View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

University of Pennsylvania

UNIVERSITY of PEN? ; Scholarlycommons
Statistics Papers Wharton Faculty Research
7-2013

Robust Estimation of Latent Tree Graphical

Models: Inferring Hidden States With Inexact
Parameters

Flchanan Mossel

University of Pennsylvania

Sébastien Roch

Allan Sly

Follow this and additional works at: http://repositoryupenn.edu/statistics papers

b Part of the Biology Commons, Computer Sciences Commons, and the Statistics and Probability

Commons

Recommended Citation

Mossel, E., Roch, S., & Sly, A. (2013). Robust Estimation of Latent Tree Graphical Models: Inferring Hidden States With Inexact
Parameters. IEEE Transactions on Information Theory, 59 (7), 4357-4373. http://dx.doi.org/10.1109/TIT.2013.2251927

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/384

For more information, please contact repository@pobox.upenn.edu.


https://core.ac.uk/display/132271796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fstatistics_papers%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/TIT.2013.2251927
http://repository.upenn.edu/statistics_papers/384
mailto:repository@pobox.upenn.edu

Robust Estimation of Latent Tree Graphical Models: Inferring Hidden
States With Inexact Parameters

Abstract

Latent tree graphical models are widely used in computational biology, signal and image processing, and
network tomography. Here, we design a new efficient, estimation procedure for latent tree models, including
Gaussian and discrete, reversible models, that significantly improves on previous sample requirement bounds.
Our techniques are based on a new hidden state estimator that is robust to inaccuracies in estimated
parameters. More precisely, we prove that latent tree models can be estimated with high probability in the so-
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Abstract

Latent tree graphical models are widely used in computational biology,
signal and image processing, and network tomography. Here we design a
new efficient, estimation procedure for latent tree models, including Gaus-
sian and discrete, reversible models, that significantly improves on previous
sample requirement bounds. Our techniques are based on a new hidden state
estimator which is robust to inaccuracies in estimated parameters. More pre-
cisely, we prove that latent tree models can be estimated with high probabil-
ity in the so-called Kesten-Stigum regime wit{log® n) samples.

Keywords: Gaussian graphical models on trees, Markov random fields on
trees, phase transitions, Kesten-Stigum reconstruction bound
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1 Introduction

Background Latent tree graphical models and other related models hese b
widely studied in mathematical statistics, machine leagnsignal and image pro-
cessing, network tomography, computational biology, aatistical physics. See
e.g. [And58, KF09, Wil02, CCL04, SS03, EKPS00] and references therein. For
instance, in phylogenetics [Fel04], one seeks to recocistine evolutionary his-
tory of living organisms from molecular data extracted froradern species. The
assumption is that molecular data consists of aligned seggeand that each po-
sition in the sequences evolves independently accordiadvtarkov random field

on a tree, where the key parameters are (see Section 1.Irfiealfdefinitions):

e Tree.An evolutionary tre€l’, where the leaves are the modern species and
each branching represents a past speciation event.

e Rate matrix.A ¢ x ¢ mutation rate matrix), whereq is the alphabet size.
A typical alphabet arising in biology would Be\, C, G, T}. Without loss
of generality, here we denote the alphabeidy= {1, ...,q}. The(i, j)'th
entry of Q encodes the rate at which statautates into statg. We normal-
ize the matrix() so that its spectral gap is

e Edge weights.For each edge, we have a scalar branch lengthwhich
measures the total amount of evolution along edge(We use edge or
branch interchangeably.) Roughly speakings the time elapsed between
the end points ot. (In fact the time is multiplied by an edge-dependent
overall mutation rate because of our normalizatioid)of We also think of
7. as the “evolutionary distance” between the end points of

Other applications, including those involving Gaussiardeis (see Section 1.1),
are similarly defined. Two statistical problems naturaligain this context:

e Tree Model Estimation (TMEivenk samples of the above process at the
observed nodes, that is, at the leaves of the tree, estimatipology of
the tree as well as the edge weights.

e Hidden State Inference (HSGiven a fully specified tree model and a single
sample at the observed nodes, infer the state at the (unvelddeoot of the
tree.

In recent years, a convergence of techniques from statigtitysics and theoret-
ical computer science has provided fruitful new insightgtedeep connections
between these two problems, starting with [Mos04].
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Steel’'s Conjecture A crucial parameter in the second problem abovei@’) =
max, 7., the maximal edge weight in the tree. For instance, for tleedtate sym-
metric () also known as the Ising model, it is known that there existsatecal
parameter;,s = In+/2 such that, ifr*(T) < g, then it is possible to perform
HSI (better than random; see the Section 2.5 for additioe@il$). In contrast, if
7H(T) > grs, there exist trees for which HSI is impossible, that is, therela-
tion between the best root estimate and its true value deog@nentially in the
depth of the tree. The regime (T') < gjs is known as the Kesten-Stigum (KS)
regime [KS66].

A striking and insightful conjecture of Steel postulateseepl connection be-
tween TME and HSI [Ste01]. More specifically the conjectuiaes that for
the Ising model, in the KS regime, high-probability TME maydchieved with a
number of samples = O(logn). Since the number of trees arlabelled leaves is
20(nlogn) “this is an optimal sample requirement up to constant facifine proof
of Steel’s conjecture was established in [Mos04] for thedsnodel on balanced
trees and in [DMR11a] for rate matrices on trees with digceglge lengths. Fur-
thermore, results of Mossel [M0os03, Mos04] show thatfo(T") > giq @ poly-
nomial sample requirement is needed for correct TME, a reqent achieved by
several estimation algorithms [ESSW99a, Mos04, Mos07, G8®PMR11b].
The previous results have been extended to general relee€sibn alphabets of
sizeq > 2 [Rocl0, MRS11]. (Note that in that case a more general totdsh
g5, may be defined, although little rigorous work has been deelicto its study.
See [Mos01, Sly09, MRS11]. In this paper we consider onlyjkBeaegime.)

Our contributions  Prior results for general trees and general rate magrix
when7"(T) < gks, have assumed that edge weights are discretized. This as-
sumption is required to avoid dealing with the sensitivityaot-state inference

to inexact (that is, estimated) parameters. Here we desiggwaHSI procedure

in the KS regime which is provably robust to inaccuraciehimparameters (and,
in particular, does not rely on the discretization assuam)tiMore precisely, we
prove thatO(log® n) samples suffice to solve the TME and HSI problems in the
KS regime without discretization. We consider two modelsi@tail: discrete,
reversible Markov random fields (also known as GTR modelyatugionary bi-
ology), and Gaussian models. As far as we know, Gaussian Immbdge not
previously been studied in the context of the HSI phase ititans (We derive the
critical threshold for Gaussian models in Section 2.5.)nkarstatements of our
results can be found in Section 1.2. Section 1.3 provideg&klof the proof.



Further related work  For further related work on sample requirements in tree
graphical model estimation, see [ESSW99b, MR0O6, TAW10,WAT, CTAW11,
TAW11, BRR10].

1.1 Definitions

Trees and metrics. Let 7" = (V, E) be a tree with leaf se€i], where[n] =
{1,...,n}. Fortwo leaves, b € [n], we denote by’ («a, b) the set of edges on the
unique path betweemandb. For a node) € V, let N(v) be the neighbors af.

Definition 1 (Tree Metric) A tree metricon [n] is a positive functioD : [n] x
[n] — (0,+00) such that there exists a trée = (V, F) with leaf setjn| and an
edge weight functiom : £ — (0, +o00) satisfying the following: for all leaves
a,b € [n]

In this work, we consider dyadic trees. Our techniques caexended to com-
plete trees of higher degree. We discuss general trees goti@uding remarks.

