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Abstract
We study the rate of convergence for the largest eigenvalue distributions in the Gaussian unitary and
orthogonal ensembles to their Tracy–Widom limits.

We show that one can achieve an O(N−2/3) rate with particular choices of the centering and scaling constants.
The arguments here also shed light on more complicated cases of Laguerre and Jacobi ensembles, in both
unitary and orthogonal versions.

Numerical work shows that the suggested constants yield reasonable approximations, even for surprisingly
small values of N.
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FAST APPROACH TO THE TRACY–WIDOM LAW
AT THE EDGE OF GOE AND GUE1

BY IAIN M. JOHNSTONE AND ZONGMING MA

Stanford University and University of Pennsylvania

We study the rate of convergence for the largest eigenvalue distributions
in the Gaussian unitary and orthogonal ensembles to their Tracy–Widom lim-
its.

We show that one can achieve an O(N−2/3) rate with particular choices
of the centering and scaling constants. The arguments here also shed light on
more complicated cases of Laguerre and Jacobi ensembles, in both unitary
and orthogonal versions.

Numerical work shows that the suggested constants yield reasonable ap-
proximations, even for surprisingly small values of N .

1. Introduction. The celebrated papers of Tracy and Widom (1994, 1996)
described the limiting distributions of the largest eigenvalues of the Gaussian uni-
tary and orthogonal ensembles (GUE and GOE), respectively. The purpose of this
article is to show that an appropriate choice of centering and scaling allows us to
establish a rate of convergence in these results, and further that this rate can be un-
derstood as “second order,” being O(N−2/3) rather than the O(N−1/3) that would
otherwise apply.

The Gaussian ensembles refer, as is usual, to eigenvalue densities of x =
(x1, . . . , xN) given by

f (x) = cNβ

N∏
i=1

e−βx2
i /2

∏
i<j

|xi − xj |β,

with β = 1 corresponding to GOEN and β = 2 to GUEN , the subscript being
shown only when clarity dictates. The corresponding matrix models specify that f

is the density of the eigenvalues x of a symmetric or Hermitian random matrix M

with independent entries on and above the diagonal, whose density function is
given by

g(M) = c′
Nβ exp{−(β/2) trM2}.

Our principal rate of convergence results follow. The Tracy–Widom distribu-
tions are denoted Fβ(s) for β = 1,2.
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THEOREM 1. Let x(1) denote the largest eigenvalue of a sample from GUEN ,
and

μN = √
2N, τN = 2−1/2N−1/6.

Given s0, there exists C = C(s0) such that for s ≥ s0,∣∣P {(
x(1) − μN

)
/τN ≤ s

} − F2(s)
∣∣ ≤ CN−2/3e−s .

THEOREM 2. Let x(1) denote the largest eigenvalue of a sample from
GOEN+1, with N + 1 even, and

μN = √
2N + 1, τN = 2−1/2N−1/6.(1)

Given s0, there exists C = C(s0) such that for s ≥ s0,∣∣P {(
x(1) − μN

)
/τN ≤ s

} − F1(s)
∣∣ ≤ CN−2/3e−s/2.(2)

We use index N + 1 (rather than N ) because of a key formula relating the
Gaussian orthogonal ensemble GOEN+1 to the Gaussian unitary ensemble GUEN ,
(36) below. The centering and scaling constants carry subscripts N rather than
N + 1 for this reason.

Our interest in these results is threefold. First, they provide the simplest case of
a class of such O(N−2/3) convergence results for the classical orthogonal polyno-
mial ensembles—the other two being the Laguerre and Jacobi ensembles—in both
orthogonal and unitary versions. These results are of interest in statistics because
they show that the Tracy–Widom approximation is accurate enough to replace ex-
act evaluation of the finite LOE and JOE probabilities for many applied purposes
where highly accurate values are not necessary [Johnstone (2009)]. The results of
this paper focus on the corresponding phenomenon for the simplest case of GUE
and GOE. Since the LOE and JOE proofs are lengthy analyses with Laguerre and
Jacobi polynomial asymptotics, respectively, this paper outlines the approach in
the simplest case.

Second, our interest was stimulated by Choup (2009), which provided the lead-
ing terms in an Edgeworth expansion of the largest eigenvalue distribution of GOE,
and remarked that the N−1/3 correction term does not vanish in GOE. As our ear-
lier results on O(N−2/3) convergence for LOE and JOE would suggest, a similar
O(N−2/3) property for GOE with a suitable specific centering, it seemed, there-
fore, of interest to verify the conjecture in this setting. Although we subsequently
learned of an error in the argument of Choup (2009) (private communication), it
was an important stimulus for this work.

Third, we find it of interest that adjustment of μN and τN to secure O(N−2/3)

convergence yields an approximation, that is, adequate—for some purposes—for
surprisingly small values of N .
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TABLE 1
GUE approximation. For each percentile α shown in the top row, let s2α be the quantile

F2(s2α) = α, and sNα = μN + τN s2α for μN and τN specified in Theorem 1. Table entries are

P {x(1) ≤ sNα} computed using Bornemann’s code for E
(n)
2 (0; [sNα,∞))

N μN 0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.99

2 2.000 0.026 0.087 0.149 0.359 0.549 0.732 0.913 0.958 0.992
5 3.162 0.017 0.068 0.125 0.331 0.526 0.717 0.907 0.954 0.991

10 4.472 0.014 0.061 0.115 0.319 0.516 0.711 0.905 0.953 0.991
25 7.071 0.012 0.056 0.108 0.310 0.509 0.706 0.902 0.951 0.991
50 10.000 0.011 0.054 0.105 0.307 0.506 0.704 0.902 0.951 0.990
75 12.247 0.011 0.053 0.104 0.305 0.504 0.703 0.901 0.951 0.990

100 14.142 0.011 0.052 0.103 0.304 0.504 0.702 0.901 0.951 0.990
200 20.000 0.011 0.051 0.102 0.303 0.502 0.701 0.901 0.950 0.990
500 31.623 0.010 0.051 0.101 0.301 0.501 0.701 0.900 0.950 0.990

To illustrate, first in GUE, Table 1 shows the exact probabilities P {x(1) ≤
μN + τNs2α} for quantiles s2α of the limiting F2 distribution, computed us-
ing the finite GUE function provided in the MATLAB toolbox RMTFredholm
[Bornemann (2010)].

In fact, our proof suggests a slightly different centering value, μN =
(
√

2N − 1 + √
2N + 1)/2, which differs from

√
2N in relative terms by only

O(N−4). However, Table 2 shows an observable improvement at very small val-
ues of N .

Our interest is primarily with GOE, for which software for exact compu-
tation appears to be as yet unavailable. Table 3 shows Monte Carlo simula-
tions of P {x(1) ≤ μN + τNs1α} for quantiles s1α of the F1 limit, based on R =
106 replications. The corresponding 95% confidence intervals have half-width
2
√

pα(1 − pα) × 10−3 which decreases from 0.001 at pα = 0.5 to 0.0002 at
pα = 0.01 and 0.99. Thus the tabulated values should be correct to within ±0.001.

