometry property (RIP), another commonly used condition

in the sparse recovery literature is the so-called mutual incoherence property (MIP). The

mutual incoherence property of F requires that the coherence bound

M = max
1≤i,j≤p,i6=j

|〈fi, fj〉| (4.6)

be small, where f1, f2, · · · , fp are the columns of F (fi’s are also assumed to be of length 1

in ℓ2-norm). Many interesting results on sparse recovery have been obtained by imposing

conditions on the coherence bound M and the sparsity k, see [8, 9, 11, 12, 14]. For example,

a recent paper, Donoho, Elad, and Temlyakov [8], proved that if β ∈ R
p is a k-sparse vector

and y = Fβ + z with ‖z‖2 ≤ ǫ, then for any η ≥ ǫ, the minimizer β̂ to the problem

min ‖γ‖1 subject to ‖y − Fγ‖2 ≤ η

satisfies

‖β̂ − β‖2 ≤ C(η + ǫ).

with C = 1√
1−M(4k−1)

, provided k ≤ 1+M
4M

.

We shall now establish some connections between the RIP and MIP and show that the

result of Donoho, Elad, and Temlyakov [8] can be improved under the RIP framework, by

using Theorem 4.2.

The following is a simple result that gives RIP constants from MIP.
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Proposition 4.1 Let M be the coherence bound for F . Then

δk ≤ (k − 1)M, and θk,k′ ≤
√

kk′M. (4.7)

Proof of Proposition 4.1 . Let c be a k-sparse vector. Without loss of generality, we

assume that supp(c) = {1, 2, · · · , k}. A direct calculation shows that

‖Fc‖2
2 =

k∑

i,j=1

〈fi, fj〉cicj = ‖c‖2
2 +

∑

1≤i,j≤k,i6=j

〈fi, fj〉cicj .

Now let us bound the second term. Note that

∣
∣

∑

1≤i,j≤k,i6=j

〈fi, fj〉cicj

∣
∣ ≤ M

∑

1≤i,j≤k,i6=j

|cicj|

≤ M(k − 1)
k∑

i=1

|ci|2 = M(k − 1)‖c‖2
2.

These give us

(1 − (k − 1)M)‖c‖2
2 ≤ ‖Fc‖2

2 ≤ (1 + (k − 1)M)‖c‖2
2,

and hence

δk ≤ (k − 1)M.

For the second inequality, we notice that M = θ1,1. It then follows from Proposition 2.1

that

θk,k′ ≤
√

k′θk,1 ≤
√

kk′θ1,1 =
√

kk′M.

Now we are able to show the following result.

Theorem 4.3 Suppose β ∈ R
p is a k-sparse vector and y = Fβ + z with z satisfying

‖z‖2 ≤ ǫ. Let kM = t. If t < 2+2M
3+

√
6

(or, equivalently, k < 2+2M
(3+

√
6)M

), then for any η ≥ ǫ,

the minimizer β̂ to the problem

min ‖γ‖1 subject to ‖y − Fγ‖2 ≤ η

obeys

‖β̂ − β‖2 ≤ C(η + ǫ). (4.8)

with C =
√

2(2+3t−2M)

2+2M−(3+
√

6)t
.
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Proof of Theorem 4.3 . It follows from Proposition 4.1 that

δ1.5k + θk,1.5k ≤ (1.5k +
√

1.5k − 1)M = (1.5 +
√

1.5)t − M.

Since t < 2+2M
3+

√
6
, the condition δ1.5k + θk,1.5k < 1 holds. By Theorem 4.2,

‖β̂ − β‖2 ≤
√

2(1 + δ1.5k)

1 − δ1.5k − θk,1.5k

(η + ǫ)

≤
√

2(1 + (1.5k − 1)M)

1 + M − (1.5 +
√

1.5)t
(η + ǫ)

=

√
2(2 + 3t − 2M)

2 + 2M − (3 +
√

6)t
(η + ǫ).

Remarks. In this theorem, the result of Donoho, Elad and Temlyakov [8] is improved in

the following ways.

1. The sparsity k is relaxed from k < 1+M
4M

to k < 2+2M
3+

√
6M

≈ 1.471+M
4M

. So roughly

speaking, Theorem 4.3 improves the result in Donoho, Elad and Temlyakov [8] by

enlarging the support of β by 47%.

2. It is clear that larger t is preferred. Since M is usually very small, the bound C is

tightened from C = 1√
1+M−4t

to C =
√

2(2+3t−2M)

2+2M−(3+
√

6)t
, as t is close to 1

4
.

5 Recovery of Sparse Signals in Gaussian Noise

We now turn to the case where the noise is Gaussian. Suppose we observe

y = Fβ + z, z ∼ N(0, σ2In) (5.1)

and wish to recover β from y and F . We assume that σ is known and that the columns

of F are standardized to have unit ℓ2 norm. This is a case of significant interesting,

in particular in statistics. Many methods, including the Lasso (Tibshirani [13]), LARS

(Efron, Hastie, Johnstone and Tibshirani [10]) and Dantzig selector (Candes and Tao [5]),

have been introduced and studied.