Definition 2 (Balanced tree) A balanced treés a rooted, edge-weighted, leaf-
labeledh-level dyadic tre€] = (V, E, [n],r;7) where:h > 0 is an integer;V is
the set of vertices is the set of edgeq; = [n] = {1,...,n} is the set of leaves
with n = 2"; r is the root;7 : E — (0, +00) is a positive edge weight function.
We denote byr(a,b)), e, the tree metric corresponding to the balanced tree
T = (V,E,[n],r;7). We extend (u, v) to all verticesu,v € V. We letBY,, be
the set of all such balanced trees eheaves and we 188Y = {BY,: },>o.

Markov random fields on trees. We consider Markov models on trees where
only the leaf variables are observed. The following dissitaite model is stan-
dard in evolutionary biology. See e.g. [SS03]. ket 2. Let[¢] be a state set and
7 be a distribution orly] satisfyingr, > 0 for all x € [¢]. Theg x ¢ matrix@ is a
rate matrixif ., > 0 forallz # y and}_ . Q. = 0, forallz € [¢]. The rate
matrix () is reversible with respect to if 7,Q., = 7,Q,., forall z,y € [¢]. By
reversibility,) hasq real eigenvalue8 = \; > A\, > --- > \,. We normalize?)

by fixing A\ = —1. We denote by), the set of all such rate matrices.

Definition 3 (General Time-Reversible (GTR) Model) For n > 1, let

T=(V,E,[n],r;T)
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be a balanced tree. L&D be aq x ¢ rate matrix reversible with respect to.
Define the transition matriced/¢ = ¢™“, for all e € E. The GTR model offr
with rate matrix() associates a statg, in [¢| to each vertex in V' as follows:
pick a state for the root according tor; moving away from the root, choose a
state for each vertex independently according to the distributiQn/s, ;);c(q,
with e = (u,v) whereu is the parent ob. We 1etGTR,, , be the set of alj-state
GTR models on leaves. We deno®TR, = {GTR ,}, . We denote by,
the vector of states on the vertices C V. In particular, Z},,; are the states at the
leaves. We denote @y the distribution ofZ,,;.

GTR models encompass several special cases such as thel@akarris-Neyman
(CEN) model and the Jukes-Cantor (JC) model.

Example 1 (g-state Symmetric Model) Theg-state Symmetric modéhlso call-
ed ¢-state Potts model) is the GTR model wjth> 2 states,r = (1/¢q,...,1/q),
and@Q = Q4 FOTTS where

q—1

g-porrs ) —io ifi=]
@ R 0.W.
y W,

Note that\,(()) = —1. The special cases= 2 andq = 4 are called respectively
the CFN and JC models in the biology literature. We denote tiage matrices

by QCFN QJC.

A natural generalization of the CFN model which is also ideld in the GTR
framework is the Binary Asymmetric Channel.

Example 2 (Binary Asymmetric Channel) Lettingg = 2 and 7 = (7, m),
with 7, 5 > 0, we can take

. —Ty T2
-(7 %)
The following transformation will be useful [MP03]. Letbe a right eigenvector
of the GTR matrix?) corresponding to the eigenvalud. Map the state space to
the real line by defining(, = v, for all z € [n].
We also consider Gaussian Markov Random Fields on Trees (@ R5aus-

sian graphical models, including Gaussian tree modelss@remon in statistics,
machine learning as well as signal and image processinge.§dé&nd58, Wil02].



Definition 4 (Gaussian Markov Random Field on a Tree (GMRFT)) For n >

1, letT = (V, E,[n],r;7) be a balanced tree. A GMRFT dhis a multivariate
Gaussian vectoX = (X, ),c Whose covariance matriX = (2,,), e With

inverseA = ¥ ! satisfies

(u,v) ¢ E,u#v = Ay =0.

We assume that only the states at the leaVgsare observed. To ensure identi-
fiability (that is, to ensure that two different sets of paeders generate different
distributions at the leaves), we assume that all internaleshave zero mean and
unit variance and that all non-leaf edges correspond to amegative correlation.
Indeed shifting and scaling the states at the internal natbess not affect the leaf
distribution. For convenience, we extend this assumptideaves and leaf edges.
With the choice
Youw = H Pe; U,V E ‘/7

e€P(u,v)

wherep, = e~ 7, for all e € E, a direct calculation shows that

2
Plv,w) ¥
L+ enw) - if u=wu,

A = Lluy) if (U, U) ek,

- 2
1=Pu0)’
0, 0.W.

(Note that, in computing=A),, with u # v, the produc [ ., .,y pe factors out,
wherew € N(v) with (w,v) € P(u,v).) In particular, {—1log 3., |}uvefn) IS @
tree metric. We denote @y 5, the distribution ofX[,,;. We letGMRFT,, be the
set of all GMRFT models omleaves. We deno@MRFT = {GMRFTqx }, <.

Remark 1 Our techniques extend to cases where leaves and leaf edgegéa-
eral means and covariances. We leave the details to the reade

Equivalently, in a formulation closer to that of the GTR mbdbove, one can
think of a GMRFT model as picking a root value according tcamdard Gaussian
distribution and running independent Ornstein-Uhlenh@odkcesses on the edges.

Both the GTR and GMRFT models agéobally Markov for all disjoint sub-
setsA, B, C of V such thatB separatesd andC, that is, all paths betweeA
and C go through a node iB, we have that the states dtare conditionally
independent of the states@tgiven the states a8.
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1.2 Results

Our main results are the following. We are giveni.d. samples from a GMRFT
or GTR model and we seek to estimate the tree structure withdgprobability
going to 0 as the number of leaves goes to infinity. We also estimate edge
weights within constant tolerance.

Theorem 1 (Main Result: GMRFT Models) Let0 < f < g < 400 and denote
by GMRFT/* the set of all GMRFT models on balanced tri§es- (V, E, [n],r; T)
satisfyingf < 7. < g, Ve € E. Then, forall0 < f < g < gikg = InV/2, the
tree structure estimation problem @&MRFT/*¢ can be solved witly = xlog?n
samples, where = (f,g) > 0 is large enough. Moreover all edge weights are
estimated within constant tolerance.

This result is sharp as we prove the following negative tesestablishing the
equivalence of the TME and HSI thresholds.

Theorem 2 If 0 < f < g with g > gig = In /2, then the tree structure estima-
tion problem orlGMRFT/*¢ cannot, in general, be solved without at le&st n”
samples, where = ~(f, g) > 0.

The proof of the theorem is in Section 2.

Theorem 3 (Main Result: GTR Models) Let0 < f < g < +oo and denote by
GTR{?Q the set of allj-state GTR models on balanced trées= (V, E, [n], r; T)
satisfyingf < 7. < g, Ve € E. Then, forallg > 2,0 < f < g < g = In/2,
the tree structure estimation problem @TR{P can be solved with = xlog®n
samples, where = «(q, f,g) > 0 is large enough. Moreover all edge weights
are estimated within constant tolerance.

The proof of this theorem is similar to that of Theorem 1. Hegredealing with
unknown rate matrices requires some care and the full pfdbeanodified algo-
rithm in that case can be found in Section 3.

Remark 2 Our techniques extend tbary trees for general (constant)> 2. In
that case, the critical threshold satisfigs 2" = 1. We leave the details to the
reader.



1.3 Proof Overview

We give a sketch of the proof of our main result. We discussctse of GTR
models with known matrix. The unknowr) matrix and Gaussian cases are
similar. See Sections 2 and 3 for details. Igéfn])le be i.i.d. samples from a
GTR model on a balanced tree witHeaves. Le{ 7 ) be a generic sample from
the GTR model.

Boosted algorithm As a starting point, our algorithm uses the reconstruction
framework of [Mos04]. This basic “boosting” approach is fald:

e Initial Step. Build the first level of the tree from the samples at the leaves
This can be done easily by standard quartet-based teclmiq@ee Sec-
tion 2.2.)

e Main Loop.Repeat the following two steps until the tree is built:

1. HSI.Infer hidden states at the roots of the reconstructed sefhtre

2. One-level TMEUse the hidden state estimates from the previous step
to build the next level of the tree using quartet-based teglas.