Two features of the numerical results deserve note. First the approximations are
somewhat better in the near right tail than in the left. This is presumably because

TABLE 2
GUE approximation: as for Table 1, but with μN = (

√
2N − 1 + √

2N + 1)/2

N μN 0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.99

2 1.984 0.025 0.083 0.143 0.349 0.538 0.723 0.909 0.955 0.992
5 3.158 0.017 0.067 0.123 0.328 0.523 0.715 0.906 0.954 0.991

10 4.471 0.014 0.061 0.115 0.318 0.515 0.710 0.904 0.952 0.991
25 7.071 0.012 0.056 0.108 0.310 0.508 0.706 0.902 0.951 0.990
50 10.000 0.011 0.054 0.105 0.306 0.505 0.704 0.901 0.951 0.990
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TABLE 3
GOE approximation. Let quantiles s1α be defined by F1(s1α) = α for values of α shown in the top

row, and μN and τN be given by (1). Based on R = 106 replications drawn from GOE, table entries
are the fraction of replications of s(1) = (x(1) − μN)/τN satisfying s(1) ≤ s1α

N + 1 0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.99

2 0.010 0.045 0.090 0.279 0.483 0.698 0.914 0.963 0.995
5 0.012 0.053 0.103 0.300 0.500 0.704 0.907 0.956 0.993

10 0.011 0.053 0.103 0.302 0.502 0.703 0.904 0.954 0.992
25 0.011 0.052 0.103 0.302 0.502 0.702 0.902 0.952 0.991
50 0.011 0.052 0.102 0.301 0.501 0.701 0.901 0.951 0.991
75 0.011 0.051 0.102 0.302 0.501 0.701 0.901 0.951 0.990

100 0.010 0.051 0.101 0.301 0.501 0.701 0.901 0.951 0.990
200 0.011 0.051 0.101 0.301 0.501 0.701 0.901 0.951 0.990
500 0.010 0.050 0.100 0.300 0.500 0.700 0.901 0.951 0.990

the underlying approximation of Hermite polynomials by the Airy function is an-
chored at the turning point 0 of the Airy equation A′′(s) = sA(s), which lies in the
right tail at about the 83rd percentile of F1 and the 97th percentile of F2.

Second, the errors in Tables 1–3 all have the same sign, suggesting that a further
shift in the approximating distribution might improve accuracy. We experimented
in GOE with small changes of the form, setting N+ = N + 1/2,

μN(γ ) = (2N+ − γN
−1/3
+ )1/2, τN(c) = 2−1/2(N + c)−1/6,(3)

and obtained good results, Table 4 and Figure 1, for γ = 1/5 and c = 1.

TABLE 4
GOE approximation. As for Table 3, but using s′

(1)
defined using μN(γ ) and τN (c) given by (3),

with γ = 1/5 and c = 1

N + 1 0.01 0.05 0.1 0.3 0.5 0.7 0.9 0.95 0.99

2 0.022 0.073 0.127 0.319 0.505 0.696 0.897 0.950 0.991
3 0.018 0.067 0.120 0.315 0.505 0.699 0.899 0.951 0.991
4 0.017 0.063 0.116 0.311 0.505 0.699 0.900 0.951 0.991
5 0.015 0.061 0.114 0.310 0.504 0.700 0.901 0.951 0.991

10 0.013 0.056 0.107 0.305 0.502 0.700 0.901 0.951 0.991
25 0.011 0.053 0.104 0.302 0.501 0.700 0.901 0.951 0.990
50 0.011 0.052 0.102 0.301 0.500 0.699 0.900 0.950 0.990
75 0.011 0.052 0.102 0.302 0.500 0.700 0.900 0.950 0.990

100 0.010 0.051 0.101 0.301 0.500 0.700 0.900 0.951 0.990
200 0.011 0.051 0.101 0.301 0.500 0.700 0.900 0.950 0.990
500 0.010 0.050 0.100 0.300 0.500 0.700 0.901 0.951 0.990



1966 I. M. JOHNSTONE AND Z. MA

FIG. 1. Left panel: estimated density function for s′
(1)

= (x(1) − μ′
N(1/5))/τN (1), compare (3),

based on R = 106 samples from GOE2, compared to the Tracy–Widom density function f1. Right
panel: probability plot of percentiles of the F1 distribution on horizontal axis versus ordered values
of s(1) on the vertical axis, based on the same samples from GOE2. Vertical lines mark the 1st, 95th
and 99th percentiles of F1.

These values differ from μN and τN of Theorem 2 by by relative errors of
O(N−4/3) and O(N−1), respectively, and so have no effect on the validity of The-
orem 2. However, they provide a substantial numerical improvement, especially in
the right tail for values of N below 10. Indeed, for some purposes, the approxima-
tion in the right tail would be adequate, even for N = 2.

Outline of proof. We use the operator norm convergence framework developed
in Tracy and Widom (2005); our focus, of course, is on achieving the second order
convergence rate results. We use the Fredholm determinant representations for the
finite and limiting distribution functions in terms of the two-point correlation ker-
nels. A bound of Seiler–Simon, along with its orthogonal case analog, bounds the
difference in Fredholm determinants in terms of the kernels. In turn, the kernels
have integral representations in terms of weighted Hermite polynomials, and so
we transfer bounds on convergence of Hermite polynomials to the Airy function
to bounds on the kernels and hence to bounds on the probabilities.

Convenient uniform bounds on the convergence of weighted Hermite polyno-
mials to the Airy function come from Liouville–Green theory, which analyzes con-
vergence of the solutions of the second-order differential equation satisfied by the
Hermite polynomials to those of the equation for the Airy function.

The correlation kernels for finite N involve polynomials of both degrees N and
N − 1, each with its own Liouville–Green centering uN and uN−1. The over-
all centering μN for the kernel and distribution function must combine uN and
uN−1 appropriately to ensure that the generic O(N−1/3) error terms cancel to
uncover O(N−2/3) convergence. In the unitary case, simple averaging suffices:
μN = (uN +uN−1)/2. For the orthogonal setting, we use a formula expressing the
GOEN+1 kernel in terms of the GUEN kernel plus a rank one kernel, and obtain
cancellation of O(N−1/3) errors from these two components.
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The Hermite polynomial approximation results are summarized in Section 2.
The unitary proof, in Section 3, is a necessary preparation for the orthogonal case
in Section 4.

Reproducible code: MATLAB files to produce the figures and tables are available
at the second author’s website.

Related work. Convergence rate results at O(N−2/3) were obtained by El Karoui
(2006) for LUE, Johnstone (2008) for JUE and JOE, and Ma (2012) for LOE. The
study of Edgeworth-type expansions for GUE and LUE was initiated by Choup
(2006, 2008), who noted that N−1/3 terms in these expansions can be removed by
specific choices of the centering constant.

The Tracy–Widom limit laws for the largest eigenvalue hold much more
generally—such universality results are an active subject of research. For Her-
mitian Wigner matrices, see Tao and Vu (2010) and references therein, and for
covariance matrices Soshnikov (2002) and Péché (2009).