The following results show that, with large probability, the Gaussian noise z belongs to

bounded sets.

Lemma 1 The Gaussian error z ∼ N(0, σ2In) satisfies

P
(

‖F T z‖∞ ≤ σ
√

2 log p
)

≥ 1 − 1

2
√

π log p
(5.2)
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and

P

(

‖z‖2 ≤ σ

√

n + 2
√

n log n

)

≥ 1 − 1

n
. (5.3)

Inequality (5.2) follows from standard probability calculations and inequality (5.3) is proved

in the Appendix.

Lemma 1 suggests that one can apply the results obtained in the previous section for the

bounded error case to solve the Gaussian noise problem. Candes and Tao [5] introduced the

Dantzig selector for sparse recovery in the Gaussian noise setting. Given the observations

in (5.1), the Dantzig selector β̂DS is the minimizer of

(DS) min
γ∈Rp

‖γ‖1 subject to ‖F T
(
y − Fγ

)
‖∞ ≤ λp (5.4)

where λp = σ
√

2 log p.

In the classical linear regression problem when p ≤ n the least squares estimator is the

solution to the normal equation

F Ty = F TFβ. (5.5)

The constraint ‖F T (y − Fβ)‖∞ ≤ λp in the convex program (DS) can thus be viewed as a

relaxation of the normal equation (5.5). And similar to the noiseless case ℓ1 minimization

leads to the “sparsest” solution over the space of all feasible solutions.

Candes and Tao [5] showed the following result.

Theorem 5.1 (Candes and Tao [5]) Suppose β ∈ R
p is a k-sparse vector obeying

δ2k + θk,2k < 1.

Choose λp = σ
√

2 log p in (1.5). Then with large probability, the Dantzig selector β̂ obeys

‖β̂ − β‖2 ≤ C1σ
√

k
√

2 log p, (5.6)

with C1 = 4
1−δk−θk,2k

1.

Another commonly used method in statistics is the Lasso which solves the ℓ1 regular-

ized least squares problem (1.4). This is equivalent to the ℓ2-constrained ℓ1 minimization

problem (P1). In the Gaussian error case, we shall consider a particular setting. Let β̂ℓ2

be the minimizer of

min
γ∈Rp

‖γ‖1 subject to ‖y − Fγ‖2 ≤ ǫn (5.7)

1It appears that the constant C1 in Candes and Tao [5] should be C1 = 4/(1 − δ2k − θk,2k).
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where ǫn = σ
√

n + 2
√

n log n.

Combining our results from the last section together with Lemma 1, we have the follow-

ing results on the Dantzig selector β̂DS and the estimator β̂ℓ2 obtained from ℓ1 minimization

under the ℓ2 constraint. Again, these results improve the previous results in the literature

by weakening the conditions and providing more precise bounds.

Theorem 5.2 Suppose β ∈ R
p is a k-sparse vector and the matrix F satisfies

δ1.5k + θk,1.5k < 1.

Then with probability P ≥ 1 − 1
2
√

π log p
, the Dantzig selector β̂DS obeys

‖β̂DS − β‖2 ≤ C1σ
√

k
√

2 log p, (5.8)

with C1 = 2
√

3
1−δ1.5k−θk,1.5k

, and with probability at least 1 − 1
n
, β̂ℓ2 obeys

‖β̂ℓ2 − β‖2 ≤ D1σ

√

n + 2
√

n log n (5.9)

with D1 = 2
√

2(1+δ1.5k)
1−δ1.5k−θk,1.5k

.

Remark: Similar to the results obtained in the previous sections, if β is not necessarily

k-sparse, in general we have, with probability P ≥ 1 − 1
2
√

π log p
,

‖β̂DS − β‖2 ≤ C1σ
√

k
√

2 log p + C2k
− 1

2‖β−max(k)‖1.

where C1 = 2
√

3
1−δ1.5k−θk,1.5k

and C2 = 2
√

2(1−δ1.5k)
1−δ1.5k−θk,1.5k

, and with probability P ≥ 1 − 1
n
,

‖β̂ℓ2 − β‖2 ≤ D1σ

√

n + 2
√

n log n + D2k
− 1

2‖β−max(k)‖1

where D1 = 2
√

2(1+δ1.5k)
1−δ1.5k−θk,1.5k

and D2 =
2
√

2θk,1.5k(1−δ1.5k)

1−δ1.5k−θk,1.5k
.