The heart of the procedure is Step 1. Note that, assumingleaehis correctly
reconstructed, the HSI problem in Step 1 is performed on aknoorrect topol-
ogy. However the edge weights are unknown and need to beatstinfrom the
samples at the leaves.

This leads to the key technical issue addressed in this p@g#grough HSI
with known topology and edge weights is well understoodgast in the so-called
Kesten-Stigum (KS) regime [MPO03]), little work has consetiethe effect of inex-
act parameters on hidden state estimation, with the notdoieption of [Mos04]
where a parameter-free estimator is developed for the Isiadel. The issue
was averted in prior work on GTR models by assuming that edgights are
discretized, allowing exact estimation [DMR11a, Roc10].

Quartet-based tree structure and edge weight estimatiea om the following
distance estimator. It is natural to use a distance estmratolving the eigenvec-
tors of ). Letr be a second right eigenvector of the GTR mafpigorresponding
to the eigenvalue-1. Fora € V and: = 1,...,k, map the samples to the real
line by definingX, = ;. Then define

k
#(a,b) = —In (% ZX3X5> . (1)
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It can be shown that: For all,b € V, we have—InE[e "@Y] = 7(a,b).
Note that, in our case, this estimate is only available forspaf leaves More-
over, it is known that the quality of this estimate degradeiskdy as(a, b) in-
creases [ESSW99a, Att99]. To obtain accuraayn ar distance with inverse
polynomial failure probability requires

k> Cie 2% logn (2)

samples, wheré’;, C, are constants. We use HSI to replace #is in (1) with
approximations of hidden states in order to improve the @ayuof the distance
estimator betweemternal nodes.

Weighted majority  For the symmetric CFN model with state spdeel, —1},
hidden states can be inferred using a linear combinatidmec$tates at the leaves—
a type of weighted majority vote. A natural generalizatidihis linear estimator
in the context of more general mutation matrices was studiefMP03]. The
estimator at the root considered in [MPO3] is of the form

5= (%) X.. ©
x€[n]
whereV is a unit flow betweem and[n]. For any suchl, S, is a conditionally
unbiased estimator of,, that is,E[S, | X,,] = X,.. Moreover, in the KS regime,
that is, whenr™ < gjg, one can choose a flow such that the variancé,ois
uniformly bounded [MP03] and, in fact, we have the followstgonger moment
condition
Elexp(¢S,)|X,] < exp(¢X, + c¢?)

for all ¢ € R [PR11]. In [Roc10] this estimator was used in Step 1 of thesbemb
algorithm. On a balanced tree withgn levels, obtaining sufficiently accurate
estimates of the coefficients in (3) requires accuratf(log(n)) on the edge
weights. By (2), such accuracy require®fog® n) sequence length. Using mis-
specified edge weights in (3) may lead to a highly biased estirand generally
may fail to give a good reconstruction at the root. Here weéeaghaccurate hidden
state estimation using onty(log® n) samples.

Recursive estimator We propose to construct an estimator of the formré3)
cursively Forz € V with childreny,, y, we let

Sy = Wy, Sy; + Wy, Sy (4)

8



and choose the coefficients, , w,, to guarantee the following conditions:

e We have
E[S, | Z.] = B(z) X,,

with a bias termB(x) close to 1.

e The estimator satisfies the exponential moment condition

Elexp(CS,)|Zs] < exp(CX, + C?).

We show that these conditions can be guaranteed providechdidel is in the
KS regime. To do so, the procedure measures the bias 8B(ms$ and 5(y-)
using methods similar to distance estimation. By testirglias and, if neces-
sary, compensating for any previously introduced errorcareadaptively choose
coefficientsv, wo SO thatS, satisfies these two conditions.

Unknown rate matrix Further complications arise when the matéixis not
given and has to be estimated from the data. We give a proeédurecovering

@ and an estimate of its second right eigenvector. Probleaibti any estimate

of v may have a small component in the direction of the first rigigievector of

Q. Since the latter has eigenvaliigts component builds up over many recursions
and it eventually overwhelms the signal. However, we makeofithe fact that the
first right eigenvector is identically 1: by subtractingi®, its empirical mean,
we show that we can cancel the effect of the first eigenvedfdgith a careful
analysis, this improved procedure leads to an accurat@asir.

2 Gaussian Model

In this section, we prove our main theorem in the Gaussiae.cafe proof is
based on a new hidden state estimator which is describeddtio8e2.1. For
n = 2" withh, > 0, let T = (V, E,[n],7;7) be a balanced tree. We assume
that0 < 7, < g, Ve € E, with0 < g < giks = In/2. The significance of
the thresholdyy is explained in Section 2.5 where we also prove Theorem 2.
We generaté i.i.d. samples(an})f’:1 from the GMRFT modeD 5, wherek =
rlog® n.

Our construction is recursive, building the tree and edimgahidden states
one level at a time. To avoid unwanted correlations, we useshfblock of
samples for each level. Lé&f = xlogn be the size of each block.

9



2.1 Recursive Linear Estimator

The main tool in our reconstruction algorithm is a new hiddéate estimator.
This estimator is recursive, that is, for a nadecz V' it is constructed from es-
timators for its childreny, z. In this subsection, we leXy, be a generic sample
from the GMRFT independent of everything else. We(mn])fil be a block of

independent samples at the leaves. For a nodel/, we let |u] be the leaves
belowu and X, the corresponding state.

Linear estimator We build alinear estimator for each of the vertices recursively
from the leaves. Let € V' — [n] with children (direct descendantg), y,. As-
sume that the topology of the tree rooted dtas been correctly reconstructed, as
detailed in Section 2.2. Assume further that we have cocgtdlinear estimators

Su = »Cu(XLuj)

of X, forallu € V belowxz. We use the convention that, (X ,|) = X, if uis
a leaf. We letZ,, be a linear combination of the form

Sy = Ex(XLxJ) = wy, Ly, (XLyﬂ) + wy, Ly, (X\_y2j)v ©))
where—ideally—theu’s are chosen so as to satisfy the following conditions:

1. Unbiasedness.The estimatorS, = £,(X|,) is conditionally unbiased
that is,
E[S, | X.] = X,.

2. Minimum Variance. The estimator has minimum variance amongst all
estimators of the form (5).

An estimator with these properties can be constructed gwxeawst knowledge of
the edge parameters, see Section 2.5. However, since tleepadgmeters can
only be estimated with constant accuracy given the sampkesgeed a procedure
that satisfies these conditions only approximately. Weeaehthis by 1) recur-
sively minimizing the variance at each level and 2) at theeséime measuring
the bias and adjusting for any deviation that may have actatedifrom previ-
ously estimated branch lengths.

10



Setup We describe the basic recursive step of our constructionabwe, let

x € V — [n] with childreny,, y, and corresponding edges = (z,y;),¢e2 =
(x,y2). Let0 < ¢ < 1 (small) ande > 1 (big) be constants to be defined later.
Assume that we have the following:

¢ Estimated edge weights for all edges belowx such that there is > 0
with
|T. — Te| < e. (6)

The choice ot and the procedure to obtain these estimates are described in
Section 2.3. We lef, = e~ ™.

e Linear estimatorg,, for all w € V belowx such that with
E[S, | X.] = B(w) X, (7)
whereS, = L,(X|y)), for someB(u) > 0 with |B(u) — 1| < 6 and
V(u) = Var[$,] < c. (8)

Note that these conditions are satisfied at the leaves. dnéte: € [n] one
hasS, = X, and therefor&[S, | X,,] = X, andV(u) = Var[X,] = 1. We
denotef(u) = — In B(u).

We now seek to construét, so that it in turn satisfies the same conditions.