2. Hermite polynomial asymptotics. The Hermite polynomials, Hk(x) in
notation of Szegő [(1967), Chapter 4], are orthogonal with respect to the weight
function w(x) = e−x2

on (−∞,∞). The “oscillator wave functions” are normal-
ized, weighted versions

φk(x) = h
−1/2
k e−x2/2Hk(x),

with hk = ∫
H 2

k (x)e−x2
dx = √

π2kk!
Classical Plancherel–Rotach asymptotics for HN(x) near the largest zero, Szegő

[(1967), page 201] and Anderson, Guionnet and Zeitouni [(2010), Section 3.7.2],
establish that, for mN = √

2N and τN = 2−1/2N−1/6,

(2N)1/4τNφN(mN + sτN) → A(s),(4)

where throughout we use A to denote the Airy function Ai.
We will need to explicitly bound the error in the convergence in (4). There is

now a substantial literature on asymptotic approximations to Hermite polynomi-
als, using, for example, the steepest descent method for integrals [e.g., Shi (2008)],
the nonlinear steepest descent method for Riemann–Hilbert problems [e.g., Wong
and Zhang (2007)] and recurrence relations [e.g., Wang and Wong (2011)].
Much of this recent attention has focused on expansions for HN(

√
2N + 1ξ) and

φN(
√

2N + 1ξ) that are valid uniformly for large regions of ξ .
For this work, however, we need more detailed information for ξ = 1 + σNs

near 1, and specifically uniform bounds for the error of Airy approximation for
both φN and its derivative that have exponential decay in the variable s and rate
N−2/3; cf. Proposition 1 below. We have not found this extra detail explicitly in the
literature, and since the Liouville–Green discussion of Olver [(1974), Chapter 11]
comes with ready-made bounds for approximation error for both φN and φ′

N , we
use this as a starting point for extracting, in the Appendix, the specific bounds we
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need. In this section, we explain just enough of the approach to describe the bounds
we need.

The Liouville–Green (LG) approach relies on the fact that Hermite polynomials,
and hence φN , satisfy a second order differential equation,

φ′′
N(x) = {x2 − (2N + 1)}φN(x).(5)

Rescaling the x axis via x = √
2N + 1ξ , and setting wN(ξ) = φN(x), the equation

takes the form

w′′
N(ξ) = κ2

Nf (ξ)wN(ξ),(6)

with

κN = 2N + 1, f (ξ) = ξ2 − 1.

The turning points of the differential equation are the zeros of f , namely
ξ± = ±1, so named because each separates an interval in which the solution is of
exponential type from one in which the solution oscillates. The LG transformation
introduces new independent and dependent variables ζ and W via the equations

ζ

(
dζ

dξ

)2

= f (ξ), W =
(

dζ

dξ

)1/2

wN.(7)

More precisely, we take

(2/3)ζ 3/2(ξ) =
∫ ξ

1

√
f (ξ ′) dξ ′.(8)

The transform W approximately satisfies the Airy equation W ′′(ζ ) = κ2
NζW(ζ ),

which has linearly independent solutions in terms of Airy functions, traditionally
denoted by Ai(κ2/3ζ ) and Bi(κ2/3ζ ). Our interest lies in approximating the reces-
sive solution Ai(κ2/3ζ ).

As described in more detail in the Appendix, the error in the Liouville–Green
approximation can be bounded, and one arrives at

φ̄N (x) = (2N)1/4τNφN(x) = ēN r(ξ){A(κ
2/3
N ζ) + O(N−1)}.(9)

Here r(ξ) = [ζ̇ (ξ)/ζ̇ (1)]−1/2 is approximately 1 for ξ near 1, and ēN = 1 +
O(N−1). This is, then, a version of (4) with an error term of order O(N−1), but
with Airy function argument κ

2/3
N ζ rather than s.

We focus on x near uN = √
2N + 1, that is, on ξ near the upper turning point

ξ+ = 1. Introduce the rescaled variable s through ξ = 1 + σNs. To more closely
match the result (4), we want σN to be chosen so that the Airy function argument

κ
2/3
N ζ(1 + σNs) ≈ s(10)

for s in a suitably large range. A Taylor expansion of the left-hand side yields

κ
2/3
N

(
ζ(1) + σN ζ̇ (1)s + 1

2σ 2
Ns2ζ̈ ∗)

.(11)
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FIG. 2. Plots of φ̄N (uN + τN s) for N = 2,20 compared with the Airy function A(s).

Since ζ(1) = 0 and ζ̇ (1) = 21/3, as follows from (7) and (8), we obtain (10) by any
choice of the form

σN = 1
2N−2/3(

1 + o(1)
)
.

For such a choice, (76) shows that

κ
2/3
N ζ(1 + σNs) = s + O(s2N−2/3).

Thus, to replace A(κ
2/3
N ζ) in (9) by A(s) entails, in general, accepting an error

term of O(N−2/3) instead of O(N−1), and so we use this error scale henceforth.
With the specific choice σN = τN/uN , we will show that for s ≥ sL,

|φ̄N (uN + sτN) − A(s)| ≤ CN−2/3e−s/2.

Figure 2 shows that, for values of s corresponding to the bulk of the support of F1,
the approximation is tolerably good even for N = 2.

In fact, since the two-point correlation functions depend on both φN and
φN−1, we need such approximations both for φ̄N and for φ̄N−1. For φ̄N−1 =
(2N)1/4τNφN−1, the corresponding turning point is at uN−1 = √

2N − 1, though
we still use the same scale factor τN . We use the notation φ̄Nj , with Nj = N or
N − 1, respectively, to refer to both cases. In addition, for the GOE case, bounds
on the convergence of the derivative is also required. In the Appendix, we establish

PROPOSITION 1. Let sL ∈ R. For s ≥ sL, we have

|φ̄Nj (uNj + sτN)| ≤ Ce−s,(12)

|φ̄Nj (uNj + sτN) − A(s)| ≤ CN−2/3e−s/2,(13)

where the error bounds are uniform in s ≥ sL and N ≥ N0(sL). The same bounds
hold, with modified constants C, when φ̄Nj and A are replaced by τN φ̄′

Nj and A′.
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We record here also some corresponding exponential decay bounds for the Airy
function and its derivatives A(i). Indeed, given sL, there exist constants Ci(sL)

such that ∣∣skA(i)(s)
∣∣ ≤ Ci(sL)e−s, s ≥ sL, i = 0,1,2.(14)

Proposition 1 provides good Airy approximations for both φ̄N and φ̄N−1, but
with differing centering values, uN and uN−1, respectively. To obtain scaling limits
for the correlation kernels in GUE and GOE, we need to combine these centerings
in a manner appropriate to each case.

It is convenient to express these centering shifts in the rescaled variable s. Thus,
set

φτ (s;k) = φ̄N

(
uN + τN(s + k�N)

)
,

(15)
ψτ (s; l) = φ̄N−1

(
uN−1 + τN(s + l�N)

)
,

where

�N = (uN − uN−1)/τN = N−1/3(
1 + 2−5N−2 + O(N−4)

)
—indeed 21/3�2 = 1.0080! We obtain extensions of Proposition 1: indeed
from (12),

|φτ (s;k)| ≤ Ce−(s+k�N) ≤ Ce−s,

and a similar bound holds for |ψτ (s;k)|. From (15) and Proposition 1,

φτ (s;k) = A(s + k�N) + O(N−2/3e−s/2)
(16)

= A(s) + k�NA′(s) + O(N−2/3e−s/2),

since 1
2(k�N)2|A′′(s∗)| ≤ CN−2/3e−s using (14) and |s∗ − s| ≤ k�N .

More generally, but by identical arguments, for r = 0,1 we have

φ(r)
τ (s;k) = A(r)(s) + k�NA(r+1)(s) + O(N−2/3e−s/2),(17)

and correspondingly for ψ
(r)
τ (s;k). As a byproduct of a steepest descent analysis

for Laguerre polynomials, Choup (2006, 2008) derived a three-term asymptotic
expansion for φN and φN−1 whose first two terms agree with (16), though without
the uniform error bounds in N and s of Proposition 1.