6 Appendix

Proof of Proposition 2.3. Let

Λ =
(
(a1 + · · ·+ aw) + 2(aw+1 + · · ·+ a2w) + (a2w+1 + · · · + a3w)

)2

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6.
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Where each Λi is given (and bounded) by

Λ1 =
(
a1 + a2 + · · ·+ aw

)2

≥ a2
1 + 3a2

2 + · · ·+ (2w − 1)a2
w

Λ2 = 4
(
aw+1 + aw+2 + · · ·+ a2w

)2

≥ 4
(
a2

w+1 + 3a2
w+2 + · · ·+ (2w − 1)a2

2w

)

Λ3 =
(
a2w+1 + a2w+2 + · · ·+ a3w

)2

≥ a2
2w+1 + 3a2

2w+2 + · · ·+ (2w − 1)a2
3w

Λ4 = 4
(
a1 + a2 + · · · + aw

)(
aw+1 + aw+2 + · · ·+ a2w

)

≥ 4w
(
a2

w+1 + a2
w+2 + · · · + a2

2w

)

Λ5 = 2
(
a1 + a2 + · · · + aw

)(
a2w+1 + a2w+2 + · · ·+ a3w

)

≥ 2w
(
a2

2w+1 + a2
2w+2 + · · ·+ a2

3w

)

Λ6 = 4
(
aw+1 + aw+2 + · · ·+ a2w

)(
a2w+1 + a2w+2 + · · ·+ a3w

)

≥ 4w
(
a2

2w+1 + a2
2w+2 + · · ·+ a2

3w

)
.

Without loss of generality, we assume that w is even. Write

Λ2 = Λ21 + Λ22,

where

Λ21 = 4
(
a2

w+1 + 3a2
w+2 + · · ·+ (w − 1)a2

w+ w
2

+ wa2
w+ w

2
+1 + wa2

w+ w
2

+2 + · · ·+ wa2
2w

)
,

and

Λ22 = 4
(
a2

w+ w
2
+1 + 3a2

w+ w
2

+2 · · ·+ (w − 1)a2
2w

)
≥ w2a2

2w

= (2w − 1)a2
2w + (2w − 3)a2

2w + · · · + 3a2
2w + · · ·+ a2

2w.

Now

Λ3 + Λ5 + Λ6 + Λ22 ≥ 6(w + 1)a2
2w+1 + (6w + 3)a2

2w+2 + · · ·+ (8w − 1)a2
3w

+(2w − 1)a2
2w + (2w − 3)a2

2w + · · · + 3a2
2w + · · ·+ a2

2w

≥ 6(w + 1)a2
2w+1 + (6w + 3)a2

2w+2 + · · ·+ (8w − 1)a2
3w

+(2w − 1)a2
2w+1 + (2w − 3)a2

2w+2 + · · ·+ 3a2
3w−1 + a2

3w

≥ 8w
(
a2

2w+1 + a2
2w+3 + · · ·+ a2

3w−1 + a2
3w

)
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and

Λ1 + Λ21 + Λ4 ≥ a2
1 + 3a2

2 + · · ·+ (2w − 1)a2
w

+4
(
a2

w+1 + 3a2
w+2 + · · · + (w − 1)aw+ w

2

+wa2
w+ w

2
+1 + wa2

w+ w
2

+2 + · · · + wa2
2w

)

+4w
(
a2

w+1 + a2
w+2 + · · ·+ a2

2w

)

≥ w2a2
w + 4(w + 1)a2

w+1 + 4(w + 3)a2
w+2 + · · · 4(2w − 1)a2

w+ w
2

+8wa2
w+ w

2
+1 + 8wa2

w+ w
2
+2 + · · ·+ 8wa2

2w

≥

w
2

terms
︷ ︸︸ ︷

4(w − 1)a2
w + 4(w − 3)a2

w + · · · + 4a2
w

+4(w + 1)a2
w+1 + 4(w + 3)a2

w+2 + · · · 4(2w − 1)a2
w+ w

2

+8wa2
w+ w

2
+1 + 8wa2

w+ w
2
+2 + · · ·+ 8wa2

2w

≥ 8w
(
a2

w+1 + a2
w+3 + · · · + a2

2w−1 + a2
2w

)
.

Therefore

Λ ≥ 8w
(
a2

w+1 + a2
w+3 + · · ·+ +a2

2w + a2
2w+1 + · · ·+ +a2

3w

)
,

and the inequality is proved.

Proof of Lemma 1. The first inequality is standard. We now prove inequality (5.3).

Note that X = ‖z‖2
2/σ

2 is a χ2
n random variable. It follows from Lemma 4 in Cai [1] that

for any λ > 0

P (X > (1 + λ)n) ≤ 1

λ
√

πn
exp{−n

2
(λ − log(1 + λ))}.

Hence,

P

(

‖z‖2 ≤ σ

√

n + 2
√

n log n

)

= 1−P (X > (1+λ)n) ≥ 1− 1

λ
√

πn
exp{−n

2
(λ−log(1+λ))}

where λ = 2
√

n−1 log n. It now follows from the fact log(1 + λ) ≤ λ − 1
2
λ2 + 1

3
λ3 that

P

(

‖z‖2 ≤ σ

√

n + 2
√

n log n

)

≥ 1 − 1

n
· 1

2
√

π log n
exp{4(log n)3/2

3
√

n
}.

Inequality (5.3) now follows by verifying directly that 1
2
√

π log n
exp(4(log n)3/2

3
√

n
) ≤ 1 for all

n ≥ 2.
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