Remark 3 In this subsection, we are treating the estimated edge wsighd
linear estimator coefficients as deterministic. In faceytare random variables
depending on sample blocks used on prior recurrence levetgHn particular
they are independent df,, and of the block of samples used on the current level.

Procedure Given the previous setup, we choose the weights o = 1,2, as
follows. Foru,v € V belowz and/ =1, ..., K let

and define
1 K
. _ _1 - 0
7(u,v) n (K ; Su5v> ,
the estimated path length betweeandv including bias. We leB(u) = — In B(u).

11



1. Estimating the Biases.If y;, 1, are leaves, we Ieﬁ(ya) =0,a =12
Otherwise, letsy, 299 be the children ofj,. We then compute

1

5(%@1, 201) + T(y1, 222) — T(221, 292) — 2T, — 2T€3),

B\(yl) -
and similarly forys. Let B(y,) = e=2), o = 1,2.
2. Minimizing the Variance. Fora = 1,2 we setw,,, w,, as
B(ya)Pe
B(y1)*7%, + Blua)*i,

which corresponds to the solution of the following optintiaa problem:

9)

Ya

min{w§1 + Wig : wle(yl)ﬁel + wy28<y2)ﬁ62 =1, Wy, Wy, > O}- (10)

The constraint in the optimization above is meant to enshee the bias
condition (7) is satisfied. We set

Lo(X ) = wy Ly (X)) + Wy Ly (X))
Bias and Variance We now prove (7) and (8) recursively assuming (6) is satis-
fied. This follows from the following propositions.

Proposition 1 (Concentration of Internal Distance Estimags) For all ¢ > 0,
v>0,0<d < landc > 0, there isk = k(e,v,0,¢) > 0 such that, with
probability at leastl — O(n~"), we have

|17 (u,v) — (7(u,v) + Bu) + B(v))| <e,
for all u,v € {y1, Y2, 211, 212, 221, 202} Wherez,;, z,2 are the children ofy,,.

Proof: First note that

K
%Z&‘;Sﬁ] ~ E[5,5)
/=1

E[E 505 | Xu, Xu]]

= E[E[Su|X]E[S,[X,]
E [B(u)B(v) Xy X,]

= B(u)B(v)Xuw,

12



where we used the Markov property on the third line, so that

_m<

Moreover, by assumptior,, is Gaussian with

ZSWD = 7(u,v) + B(u) + B(v).

E[S.,] =0, Var[S,]=V(u) <c,

and similarly foru. It is well-known that in the Gaussian case empirical covari
ance estimates as above havetype distributions [And58]. Explicitly, note that
from

1
SuSy = 5[(Su +8,)* — 82— 52,
it suffices to consider the concentration%yf, 5%, and(S, + S,)?. Note that
Var[S, + S,] = V(u) + V(v) + 2B(u)B(v)Sy, < 2¢+ 2(1 + )% < +oo,

independently ofi. We argue abou$?, the other terms being similar. By defini-
tion, S2/V(u) has ay? distribution so that

E [6455] - m < +00, (11)

for |¢| small enough, independently of The proposition then follows from stan-
dard large-deviation bounds [Dur9d

Proposition 2 (Recursive Linear Estimator: Bias) For all 6 > 0, thereiss > 0
small enough so that, assuming that Proposition 1 holds,

E[S, | X.] = B(x)X,,
for someB(z) > 0 with |B(z) — 1] < 6.

Proof: We first show that the conditional biases/aty. are accurately estimated.
From Proposition 1, we have

|7 (221, 222) — (T(221, 222) + B(221) + B(222))] <,

13



and similarly for7 (yy, zo1) and7(y;, z22). Then from (6), we get

o~

28(p) = T(y1,221) + T(Wh, 202) — T(201, 202) — 27, — 27,
< (T(yrs 221) + B(yr) + B(221)) + (7(y1, 222) + B(y1) + B(222))
—(7(221, 222) + B(221) + B(222)) — 27, — 27, + T¢
= 2B(y1) + (7(y1, 221) + 7(y1, 202) — T(221, 222)) — 2(Tey + Te,) + 7€
= 2B(y1) + ([T7(y1, y2) + 7(Y2, 221)] + [T(y1, y2) + T(y2, 220)]
—[7 (221, 42) + 7(y2, 222)]) — 27(y1,y2) + Te
= 2B(y1) + Te,

where we used the additivity afon line 4. And similarly for the other direction
so that

-~

Blyr) — B < ;

The same inequality holds fgs.
Givenw,, , w,,, the bias at: is

E[S. | X.] = E[Wyl Sy + Wy Sy | X]
= Z waE[E[Sya | Xya7 X$]|X$]

a=1,2

= D W EES,, | X,.]1X,]

a=1,2
= Z waE[B(ya>Xya|XZE]
a=1,2

= (wle(yl)pfn + Wy2B(y2)pez)Xm
= B(x)X,,

where we used the Markov property on line 2 and the factihats Gaussian on
line 5. The last line is a definition. Note that by the ineqtyadibove we have

B(x) = wy,B(y1)pe, +wy,B(y2)pe,
= wyle_ﬁ(yl)pm + wyze_ﬁ(yz)pez

Wy e T (e 4 €) wy,e PO, 4 6)

(wy1B(yl)ﬁ61 + WyzB(y2)ﬁ62) + max{wyl,wm}O(g)
= 1+ max{wy,,w,, }0(e),

IN
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where the last line follows from the definition of,,. Takinge, § small enough,
from our previous bounds and equation (9), we can derivedhat= O(1), o =
1,2. In particular,B(x) = 1 + O(e) and, choosing small enough, it satisfies
|B(z) —1] <46. W

Proposition 3 (Recursive Linear Estimator: Variance) There exists > 0 large
enough and:, § > 0 small enough such that, assuming that Proposition 1 holds,
we have

V(z) = Var[S,] < c.

Proof: From (9),

p? p?

2 2 el €2

w +( ) — +

e ((,031 +02,)% (02, +02,)

)(1+0(5+5))

2) (14+0(e+9))

(pé + P2,
1
< —=(1+0(+9)) <1,
3,7r 0+ )
for e,§ > 0 small enough, wherg* = ¢~ so that2(p*)? > 1. Moreover,

Var[S,] = Var|wy, Sy, + wy,Sy,]

wjl\/ar[Syl] + wZQVar[SW] + wy, wy, B[Sy, Sy
(wy, + @y )e+ wywy, B(n) B(y2) S

(le + wi)c + Wy, Wy, (14 6)?

¢,

VAN VAR VAN

takingc large enoughill

2.2 Topology reconstruction

Propositions 2 and 3 rely on the knowing the topology betown this section,

we show how this is performed inductively. That is, we asstinectopology is
known up to leveD < A’ < h and that hidden state estimators have been derived
up to that level. We then construct the next level of the tree.

15



Quartet Reconstruction Let L, be the set of vertices ifv at level 2’ from

the leaves and le@ = {a,b,c,d} C L, be ad-tuple on levelh’. The topology

of T restricted toQ is completely characterized by a bipartitionguartet split

q of the form: ab|cd, ac|bd or ad|bc. The most basic operation in quartet-based
reconstruction algorithms is the inference of such quaéts. This is done by
performing afour-point test letting

Flabled) = 3 [r(a¢) + (b, ) ~ 7(a,) — 7(c, )],

we have

aclbd if F(a,b|c,d) <0

abled if F(a,b|c,d) >0
q —_=
ad|bc o.w.

Note however that we cannot estimate directly the vatdesc), 7(b, d), 7(a, b),
andr(c, d) for internal nodes, that is, wher > 0. Instead we use the internal
estimates described in Proposition 1.

Deep Four-Point Test Let D > 0. We let
-~ 1
F(ablcd) = 5[7‘(@, ¢)+7(b,d) — 7(a,b) — 7(c,d)],

and -
SD(S) = 1{7(x,y) < D, Vx,y € S}.