3. Unitary case.

PROOF OF THEOREM 1. The argument has three components: first we recall
determinantal representations of the eigenvalue probabilities FN,2(x0) and limiting
value F2(s0), along with integral representations of the associated correlation ker-
nels. Second we set up the rescaling that connects x0 and s0, and finally establish
the convergence bounds.
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The two-point correlation kernel for GUEN

SN,2(x, y) =
N−1∑
k=0

φk(x)φk(y)

has a useful integral representation [Tracy and Widom (1996), equation (57)]. Set2

φ(x) = (2N)1/4φN(x), ψ(x) = (2N)1/4φN−1(x),(18)

then

SN,2(x, y) = 1

2

∫ ∞
0

[φ(x + z)ψ(y + z) + ψ(x + z)φ(y + z)]dz.(19)

The distribution of x(1) may be expressed as a Fredholm determinant

FN,2(x0) = P
{

max
1≤k≤N

xk ≤ x0

}
= det(I − SN,2χ0),(20)

where χ0(x) = I(x0,∞)(x) and the operator SN,2χ0 is defined via

(SN,2χ0)g(x) =
∫ ∞
x0

SN,2(x, y)g(y) dy.

Equivalently, we may speak of SN,2 as an operator on L2(x0,∞) with kernel
SN,2(x, y). On this understanding, we drop further explicit reference to χ0.

Now change variables, setting x = τ(s) = μN + τNs, with μN yet to be deter-
mined, and x0 = τ(s0). Set also

Sτ (s, t) = τNSN,2(μN + τNs,μN + τN t).(21)

Defining

φτ (s) = τNφ(μN + τNs), ψτ (s) = τNψ(μN + τNs),(22)

it is clear that (19) becomes

Sτ (s, t) = 1

2

∫ ∞
0

[φτ (s + z)ψτ (t + z) + ψτ (s + z)φτ (t + z)]dz.(23)

Since SN,2 and Sτ have the same eigenvalues, det(I −SN,2) = det(I −Sτ ), and
so

P {(maxxk − μN)/τN ≤ s0} = det(I − Sτ ).(24)

Tracy and Widom (1994) showed that the limiting distribution F2 also has a
determinantal representation

F2(s0) = det(I − SA),

2Note: our definitions differ by a factor
√

2 from those of Tracy and Widom.
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where SA denotes the Airy operator on L2(s0,∞) with the kernel having the form

SA(s, t) =
∫ ∞

0
A(s + z)A(t + z) dz.(25)

To derive bounds on the convergence of FN,2(x0) to F2(s0), we use a bound due
to Seiler and Simon (1975),

|det(I − Sτ ) − det(I − SA)| ≤ ‖Sτ − SA‖1 exp(‖Sτ‖1 + ‖SA‖1 + 1).(26)

Here ‖·‖1 denotes trace class norm on operators on L2(s0,∞). This bound reduces
the convergence question to study of convergence of the kernel Sτ (s, t) to SA(s, t).

Given functions a and b, denote by a � b the operator having kernel

(a � b)(s, t) =
∫ ∞

0
a(s + z)b(t + z) dz.

In this notation, the kernel difference becomes

Sτ − SA = 1
2(φτ � ψτ + ψτ � φτ ) − A � A.

To facilitate convergence arguments, we rewrite this as

8(Sτ − SA) = (φτ + ψτ + 2A) � (φτ + ψτ − 2A)

+ (φτ + ψτ − 2A) � (φτ + ψτ + 2A) − (φτ − ψτ ) � (φτ − ψτ ).

Recall that the centering constant μN was left unspecified in the definitions
of φτ and ψτ in (22). We now choose μN so that each term in the preceding
decomposition is O(N−2/3). This amounts to choosing the shifts k and l in (15)
to satisfy two constraints. First, the centerings μN = uN + kτN�N and μN =
uN−1 + lτN�N must agree, so that necessarily l = k + 1. Second, the N−1/3 term
must drop out in the expansion for φτ + ψτ given by (17), so that l = −k. We
therefore must have, for the present unitary case,

φτ (s) = φτ

(
s;−1

2

)
,

(27)
ψτ (s) = ψτ

(
s; 1

2

)
which entails that μN = (uN + uN−1)/2 as was used in Table 2. From Proposi-
tion 1 and the succeeding discussion we obtain

COROLLARY 1 (Complex Case). Let φτ and ψτ be defined by (27) and (15).
Given sL ∈ R, there exists C = C(sL) such that for N ≥ N(sL) and s ≥ sL,

|φτ (s)|, |ψτ (s)| ≤ Ce−s,(28)

|φτ (s) − A(s)|, |ψτ (s) − A(s)| ≤ CN−1/3e−s/2,(29)

|φτ (s) + ψτ (s) − 2A(s)| ≤ CN−2/3e−s/2.(30)
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We will need some simple bounds for certain norms of a �b. In the unitary case,
we need the trace norm of a�b as an operator on L2(s0,∞). In the orthogonal case,
we need the weighted L2-spaces L2((s0,∞), ρ(s) ds) and L2((s0,∞), ρ−1(s) ds)

for a weight function ρ such that the reciprocal ρ−1 ∈ L1(R). Further details are
given in Section 4. For some γ ≥ 0, let

ρ(s) = eγ |s|.(31)

In this section γ = 0, while values of γ > 0 will be specified later for GOE.

PROPOSITION 2. Let weight functions ρ1, ρ2 be chosen from {ρ,1/ρ},
where ρ is given by (31), and consider the Hilbert–Schmidt norm of operator
a � b :L2(ρ2) → L2(ρ1). Assume that, for s ≥ s0,

|a(s)| ≤ aNe−a1s, |b(s)| ≤ bNe−b1s .

If 0 ≤ γ < 2 min(a1, b1), then

‖a � b‖HS ≤ C
aNbN

a1 + b1
e−(a1+b1)s0±γ |s0|,(32)

where C = C(a1, b1, γ ) = [(a1 − γ /2)(b1 − γ /2)]−1/2. If ρ1 = ρ2, then the trace
norm satisfies the same bound.

This is a special case of Johnstone [(2008), Lemma 7]. In the present unitary
case, we apply Proposition 2, with γ = 0, to bound the trace norm of each term
on the right-hand side, using (28)–(30). For each of the three terms, we find that
a1 + b1 ≥ 1 and aNbN ≤ CN−2/3, so that

‖Sτ − SA‖1 ≤ CN−2/3e−s0 .

We may similarly conclude that

‖Sτ‖1 ≤ Ce−2s0, ‖SA‖1 ≤ Ce−2s0 .

Indeed, bounds (28) and (14) show that in each case, aN and bN ≤ C(s0), and that
a1 = b1 = 1.

Combining the two previous displays with the Seiler–Simon bound (26), we
obtain Theorem 1. �

4. Orthogonal case. To establish Theorem 2, we again follow the outline of
proof given in Section 1.

1◦. Assume that N + 1 is even. Tracy and Widom (1998) gave a derivation3 of
the determinant representation

P
{

max
1≤k≤N+1

xk ≤ x0

}
=

√
det(I − KN+1χ0).(33)

3Sinclair (2009) extended Tracy and Widom’s derivation to cover N + 1 odd, but we do not pursue
this here. See also Forrester and Mays (2009).
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Here KN+1 is a 2 × 2-matrix valued operator

KN+1(x, y) = (LSN+1,1)(x, y) + Kε(x, y),(34)

where

L =
(

I −∂2

ε1 T

)
, Kε(x, y) =

(
0 0

−ε(x − y) 0

)
.(35)

Here ∂2 denotes the operator of partial differentiation with respect to the second
variable, and ε1 the operator of convolution in the first variable with the func-
tion ε(x) = 1

2 sgn(x). Thus (ε1S)(x, y) = ∫
ε(x − u)S(u, y) du. Finally T denotes

transposition of variables T S(x, y) = S(y, x). The scalar kernel

SN+1,1(x, y) =
N∑

n=0

φn(x)φn(y) +
√

N + 1

2
φN(x)εφN+1(y),

and Adler et al. (2000) observe that it may be rewritten as

SN+1,1(x, y) = SN,2(x, y) + 1
2φ(x)εψ(y),(36)

where φ and ψ are as defined at (18). The orthogonal kernel is thus expressed in
terms of the unitary kernel and a rank one remainder term. The formula allows
convergence results from the unitary case to be reused, with relatively minor mod-
ification.

2◦. The limiting distribution has a corresponding determinantal representation

F1(s0) = √
det(I − KGOE).

To state the Tracy and Widom (2005) form for KGOE, and for the convergence
argument to follow, it is helpful to rewrite expressions involving ε in terms of the
right-tail integration operator (ε̃g)(s) = ∫ ∞

s g(u) du and for kernels A(s, t) in the
form (ε̃1A)(s, t) = ∫ ∞

s A(u, t) du. This is due to the oscillatory behavior of the
Airy function in the left tail. We write A ⊗ B for the operator whose kernel is
A(s)B(t). The Tracy–Widom expression states that

KGOE(s, t) =
(

S(s, t) SD(s, t)

IS(s, t) − ε(s − t) S(t, s)

)
,(37)

and the entries of KGOE are given by

S(s, t) = (
SA − 1

2A ⊗ ε̃A
)
(s, t) + 1

2A(s),

SD(s, t) = −∂2
(
SA − 1

2A ⊗ ε̃A
)
(s, t),(38)

IS(s, t) = −ε̃1
(
SA − 1

2A ⊗ ε̃A
)
(s, t) − 1

2(ε̃A)(s) + 1
2(ε̃A)(t),

where SA is the Airy kernel defined at (25).
Defining operator matrices

L̃ =
(

I −∂2

−ε̃1 T

)
, L1 =

(
I 0

−ε̃ 0

)
, L2 =

(
0 0
ε̃ I

)
,



CONVERGENCE RATE FOR GUE AND GOE 1975

we may rewrite (37) in the form

KGOE = L̃
(
SA − 1

2A ⊗ ε̃A
) + 1

2L1A(s) + 1
2L2A(t) + Kε.(39)

3◦. We turn to a linear rescaling of formulas (33) and (34). We again set
x = τ(s) = μN + τNs and y = τ(t) = μN + τN t , but now with μN = μR

N to be
determined anew in this orthogonal case; see 4◦ below. Define φτ and ψτ as before
by (22); we occasionally write φR

τ and ψR
τ to emphasize the different centering.

We have

SR
τ (s, t) := τNSN+1,1(τ (s), τ (t))

= τNSN,2(τ (s), τ (t)) + 1
2τNφ(τ(s))(εψ)(τ (t))(40)

= Sτ (s, t) + 1
2φτ (s)(εψτ )(t),

where we have used (εψ)(y) = (εψτ )(t) for a linear rescaling.
Now det(I − KN+1χ0) = det(I − K̄τ ), where

K̄τ (s, t) = τNKN+1(τ (s), τ (t))

= τN

(
I −∂2

ε1 T

)
SN+1,1(τ (s), τ (t)) + τNKε(τ(s), τ (t))

=
(

I −τ−1
N ∂2

τNε1 T

)
SR

τ (s, t) + τNKε(s, t),

where Kε was defined at (35). Since det(I − K̄τ ) is unchanged if the lower left
entry is divided by τN and the upper right entry multiplied by τN ,

det(I − KN+1χ0) = det(I − Kτ),(41)

where Kτ is an operator with matrix kernel

Kτ(s, t) = (LSR
τ )(s, t) + Kε(s, t).(42)

Now we rewrite LSR
τ using ε̃ and ε̃1. First, define

βN−1 = 1

2

∫ ∞
−∞

ψτ = 1

2
(2N)1/4

∫ ∞
−∞

φN−1,(43)

and observe that εψτ = βN+1 − ε̃ψτ . Thus

LSR
τ = L

(
Sτ − 1

2φτ ⊗ ε̃ψτ

) + 1
2βN−1L(φτ ⊗ 1).

Now L = L̃ +
(

0
ε1+ε̃1

0
0

)
and 2(ε1 + ε̃1) amounts to integration over R in the first

slot. From (23), after interchanging orders of integration and using
∫

φτ = 0, we
obtain ∫ ∞

−∞
Sτ (s, t) ds =

∫ ∞
0

βN−1φτ (t + z) dz = βN−1ε̃φτ (t),
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and then

[(L − L̃)(Sτ − φτ ⊗ ε̃ψτ )]2,1 = 1
2βN−1 ⊗ ε̃φτ

as the only nonzero entry of the matrix on the left-hand side. Combining the last
two displays with (42), we get

Kτ = L̃
(
Sτ − 1

2φτ ⊗ ε̃ψτ

) + 1
2βN−1[L1φτ (s) + L2φτ (t)] + Kε.(44)

4◦. We now look at the (1,1) terms in (39) and (44) in order to see, somewhat
informally, how the choice μR

N = uN leads to O(N−2/3) convergence. Thus, we
examine the difference[

Sτ − 1
2φτ ⊗ ε̃τ

] − [
SA − 1

2A ⊗ ε̃A
] + 1

2 [βN−1φτ − A].(45)

From definitions (15) and expansions (17), this choice of μR
N corresponds to

φR
τ (s) = φτ (s;0) = A(s) + O(N−2/3),

(46)
ψR

τ (s) = ψτ (s;1) = A(s) + �NA′(s) + O(N−2/3).

We write AN = A + �NA′ and define

SAN
= 1

2(A � AN + AN � A).

From representation (23) and (46), Sτ = SAN
+ O(N−2/3), while the identity

SAN
= SA − 1

2�NA ⊗ A

follows from

(A � A′ + A′ � A)(s, t) =
∫ ∞

0

d

dz
[A(s + z)A(t + z)]dz = −A(s)A(t).

Thus

Sτ = SA − 1
2�NA ⊗ A + O(N−2/3).

Since ε̃A′ = −A, we have ε̃AN = ε̃A − �NA, and so

1
2φτ ⊗ ε̃ψτ = 1

2A ⊗ ε̃A − 1
2�NA ⊗ A + O(N−2/3).

Forming the difference of the last two displays, we see an important cancellation
of the O(N−1/3) terms involving �N , and hence that the first two terms of (45)
together are O(N−2/3).

A computation with the recursion relation for Hermite polynomials and then
Stirling’s formula [with its O(N−1) error term] shows that, as N → ∞,

βN−1 =
(

πN

2

)1/4 √
(N − 1)!

2(N−1)/2((N − 1)/2)! = 1 + O(N−1).