We define theleep four-point test
FP(a,blc, d) = SD({a, b, ¢, d})L{F (abled) > f/2}.

Algorithm. Fixy > 2,0 <e < f/4,0<d < landD = 4g+ 2In(1 +¢) +
e. Chooser, xk so as to satisfy Proposition 1. L&} be the set of leaves. The
algorithm is detailed in Figure 1.

2.3 Estimating the Edge Weights

Propositions 2 and 3 also rely on edge-length estimatesidrsection, we show
how this estimation is performed, assuming the tree topakgnown belowr’ €
Ly, and edges estimates are known below lévelln Figure 1, this procedure
is used as a subroutine in the tree-building algorithm.

16



Algorithm
Input: Samples(X[in})f:l;
Output: Tree;

e Forh/ =0,...,h—1,
1. Deep Four-Point Test.Let
Ry = {q = abled : Va,b,c,d € 2, distinct such thaFP(q) = 1}.

2. Cherries. Identify the cherries iR, that is, those pairs of vertices that
only appear on the same side of the quartet spli®jn Let

(R +1) (R +1)
1

Zh’-‘,—l = {l’ yoos 7£L'2}L7(}Ll+l) s

be the parents of the cherriesif,

3. Edge Weights.For allz’ € 2,1,

(@) Lety), v, be the children of’. Let 2], 24, be the children of/;. Let
w’ be any other vertex i€, with SD({z], 2}, v, w'}) = 1.
(b) Lete] be the edge betweeyj andz’. Set

~

. S A
Tet = ©(z1>z2ay2vw )

(c) Repeat interchanging the roleyfandys.

Figure 1: Tree-building algorithm. In the deep four-poiestt internal distance
estimates are used as described in Section 2.1.

Let y;, y5 be the children of’ and lete), ¢, be the corresponding edges. Let
w’ in Ly be a vertex not descended frarh (One should think ofv” as being on
the same level as on a neighboring subtree.) Our goal isitaastthe weight of
e¢). Denote byz}, 2} the children ofy;. (Simply setz] = 2}, = y; if ¥} is a leaf.)
Note that the internal edge of the quartet formedhy), v}, v’ is ¢|. Hence, we
use the standard four-point formula to compute the lengttj:of

~ 1
7A_e,1 = (O)(Zi? Zév yév w/) = 5(7_(217 yé) + 7(257 ’LU/) - T(Ziv Zé) - T(:Ué» 'LU/)),

7

andp., = e 1. Note that, with this approach, the biases/at, v, w’ cancel
each other. This technique was used in [DMR11a].
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Proposition 4 (Edge-Weight Estimation) Consider the setup above. Assume that
forall a,b € {21, 25, y, w'} we have

|7(a,b) — (7(a,b) + B(a) + B(b))| <e/2,
for somes > 0. Then |7, — 7| <e.

This result follows from a calculation similar to the prodfRroposition 2.

2.4 Proof of Theorem 1

We are now ready to prove Theorem 1.
Proof:(Theorem 1) All steps of the algorithm are completed in polyial time
in n andk.

We argue about the correctness by induction on the levelsy Ei 2. Take
5 > 0,0 < e < f/4 small enough and,  large enough so that Propositions 1, 2,
3, 4 hold. We divide the log® n samples intdog n blocks.

Assume that, using the firét sample blocks, the topology of the model has
been correctly reconstructed and that we have edge essirsatisfying (6) up to
level h’. Assume further that we have hidden state estimators watis(7) and
(8) up to level’ — 1 (if A’ > 1).

We now use the next block of samples which is independent efyéving
used until this level. Wheh' = 0, we can use the samples directly in the Deep
Four-Point Test. Otherwise, we construct a linear hiddatesestimator for all
vertices on leveh’. Propositions 2 and 3 ensure that conditions (7) and (8) hold
for the new estimators. By Proposition 1 applied to the netivnegors and our
choice ofD = 4g + 21In(1 + ¢) + ¢, all cherries on levet’ appear in at least one
guartet and the appropriate quartet splits are reconstiudiote that the second
and third terms irD account for the bias and sampling error respectively. Omee t
cherries on levek’ are reconstructed, Proposition 4 ensures that the edgétveig
are estimated so as to satisfy (6).

That concludes the inductiol

2.5 Kesten-Stigum regime: Gaussian case

In this section, we derive the critical threshold for HSI iauasian tree models.
The section culminates with a proof of Theorem 2 stating THdE cannot in
general be achieved outside the KS regime without at ledghpmially many
samples.
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2.5.1 Definitions

Recall that themutual informationbetween two random vectos; andY, is
defined as
](Yl, Yg) = H(Yl) + H(Yg) — H(Yl, Yg),

whereH is theentropy that is,

H(Y:) = _/fl(}’1)10gf1(Y1)dY17

assumingY; has densityf;. See e.g. [CT91]. In the Gaussian cas€eY if has
covariance matrix, then

1
H(Y,) = 3 log(2me)"™| %],
where|, | is the determinant of the; x n; matrix>;.
Definition 5 (Solvability) Let X!") be a GMRFT on balanced tree
T® = (v, B0 [p®] 40, 70y

wheren® = 2" and7"’ = r > 0 for all e € E®. For convenience we denote
the root by0. We say that the GMRFT root state reconstruction problerh wis
solvableif

lim inf 7 (Xéh);X(h)h ) >0,
h— 00 [n(M)]

that is, if the mutual information between the root state &af states remains
bounded away frori as the tree size goes tox.

2.5.2 Threshold
Our main result in this section is the following.

Theorem 4 (Gaussian Solvability) The GMRFT reconstruction problem is solv-
able if and only if
2e7% > 1.

When2e27 < 1 then

(X x,) = [2e77]

[n(h

no1- 2e7% + 0(1)

2—2e2r 7 (12)

ash — oo.
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Proof: Fix h > 0 and letn = n™,

(h). x(h)
Ih_I<X ,X[n]>,
([n]] = {0,...,n}, andp = e~". Assume2p® # 1. (The casep® = 1 follows
by a similar argument Which we omit.) Denote E}F/’]) and Zf[hn)ﬂ the covariance

matrices ofX () and(X{", X/1\)) respectively. Then

h
I ! log < |Efn})‘ )
= = .
2 (h)
|2 ]

Lete, be the all-one vector with elements. To compute the determinants above,
we note that each eigenvectorl e, of Zfﬁf gives an eigenvectdo, v) of Zf[hn)ﬂ
with the same eigenvalue. There &% — 1 such eigenvectors. Furthey, is

an eigenvector OEEZ}) with positive eigenvalue corresponding to the sum of all
pairwise correlation between a leaf and all other leavedding itself), that is,

h
Rh:1+zp2l2l—1:1+p2 ((2ﬂ2) : )

=1

(The other eigenvectors are obtained inductively by nag¢hat each eigenvector
v for size2"~! gives eigenvectorév, v) and (v, —v) for size2".) Similarly the
remaining two eigenvectors éﬁ{’n)” are of the form(1, ge,,) with

S (1, Bey) = (1+ B2"p", (" + BRy)e,) = (1, Be,)',

whose solution is

Ry, — 1) £ /(R — 1)2 4 4p*h2h
2ph2h ’

ﬁ—

and
A =14 pF2"p"
Moreover note that

NNy = LB+ B2t "+ B 22 ™
= 1+ (Ry—1)—p*2"
= Rh - (2p2)h.
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Hence

= 1lo al
- 2% U
1 (20%)"
o (1- .
2 °g< Ry
Finally,
; 0, if 2p2 < 1,
— .
"7\ ~Llog (piQ . 1) 2> 1,

ash — oo with equation (12) established by a Taylor series expansidhe
limit. W

2.5.3 Hidden state reconstruction

We make precise the connection between solvability anddmidstate estima-
tion. We are interested in deriving good estimates’(é‘?) given X[(:]). Recall
that the conditional expectati@[Xéh)\X[(n}?] minimizes the mean squared error
(MSE) [And58]. LetA{") = (3))~1. Under the Gaussian distribution, condi-
tional onX[(:]), the distribution ofXéh) is Gaussian with mean

h

h (h) () _ P (h)
and covariance
2h (h) s (2P2)h —97,
1—pTe, A e, =1 — =e (24)
[} ™ Ry,

The MSE is then given by
E[(X{" — E[X§" X)) = E[Var[X§V X)) = e,

Theorem 5 (Linear root-state estimation) The linear root-state estimator



has asymptotic MSE: 1 ash — +oo if and only if2¢72" > 1. (Note that
achieving an MSE of is trivial with the estimator identically zero.)