From this and (46), it follows that the final term of (45) is also O(N−2/3).
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5◦. To prepare for the convergence argument for the 2 × 2 matrix kernels, we
combine (39) and (44). Noting also from our considerations above that

SA − 1
2A ⊗ ε̃A = SAN

− 1
2A ⊗ ε̃AN,

we obtain the basic difference representation

Kτ − KGOE = L̃(Sτ − SAN
) − 1

2 L̃(φτ ⊗ ε̃ψτ − A ⊗ ε̃AN)
(47)

+ 1
2L1[βN−1φτ − A](s) + 1

2L2[βN−1φτ − A](t),
from which we may expect to show O(N−2/3) convergence, in view of the fact
that φτ ,ψτ , Sτ and βN−1 merge, respectively, with A,AN,SAN

and 1 at rates of
at least O(N−2/3).

6◦. We now turn to study the convergence of

FN+1,1(s0) = P
{(

x(1) − μN

)
/τN ≤ s0

} = √
det(I − Kτ)(48)

to F1(s0) = √
det(I − KGOE). Tracy and Widom (2005) describe with some care

the nature of the operator convergence of KN+1 to KGOE for the Gaussian finite
N ensemble. We adopt their framework of weighted L2 spaces and regularized
2-determinants. Thus, let ρ be a weight function such that ρ−1 ∈ L1(R) and all
φN ∈ L2(ρ). Write L2(ρ) and L2(ρ−1) for the spaces L2((s0,∞), ρ(s) ds) and
L2((s0,∞), ρ−1(s) ds), respectively.

We consider Kτ and KGOE as members of the collection B of 2 × 2 Hilbert–
Schmidt operator matrices B = (Bij , i, j = 1,2) on L2(ρ) ⊕ L2(ρ−1) whose di-
agonal entries are trace class. Note that ε :L2(ρ) → L2(ρ−1) as a consequence of
the assumption that ρ−1 ∈ L1. The specific ρ that we use is defined in (31) with
γ > 0.

To analyze the convergence of pN+1 = FN+1,1(s0) to p∞ = F1(s0), we note
that their difference is bounded by |p2

N+1 − p2∞|/p∞, so that we are led to the
difference of determinants

|FN+1,1(s0) − F(s0)| ≤ C(s0)|det(I − Kτ) − det(I − KGOE)|.(49)

A Seiler–Simon-type bound on the matrix operator determinant for operators
in B is established in Johnstone (2008).

PROPOSITION 3. For B,B ′ ∈ B, we have

|det(I − B) − det(I − B ′)| ≤ C(B,B ′)�(B − B ′),
where

�(B) =
2∑

i=1

‖Bii‖1 + ∑
i �=j

‖Bij‖2.

The coefficient has the form C(B,B ′) = ∑2
j=1 c1j (trB, trB ′)c2j (B,B ′), where

c1j and c2j are continuous functions, the latter with respect to the strong (Hilbert–
Schmidt norm) topology.
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Insert the conclusion of Proposition 3 into (49) to obtain

|FN+1,1(s0) − F1(s0)| ≤ C(s0,Kτ ,KGOE)�(Kτ − KGOE).(50)

We exploit decomposition (47), which we write in the form

Kτ − KGOE = δI + δF
0 + δF

1 + δF
2

to distinguish a term involving integral kernels, δI = L̃(Sτ − SAN
) from terms

involving finite rank operators. We establish trace norm bounds for the diagonal
elements and Hilbert–Schmidt bounds for the off-diagonal entries. The distinction
between the two norms is moot for the finite rank terms δF

i , so the trace bounds
are actually also needed only for the δI term.

For each term, we show ‖δij‖ ≤ CN−2/3, so that �(Kτ − KGOE) is bounded
above by CN−2/3. We have both ‖Kτ − KGOE‖2 and trKτ − trKGOE converging
to 0 at O(N−2/3) rate, so that C(Kτ ,KGOE) remains bounded as N → ∞.

7◦. To bound each term δij , we need orthogonal case analogs of the uniform
bounds of Corollary 1, but now for φR

τ ,ψR
τ and their integrals and derivatives.

From Proposition 1 and the succeeding discussion, we obtain

COROLLARY 2 (Real case). Let φτ and ψτ be defined by (46) and (15). Given
sL ∈ R, there exists C = C(sL) such that for N ≥ N(sL) and s ≥ sL,

|φτ (s)| ≤ Ce−s,(51)

|ψτ (s)| ≤ Ce−s,(52)

|φτ (s) − A(s)| ≤ CN−2/3e−s/2,(53)

|ψτ (s) − A(s) − �NA′(s)| ≤ CN−2/3e−s/2.(54)

The same bounds hold, with modified constants C, when φτ ,ψτ ,A and A′ are
replaced, respectively, by φ′

τ ,ψ
′
τ ,A

′ and A′′, or when ψτ ,A and A′ are replaced
by ε̃ψτ , ε̃A and ε̃A′.

δI term. For δI = L̃[Sτ − SAN
], we use Proposition 2 to establish the needed

Hilbert–Schmidt and trace norm bounds for each entry in the 2 × 2 matrix. We
write

Sτ − SAN
= (φτ − A) � ψτ + A � (ψτ − AN) + (ψτ − AN) � φτ + AN � (φτ − A).

In turn, for ∂2(S̄τ − SAN
) we replace the second slot arguments ψτ , (ψτ − AN),

etc., by their derivatives, and for ε̃(S̄τ − SAN
), we replace the first slot arguments

(φτ − A), etc., by their right tail integrals.
Consider, for example, the first term (φτ − A) � ψτ . We apply Proposition 2

using (51) and (53) to set

aN = CN−2/3, bN = C, a1 = 1
2 , b1 = 1.
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The argument is entirely parallel when ∂2 and ε̃1 is applied to (φτ − A) � ψτ , and
also for each of the second through fourth terms. Thus, if Dij denotes any matrix
entry in any component of δI , we obtain

‖Dij‖ ≤ CN−2/3e−3s0/2+γ |s0|.(55)

Finite rank terms. As Tracy and Widom (2005) note, the norm of a rank-one
kernel u(x)v(y), when regarded as an operator u ⊗ v taking L2(ρ1) to L2(ρ2) is
given by

‖u ⊗ v‖ = ‖u‖2,ρ2‖v‖2,ρ−1
1

.(56)

Here the norm can be trace, Hilbert–Schmidt or operator norm, since all agree for
a rank-one operator.

The finite rank terms include ones of the form L̃(a ⊗ ε̃b). We use (56) to estab-
lish entrywise bounds( ‖a ⊗ ε̃b‖ ‖a ⊗ b‖

‖ε̃a ⊗ ε̃b‖ ‖ε̃b ⊗ a‖
)

≤
(

A+B− A+B+
A−B− A+B−

)
,(57)

where

A+ = ‖a‖+, B+ = ‖b‖+,

A− = ‖ε̃a‖−, B− = ‖ε̃b‖−.

Indeed, for the (i, j)th entry, apply (56) to aij ⊗ bij :L2(ρj ) → L2(ρi), where
ρ1 = ρ and ρ2 = ρ−1. On the right, and henceforth, we abbreviate the L2 norms
on L2(ρ) and L2(ρ−1) by ‖ · ‖+ and ‖ · ‖−, respectively.

Let us indicate how this applies to

−2δF
0 = L̃[φτ ⊗ ε̃(ψτ − AN) + (φτ − A) ⊗ ε̃AN ].