The following observation explains why the proof of our méneorem centers
on the derivation of an unbiased estimator with finite vau'éan_etXéh) be aran-
dom variable measurable with respect to théeld generated by([ﬂj?. Assume

thatE[X " |x"] = x{M, that is, X\" is a conditionally unbiased estimator of
Xéh). In particularE[Xéh)] = 0. Then

h > (h h > (h h
E[(X" —aX{)?] = EE[(XS - aX§")?|X5"]
= 1-2aEEX" XM X)) + a?Var[X{V]
= 1-2a+ oz2Var[)?éh)],

which is minimized fora = 1/Var[)?éh)]. The minimum MSE is then —
1/Var[Xéh)]. Therefore:

Theorem 6 (Unbiased root-state estimator)There exists a root-state estimator
with MSE< 1 if and only if there exists a conditionally unbiased roaitstesti-
mator with finite variance.

2.5.4 Proof of Theorem 2

Finally in this section we establish that whe# 2™ < 1 the number of samples
needed for TME grows like” proving Theorem 2.

Proof:(Theorem 2) The proof follows the broad approach laid outNtog03,
Mos04] for establishing sample size lower bounds for phgtaiic reconstruc-
tion. Let7 and7 be h-level balanced trees with common edge weighand
the same vertex set differing only in the quartet split bemvehe four vertices at
graph distance 2 from the robt = {u4,...,us} (that is, the grand-children of
the root). Let{ X7 }5 , and{X} }* , bek i.i.d. samples from the corresponding
GMRFT.

Suppose that we are given the topology of the trees below tieeefrom the
root so that all that needs to be reconstructed is the togejusplit, that is, how
U splits. By the Markov property and the properties of the maitate Gaussian
distribution, {Y; }ueveq,...xy With Vi = E[X; | X[, | is a sufficient statistic for
the topology of the top quartet, that is, it contains all thevimation given by
the leaf states. Indeed, the conditional distribution ef $kates at/ depends on
the leaf states only through the condition expectationgréwe the impossibility
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of TME with high probability, we will bound the total variatn distance between
Y = {Y.} uev andY = {Y hwev.- We have thal” is a mean 0 Gaussian vector
and using equations (13) and (14) its covariance maifixs given by

(Bt )uu = Var[y,] = e =2 =1 - O((2p*)"),
and

(55)uw = Cov|Yy, Xu]Cov[Xy, Xu]Cov| X, Y]
(2p2)2(h—2)

= —— )
R s

= 0((20")™).

whereY);; is the covariance matrix oX;;. The covariance matrix of is defined
similarly. LetA (resp.A: ;) denote the inverse covariance matflx;) " (resp.
(X5)~1). We note that>i; and¥;; are close to the identity matrix and, hence, so
are their inverses [HJ85]. Indeed, with the4 x 4-identity matrix, the elements
of X%, — Iy are allO((2p?)") and, similarly for3;;, which implies that

sup [AL, — A | = O((20%)"). (15)
We letdry(+,-) denote the total variation distance of two random vectorsteN

that by symmetrydet A%| = | det A};| and so, withfy (y) the density function of
Y, the total variation distance satisfies

fy(y)
D =3 [ (7~ 0
B % /R P —%ETA*UW %QTA*UZ/] — 1| fy(y)dy

(Eexp [O((20°)"Y2)] — 1)
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where the first inequality follows from equation (15) whileetsecond follows
from an application of the AM-GM inequality and fact that ttig are identically
distributed. The final equality follows from an expansioregtiation (11).

.....

.....

form a sufficient statistic for the top quartet, this top stune of the graph cannot
be recovered with probability approaching 1. Recalling tha= 2", p = e 7
and that ify < (27)/log2 — 1 thenGMRFT/* is not solvable withk = n? =
o((2p?)~") samplesll

3 GTR Model with Unknown Rate Matrix

In this section, we prove our reconstruction in the GTR ca&e.only describe
the hidden-state estimator as the other steps are the saeneséMotation similar
to Section 2. We denote the tree By= (V, E) with rootr. The number of leaves
is denoted by:. Letq > 2,0 < f < g < 400, andT = (V, E, [n],r;7) € BY/9,
Fix Q € Q,. We assume thdt < g < gis = In /2. We generaté i.i.d. samples
(Zi)k_, from the GTR model T, Q) with state spacéy]. Let* be a second
right eigenvector ofy, that is, an eigenvector with eigenvalud. We will use
the notationX! = u%z, forallu € V andi = 1,..., k. We shall denote the leaves

of T by [n].

3.1 Estimating Rate and Frequency Parameters

We discuss in this section the issues involved in estimagiond its eigenvectors
using data at the leaves. For the purposes of our algorithmeed only estimate
the first left eigenvector and the second right eigenvettetrs be the stationary
distribution of (first left eigenvector) and denolé = diag(r). Let

v, ve o Ve
be the right eigenvectors ¢f corresponding respectively to eigenvalues
0:)\1>)\22...2)\q.

Because of the reversibility assumption, we can choose ifeneectors to be
orthonormal with respect to the inner product,

(v, V) e = Z TV,

i€[q]
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In the case of multiplicity of eigenvalues this descriptioay not be unique.

Proposition 5 There exists:(¢, o, Q) such that giverx logn samples there exist
estimatorst and#? such that

|7 —7[<e (16)
and

q
=)o, (17)
=1

where|a; — 1| < e and[t| < o for [ > 3, (for some choice af! if the second
eigenvalue has multiplicity greater than 1).

Estimates Let 7 denote the empirical joint distribution at leavesindb as a
g x g matrix. (We use an extra sample block for this estimation.g¢dtimater and

2, our first task is to find two leaves that are sufficiently clasallow accurate
estimation. Let*, b* € [n] be two leaves with minimum log-det distance

(a*,b") € argmin {—logdet F® . (a,b) € [n] x [n]}

Let
F=F""

and consider the symmetrized correlation matrix

e 1"\** Nk ok
FTZi(Fab _|_(Fab)'|').

Then we estimate from

o= Flu
v'€lq]

forall v € [g]. Denotell = diag(7). By constructions is a probability distribu-

tion. Lety = 7(a*, b*) and defing to be the symmetric matrix
G=T""2FI? = 72 )I /2 = T2 91112,

Then denote the right eigenvectors(ofas

pl = T2 2 = Y22t = TV,
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with corresponding eigenvalues

1 =00 — M S g

(a* b*) ((l* b*) - 680)\2 Z e 2 9(2)

_ P
(b)) — €

orthonormal with respect to the Euclidean inner productteNIbat@EiZ oy <€’
and that/! is the all-one vector. Assuming > 0, define

G =T"'2F12,

which we use to estimate the eigenvectors and eigenvalugs sfnced is real
symmetric, it hag real eigenvalueg® > ¢ > ... > @ with a corresponding
orthonormal basig!, /2, . .., i?. It can be checked that, providéd> 0, we have
1=600 > 6@, We use R

2 — H_l/Q,&Z.

as our estimate of the “second eigenvector” fitlas our estimate of the second
eigenvalue of the channel.