Consider the first term on the right-hand side—the second term is similar—and
apply (57) with a = φτ , b = ψτ − AN . From Corollary 2 we have

A2+ = ‖φτ‖2+ =
∫ ∞
s0

φ2
τ ρ ≤ C(γ )e−2s0+γ |s0|,

B2− = ‖ε̃(ψτ − AN)‖2− ≤ C(γ )N−4/3e−s0+γ |s0|

and with similar bounds, respectively, for A2− and B2+. Hence

A±B± ≤ C(γ )N−2/3e−3s0/2+γ |s0|.(58)

Turning to the the δF
1 , δF

2 terms, we have

2δF
1 =

(
(uN1 − A) ⊗ 1 0

−(uN2 − ε̃A) ⊗ 1 0

)
, 2(δF

2 )t =
(

0 1 ⊗ (uN2 − ε̃A)

0 1 ⊗ (uN1 − A)

)

with uN1 = βN−1φτ and uN2 = βN−1ε̃φτ . Using (57), we find that the norms of
the terms in the first column of δF

1 are bounded by ‖uN1 − A‖+‖1‖− and ‖uN2 −
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ε̃A‖−‖1‖− while the norms of the second column of (δF
2 )t are bounded by the

same quantities interchanged.
From the definitions, and with s0 ≥ 0, we have ‖1‖2− ≤ γ −1e−γ s0 and

‖uN1 − A‖+ ≤ |βN−1 − 1|‖φτ‖+ + ‖φτ − A‖+.

Note that |βN−1 − 1| = O(N−1). Using also the bounds of Corollary 2,

‖uN1 − A‖+ ≤ (CN−1e−s0 + CN−2/3e−s0/2)eγ s0/2

and ‖uN1 − A‖+‖1‖− ≤ CN−2/3e−s0/2. The term ‖uN2 − ε̃A‖− is bounded anal-
ogously.

We finally assemble the bounds obtained from (55), (58) and the analysis of δF
i

and only track the tail dependence on s0 for s0 > 0. Thus (50) is bounded by

CN−2/3(e−3s0/2+γ s0 + e−s0/2),

where the second term results from δF
1 and δF

2 . It is clear that γ = 1 yields a bound
CN−2/3e−s0/2.

APPENDIX A: HERMITE POLYNOMIAL ASYMPTOTICS NEAR
LARGEST ZERO

Define new independent and dependent variables ζ and W via the equations (7),
which put (6) into the form

d2W

dζ 2 = {κ2ζ + ψ(ζ )}W,(59)

where the perturbation term ψ(ξ) = ζ̇−1/2(d2/dζ 2)(ζ̇ 1/2). If the perturbation term
ψ(ζ ) were absent, the equation d2W/dζ 2 = κ2ζW would have linearly indepen-
dent solutions in terms of the Airy functions Ai(κ2/3ζ ) and Bi(κ2/3ζ ). Our interest
is in approximating the recessive solution Ai(κ2/3ζ ), so write the relevant solution
of (59) as W2(ζ ) = Ai(κ2/3ζ ) + η(ζ ). In terms of the original independent and
dependent variables w and ξ, the solution W2 becomes

w2(ξ, κ) = ζ̇−1/2(ξ){A(κ2/3ζ ) + ε2(ξ, κ)}.(60)

Olver (1974)—hereafter abbreviated as [O]—provides, in his Theorem 11.3.1,
an explicit bound for η(ζ ) and hence ε2 and its derivative. To describe these error
bounds even in the oscillatory region of A(x), [O] introduces a positive weight
function E(x) ≥ 1 and positive moduli functions M(x) ≤ 1 and N(x) such that for
all x,

|A(x)| ≤ M(x)E−1(x), |A′(x)| ≤ N(x)E−1(x).(61)

[Here, E−1(x) denotes 1/E(x).] In addition,

A(x) = 2−1/2M(x)E−1(x), x ≥ c
.= −0.37,(62)
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and the asymptotics as x → ∞ are given by

E(x) ∼ √
2e(2/3)x3/2

, M(x) ∼ π−1/2x−1/4 and N(x) ∼ π−1/2x1/4.(63)

The key bounds of [O, Theorem 11.3.1] then state, for ξ > 0 and f̂ (ξ) = f (ξ)/ξ ,

|ε2(ξ, κ)| ≤ (M/E)(κ2/3ζ )

[
exp

{
λ0

κ
V(ζ )

}
− 1

]
,(64)

|∂ξ ε2(ξ, κ)| ≤ κ2/3N−1f̂ 1/2(ξ)(N/E)(κ2/3ζ ),(65)

where λ0
.= 1.04. For κ2/3ζ ≥ c, (62) shows that the coefficient in (64) is just√

2A(κ2/3ζ ). Here V(ζ ) = V[ξ,∞](H) is the total variation on [ξ,∞] of the er-

ror control function H(ξ) = − ∫ ζ(ξ)
0 |v|−1/2ψ(v)dv. From [O, page 403] we have

λ0V[ξ,∞)(H) ≤ 0.28 and hence

exp
{
λ0

κ
V(ζ )

}
− 1 ≤ 1/N.(66)

Application to Hermite polynomials. In the case of Hermite polynomials, trans-
formed as in (6), the points ±∞ are irregular singularities, and the points ξ± = ±1
are turning points. We are interested in behavior near the upper turning point ξ+,
which is located near the largest (scaled) zero of HN . Using (8), the independent
variable ζ(ξ) is given in terms of f (ξ) by

(2/3)ζ 3/2(ξ) = 1
2ξ(ξ2 − 1)1/2 − 1

2 log
(
ξ + (ξ2 − 1)1/2)

(67)

for ξ ≥ 1, and by

(2/3)(−ζ )3/2(ξ) = 1
2 [cos−1 ξ − ξ(1 − ξ2)1/2],

for ξ ≤ 1. The function ζ(ξ) is increasing and C2 on (0,∞) (e.g., [O, page 399]),
with ζ̈ (ξ) nonnegative and bounded. It is easily seen that ζ → ∞ as ξ → ∞, and
more precisely, from (67), that

(2/3)ζ 3/2(ξ) = 1
2

(
ξ2 − log ξ − 1

2 − log 2
) + O(ξ−2),(68)

from which it follows that

ζ̇ (ξ) ∼ (4ξ/3)1/3 as ξ → ∞.(69)

We remark that ζ̇ = ζ̇ (1) is easily evaluated using L’Hôpital’s rule. From (67),
as ξ → 1, we have ζ̇ 2(ξ) = (ξ2 − 1)/ζ(ξ) → 2/ζ̇ , so that ζ̇ = 21/3. In addition,
we shall need the function

r(ξ) = [ζ̇ (ξ)/ζ̇ ]−1/2,

which is positive on (0,∞) since ζ(ξ) is strictly increasing. Both r(ξ) and ṙ(ξ )

are continuous on [0,∞), and as ξ → ∞ we have r(ξ) ∼ (2ξ/3)−1/6 and ṙ(ξ) ∼
c1ξ

−7/6, so that r(ξ) and r ′(ξ) are both bounded on [0,∞).
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Bound (64) has a double asymptotic property in ξ and κ which will be useful.
First, suppose that N , and hence κ , are held fixed. As ξ → ∞, V(ζ ) → 0 and
so from (64) and its following remarks ε2(ξ, κ) = o(A(κ2/3ζ )). Consequently,
as ξ → ∞ we have w2(ξ, κ) ∼ ζ̇−1/2(ξ)A(κ2/3ζ ). If the weighted polynomial
wN(ξ) is a recessive solution of (6), then it must be proportional to w2, so that
wN(ξ) = cNw2(ξ, κ). Now cN may be identified by comparing the growth of
wN(ξ) as ξ → ∞ with that of w2(ξ, κ) (Appendix B),

cN = eθ ′′/Nκ
1/6
N (2/N)1/4,(70)

where θ ′′ = O(1). Now we can use (60) to write φN(x) = wN(ξ) in terms of
the Airy approximation. Below, we write ēN for any term, that is, uniformly 1 +
O(N−1). Hence

(2N)1/4φN(x) = ē21/2κ
1/6
N w2(ξ, κ).