Discussion The sensitivity of eigenvectors is somewhat delicate [HJ8%ith
sufficiently many samples:(= «logn for large enoughk) the estimatorz will
approximate= within any constant tolerance. When the second eigenvaldis4
tinct from the third one our estimate will satisfy (17) prdedx is large enough.

If there are multiple second eigenvectors the ve¢tomay not exactly be
an estimate of? since indeed the second eigenvalue is not uniquely defined:
using classical results (see e.g. [GVL96]) it can be shovan ih is close to a
combination of eigenvectors with eigenvalues equalto Possibly after passing
to a different basis of eigenvectars$, 2, . .., 9, we still have that equation (17)
holds. By standard large deviations estimate this proeesitisfies Proposition 5
whenx is large enough.

Remark 4 This procedure provides arbitrary accuracy agrows, however, for
fixed x it will not in general go to 0 as goes to infinity as the choice af, b*
may bias the result. An error of siz&(1/v/k) may be obtained by taking all pairs
with log-det distance below some small threshold ¢ggyrandomly picking such
a paira’, b’ and estimating the matri& usinga’, b'.

We could also have estimatédby taking the empirical distribution of the
states at one of the vertices or indeed the empirical distiiim over all vertices.
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3.2 Recursive Linear Estimator

As in the Gaussian case, we build a recursive linear estiméltle use notation
similar to Section 2. Let = xlogn be the size of each block. We lgt,

be a generic sample from the GRT model independent of evagydise, and we
defineX, = 7} forallu € V. We Iet(Z[n) be a block of independent samples

at the leaves, and we s&t = ’/zf’ forallu € Vandl¢ =1,..., K. For a node

u € V, we let|u] be the leaves below andX|,, the correspondlng state. Let
0 < 6 < 1 (small) andc > 1 (big) be constants to be defined later.

Linear estimator We build a linear estimator for each of the vertices recetgiv
from the leaves. Let € V —[n] with children (direct descendantg), y>. Assume
that the topology of the tree rootedzahas been correctly reconstructed. Assume
further that we have constructed linear estimators

Su = Lu(X|u))
of X, forallu € V belowz. We use the convention that
Ly(Xu)) = Xu
if uis aleaf. We let, be a linear combination of the form
Sz = Lo(Xa)) = wy Ly, (Xiy,)) + @y Ly (X)), (18)

where thev’s are chosen below.

Recursive conditions Assume that we have linear estimatgrsfor all « below
x satisfying

E[S, | Z.] Zzs’l wv (19)

for someB'(u) such thatB?(u) — 1| < & and|Bl(u)/82(u)| <ofori=3,...,q
Note that no condition is placed d#t(u). Further for alli € [¢]

T%(C) < CE[Su | Z, = 1] + 2, (20)

where as before _
I (¢) = InElexp(¢Sy) | Zu = i].
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Observe that these conditions are satisfied at the leavdsedin foru € [n] one
hasS, = 07 = >{_ , o}, and therefor&|[S, | Z,] = > ] ay}, andT(¢) =
CE[S, | Z., = i]. We now seek to construét, so that it in turn satisfies the same
conditions.

Moreover we assume we have a priori estimated edge weights all e
belowx such that foe > 0 we have that

|Te — Te| < €. (22)

Let ée = e e,

First eigenvalue adjustment As discussed above, because we cannot estimate
exactly the second eigenvector, our estimé&tenay contain components of other
eigenvectors. While eigenvectarsthroughv? have smaller eigenvalues and will
thus decay in importance as we recursively construct ounastr, the presence

of a component in the direction of the first eigenvalue poseatgr difficulties.
However, we note that! is identically 1. So to remove the effect of the first
eigenvalue from equation (19) we subtract the empiricalmws®’,,

As (m,/!) = 0forl = 2,...,q andv! = 1 we have thattS, = B'(u) from
(19) and hence the following proposition follows from stardilarge deviations
estimates.

Proposition 6 (Concentration of Empirical Mean) Foru € V, &’ > 0 and~ >
0, suppose that conditior§{$9) and (20) hold for some), ¢ andc. Then there exists
k= k(' ¢,7,d,e) > 0 such that, when we havé > xlogn then

Sy — B (u)| <€,
with probability at leastt — O(n™7).

Proof: Lete, > 0. By Chernoff’'s bound, of thé{ samplesf{i are such that
Zt =i where

K

% < é&n,
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except with inverse polynomial probability, given thais large enough. By (19)
and (20), we have

BB Z, = i] < CE[(Su — B"(w)|Zu = i] + c¢*,

where

IE[(S, — B'(u)) 1+5)(1+q@)max1/\/_ T.

Leter > 0. Choosing; = = in Markov’s inequality fore¢(5«~5' () gives that the
average of5! — B'(u) over the samples with’ = i is withiner of >°7_, B (u)v/!
except with probability at most—<t X (mi—<=)/4c — 1 /poly(n) for « large enough
ande, small enough. Therefore, in that case,

1 K

K
(=1

(S, — Bl(u))‘ < ger+e[Y+er] <€,

for .., er small enough, where we uséd, ') =0fori=2,...,¢. R

For a = 1,2, using the Markov property we have the following important
conditional moment identity which we will use to relate thasaty,, to the bias
atux,

q q
E (Sﬁa - Bl(ya) | Zx = 'l) = ZZBl(ya)Miejaljé

1=2 j=1

q
= B'(ya)0, (22)
=2

where we used the fact that th&s are eigenvectors af/; with eigenvectors
o) = exp(—N\iTe).

Procedure We first define a procedure for estimating the path length (shéhe
sum of edge weights) between a pair of verticegandu, including the bias. For
uy, up € V with common ancestar we define

K

7(u1,ug) = —1In (% Z (551 - Sul) (552 - 5“2)> ’

(=1
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This estimator differs from Section 2.1 in that we subtraetémpirical means to
remove the effect of the first eigenvalue. Using the fact Jt, Si =S, =0
and Proposition 6 we have that with probability at lelast O(n~7)

K

o 2 (51, = Su) (81, = S

K

_ % > | (8E, = B w) (S, — B'(u2))

/=1
+ (8L, = B (w) (S, — B'(w2) |
gZ (8L, = B'(w)) (St, — B'(w2)) + ()2,

and similarly the other direction so,

1o | .-
‘E pa (Sm S ) (Su S 2)
(Sl - B w) (S, - Blw) [ < (B (@9)
(=1

It follows that7(uy, us) is an estimate of the length betweenandu, including
bias since

E[(S., —B'(u )) (54 — B'(u2))]

_Zm C =B w) | Z, =1)E (S, — B'(u2) | Z, =)
q
= Zm (Z B! (uy) 9(2 ul)Vl»> (Z Bl(uz)(?gi)m)ujl)
i€[q] 1=2
= B*(uy)00), B ()02, + O(0)

= B(u1) B*(us)e” ") + O(p), (24)

where line 2 follows from equation (22). Above we also usesl ribcursive as-
sumptions and the fact that,_ . m; ()% = 1. We will use the estimatait(u, v)

to estimate3(u) = —In B?(u). Given the previous setup, we choose the weights
Wy, o = 1,2, as follows:
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1. Estimating the Biases.If v, 1y, are leaves, we Iefﬁ(ya) =0,a=1,2.
Otherwise, let,, z,2 be the children of;,. We then compute

~

1. . . . .
By1) = 5(7'(?/17 201) + T(y1, 222) — T(201, 222) — 2T, — 27e,),

And similarly fory,. Let B2(y,) = ePe) o = 1,2.

2. Minimizing the Variance. Setw, ,a = 1,2 as

Y é?(yawg? (25)
T (B ())2(08))2 + (B2 (y))2(62))2

the solution of the following optimization problem:

min{wz1 +w§2 : wyll?z(yl)eg) +wy2§2(y2)9$) =1, wy,,wy, > 0}. (26)

The constraint above guarantees that the bias conditionigl9atisfied
when we set

Ex(XLIJ) = Wy1£y1(XLy1J) +wy, Ly, (XLyQJ)-

Bias and Exponential Moment We now prove (19) and (20) recursively as-
suming (21) is satisfied. Assume the setup of the previowsgpaph. We already
argued that (19) and (20) are satisfied at the leaves. Assuntinerf that they are
satisfied for all descendants of We first show that thé-quantities are concen-
trated.

Proposition 7 (Concentration of Internal Distance Estimaes) For all £ > 0,
v>0,0<d < 1landc > 0,there arex = k(e,v,9,¢) >0, 0 = o(g,7,d,¢) >0
such that, with probability at leadst— O(n~"), we have

|7(u, v) = (T(u,v) + B(u) + B(v))| <e,
forall u,v € {y1, vz, 211, 212, 221, 220} Wherez,1, z,2 are the children of,,.

Proof: This proposition is proved similarly to Proposition 1 byasishing con-

centration of L 3" | S’S!, where S = S’ — B'(u), around its mean which
is approximatelye~7(»v)-A)-5) by equation (24). The only difference with
Proposition 1 is that, in this non-Gaussian case, we mustats the exponential

moment directly using (20). We use an argument of [PR11, Bpocl
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Let ¢ > 0. Let N be a standard normal. Using tH&fe*N] = ¢**/2 and
applying (19) and (20),

E[ecgugv ‘Z{u;l)}] E[e(cgu)E[gv‘Zv]"'c(Cguy |Z{u’v}]

IN

E[eg§uﬁ[§u|zl,}+x/%<§m|Z{u o]
< E[eCES 2 VICNESZu]+e(CES I 2+ VILN)? 7. ]

We factor out the constant term and apply Cauchy-Schwarzerlitnear and
guadratic terms iV

E[ngugu

Z{u,v}]
< €<E[§u\zum[§v|zv}6c<2T2E[64C2<2N2]1/2

- - 1/2
< 62(\/%§E[Su|zu]+20\/%c2E[Su\ZU])N|Z{u’v}
< egE[§u\Zu}E[§v|Zv} oY 1 2c72¢2(142¢¢)?

> (1 _ 862C2)1/4
— 1+ CE[SuS,| Zpuwy] + T'C2+ O(C%),

as¢ — 0, whereY was defined in the proof of Proposition 6 atid > 0 is a
constant depending ofi andc. Taking expectations and expanding

6_C(E[§u§u}+€)E[6C§u§U] — 1 . EC + T,CZ + O(Cg) < 1’

for ¢ small enough, independently af Applying Markov’s inequality gives the
result.l

Proposition 8 (Recursive Linear Estimator: Bias) Assuming (19), (20), and (21)
hold for somes > 0 that is small enough, we have

q
E[S, | Z) =Y B'(z)v},,
=1

for some3'(z) such that B*(z) — 1| < 6 and|B'(z)/B*(x)| < ofori =3,...,q.

Proof: We first show that the biases @t i, are accurately estimated. Applying
a similar proof to that of Proposition 2 (using Propositiomplace of Proposi-
tion 1) we have that

-~

1B(y1) — B(y1)] < O(e + o).
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The same inequality holds fgr. Takinge, 6 small enough, our previous bounds
on 3, # and their estimates, we derive from equation (25) that= ©(1), a =
1, 2 with high probability. We now calculate the biasaato be,

E[S.|Z, =1 = E[wylsw + Wy, Sy | Z, = 1]

q
= > w. ) Bty
a=1,2 =1
q

= Z (Wlel(yl)egll) + wy2Bl(y2>H£l2)) V]l'

=1

q
Z Bl(m)uj-
=1

where we used equation (22) on line 2. Observe that sipcev,, are positive
ando < 0% < ¥ for 1 > 3,
B'(x)
B*(x)

Wy, Bl(yl)ef(zll) + wy, B (yQ)eéQ

wy B0 + w,, B2(2)057)

wy, 03 (y1)0%) + wy, 013? ()6
wy B2 ()08 + wy, B2(2)057)

<

Applying the bounds ow,,, andﬁ(ya) for o = 1, 2 we have that
82@) = wy182(y1)9g) + wysz(?ﬁ)eg)
— wyle—ﬁ(yl)gg) + wy26—6(y2)9$)
< wy, e PO (G 1 Oe + )
+wy26_3(y2)+0(€+9)(é$) +O(e+0))
(0 B2 (42)65) + w0, B (12)05)) + O + )
1+ 0(e+ o).
Choosings andp small enough, it satisfig#?(z) — 1| < 6. B

Proposition 9 (Recursive Linear Estimator: Exponential Baund) There isc >
0 such that, assuming (19), (20), and (21) hold, we have far allg]

5 (¢) < CE[S: | Zx =] + oC*.
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Proof: We use the following lemma suitably generalized from [PRRA¢10].

Lemma 1 (Recursion Step)Let M/ = ¢™? as above with eigenvectors

with corresponding eigenvalugs= ¢*t > ... > ¢*e. Letbhy, ..., b, we arbitrary
constants withd;| < 2. Then there is’ > 0 depending or() such that for all

i € [q]

q q
F(z) = Z M;; exp (mwaé) < exp <xz )\lbluf + c’x2> = G(z),
j€ld] 1=2 =2

for all x € R.
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We have by the Markov property and Lemma 1 above,

exp (C Z Syawya> | Z, =1

a=1,2

= Z InE [exp (( Sy, wy.) | Zs = 1]

() = WE

a=1,2
= Z In ZM“ lexp (( Sy wy.) | Zy ])
a=1,2
= Z In Z M5 exp (F{IQ (Cwya)))
a=12  \jelq
< Z In ZM“ exp (Cwy, B[Sy, | Zy, = j] + c(zwsa))
a=1,2
q
= c? Z wsa + Z In Z M exp (Cwya ZBl(ya)V;>
a=1,2 a=1,2 j€lq] =1
= Z Wza + ¢ Z B (Yo )wy,
a=1,2 a=1,2
q
+ Z In Z M exp ((wya ZBl(ya)le-)
a=1,2 =
< e? Zw —l—CZwyaZG Blyau—i-ZcC
a=1,2 a=1,2 a=1,2
= (E[S,|Z, =1 +*(c+{) Z w2
a=1,2

35



Takec large enough so that+ ¢ < ¢(1 + £’) for some smalt’ > 0. Moreover,
from (25)

ot = (% N oy
wten = \@Earay T @ ey

= <#) (1+0(e+0+0))

T

< ﬁ(1+0(5+6+9))<1,

wheref* = ¢~ so that2(*)* > 1. Hence,
5 (¢) < CE[S: | Zx = 4] + ¢,

4 Concluding remarks

We have shown how to reconstruct latent tree Gaussian andr@ddels using
O(log® n) samples in the KS regime. In contrast, a straightforwardiegtion of
previous technique®(log® n) samples. Several questions arise from our work:

e Can this reconstruction be done using oflflog n) samples? Indeed this
is the case for the CFN model [Mos04] and it is natural to ccoje that it
may be true more generally. However our current technigreebraited by
our need to use fresh samples on each level of the tree to aawiented
correlations between coefficients and samples in the reeursnditions.

e Do our techniques extend to general trees? The boostedthlgonsed
here has been generalized to non-homogeneous trees usinthanatorial
algorithm of [DMR11a] (where edge weights are discretize@void the
robustness issues considered in this paper). However gemnees have,
in the worst case, linear diameters. To apply our results,would need
to control the depth of the subtrees used for root-statenasiton in the
combinatorial algorithm. We leave this extension for fetwork.
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