Set N+ = N +1/2 and τ̄N = 2−1/2N
−1/6
+ . Since 21/2κ

1/6
N ζ̇ (ξ)−1/2 = τ̄−1

N r(ξ), and
using the Airy approximation (60) to w2(ξ, κ), we finally have

(2N)1/4τ̄NφN(x) = ēN r(ξ){A(κ
2/3
N ζ) + ε2(ξ, κN)}.(71)

Approximations at degree N and N − 1. The kernel SN,2(x, y) is expressed in
terms of the two functions φN−1(x) and φN(x), which need separate Liouville–
Green asymptotic approximations. Thus, for example, in comparing the two cases,
we have κN = 2N + 1 and κN−1 = 2N − 1. The turning point ξ+ = 1 and the
transformation ζ(ξ) of (67) are the same in both cases, hence so is r(ξ). The analog
of (71) then states

(2N − 2)1/4τ̄N−1φN−1(x) = ēN−1r(ξ){A(κ
2/3
N−1ζ ) + ε2(ξ, κN−1)}.

Rather than τ̄Nj = 2−1/2N
−1/6
± , we will use the single factor τN = 2−1/2N−1/6

in the work below. Clearly, we may replace both (2N)1/4τ̄N in (71) and (2N −
2)1/4τ̄N−1 in the preceding display by (2N)1/4τN at cost of multiplicative error
terms eNj = 1 + O(N−1).

To summarize then, with the convention that quantities with subscript Nj differ
for Nj = N,N − 1, while those with subscript N do not, we have

(2N)1/4τNφNj (x) = eNj r(ξ){A(κ
2/3
Nj ζ ) + ε2(ξ, κNj )}.(72)

Denote the left-hand side of (72) by φ̄Nj . We seek a uniform bound on the Airy
approximation. If we write x = √

κNjξ in the form uNj + sτN , then we have in
particular uN = √

2N + 1 and uN−1 = √
2N − 1. In turn,

ξ = 1 + sτN/
√

κNj = 1 + sσNj ,

where we define

σNj = τN/uNj = 2−1/2N−1/6(2N ± 1)−1/2 = 2−1N−2/3(
1 + O(N−1)

)
.(73)
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We turn now to the proof of Proposition 1. We first record some properties of
the map s → κ

2/3
Nj ζ(1 + σNj s), which we sometimes abbreviate as κ2/3ζ .

LEMMA 1. Given sL ∈ R,

|κ2/3ζ − s| ≤ |s|/4 for sL ≤ s ≤ N1/6,N ≥ N0,(74)

|κ2/3ζ | ≤ C|s|/4 for sL ≤ s ≤ CN2/3, all N.(75)

PROOF. Expand ζ(ξ) about the turning point ξ+ = 1:

κ
2/3
Nj ζ(1 + σNj s) = κ

2/3
Nj σNj ζ̇ s + 1

2κ
2/3
Nj σ 2

Nj s
2ζ̈ (ξ∗).(76)

We note from the definitions that

κ
2/3
Nj σNj ζ̇ = (

1 ± 1/(2N)
)1/6 = 1 + δN,(77)

with |δN | ≤ N−1 for all N ≥ 1. Since 0 ≤ ζ̈ is bounded, we find that

|κ2/3ζ − s| ≤
(

1

N
+ M|s|

N2/3

)
|s|,(78)

again for all N ≥ 1. If s < N1/6, then the right-hand side is bounded by |s|/4 for
N ≥ N0(M, sL). If |s| < N2/3, then we have (75) for C = C(sL,M). �

We consider some global bounds, valid for s ≥ sL, or equivalently for ξ ≥ 1 +
sLσNj .

LEMMA 2. Let sL < 0. Let ξ = 1+σNj s with σNj satisfying (73). There exists
C = C(sL) such that for s ≥ sL,

E−1(κ
2/3
Nj ζ ) ≤ Ce−2s,

N(κ2/3ζ ) ≤ C(1 + |s|1/3).

Some immediate consequences: using (61) and M ≤ 1, for s ≥ sL,

|A(κ
2/3
Nj ζ(ξ))| ≤ |M/E|(κ2/3ζ ) ≤ Ce−2s,(79)

|ε2(ξ, κ)| ≤ N−1|N/E|(κ2/3ζ ) ≤ CN−1e−2s,(80)

|A′(κ2/3
Nj ζ(ξ))| ≤ |N/E|(κ2/3ζ ) ≤ C(1 + |s|1/3)e−2s .(81)

PROOF. First, since f (ξ) = (ξ + 1)(ξ − 1) ≥ 2σNj s, we use (77) to observe
that for s ≥ r2,

κNjσNj

√
f ≥ √

2κNjσ
3/2
Nj

√
s ≥ eNj r.
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Hence, from (8), again for s ≥ r2,

2

3
κNjζ

3/2 = κNj

∫ ξ

1

√
f = eNj r(s − r2).

Now choose r large enough so that for N > N0 and j = N,N − 1, we have
eNj r ≥ 1. From (63) we have E−1(s) ≤ C exp(−2

3s3/2) for s ≥ 0, and so in partic-
ular for s ≥ r2,

E−1(κ
2/3
Nj ζ ) ≤ C(r)e−s .

For s ∈ [sL, r2], we simply use the bound E ≥ 1.

For the second statement, we will use the bound N(s) ≤ 1 + |s|1/4 [O,
pages 396–397]. First, for s ≤ N2/3, using the bound on N and (75), we obtain
N(κ2/3ζ ) ≤ C(1 + |s|1/4). When s ≥ N2/3, we use (67) to bound

(2/3)ζ 3/2(ξ) ≤
∫ ξ

1
t dt ≤ ξ2/2 ≤ 1 + σ 2

Nj s
2 ≤ c0σ

2
Nj s

2.

From (73) we have κNjσ
2
Nj = 2N−1/3 and so κNjζ

3/2 ≤ c1s
2 for all N and hence

N(κ2/3ζ ) ≤ 1 + c
1/6
1 s1/3 as required. �

PROOF OF PROPOSITION 1. We begin from the formula

φ̄Nj (uNj + sτN) = eNj r(ξ){A(κ
2/3
Nj ζ ) + ε2(ξ, κNj )}.(82)

The bound (12) then follows from (80), (79) and boundedness of r(ξ). To ease
notation, we will, as needed, drop subscripts from eNj , σNj , κNj , and τN , writing ē

for a term, that is, generically 1 + O(N−1).
For the next bound, we differentiate (82), obtaining

τN φ̄′
Nj (uNj + sτN) = D1 + D2 + D3,(83)

with the component terms given by

D1 = ēσ ṙ(ξ)[A(κ2/3ζ ) + ε2(ξ, κ)],
D2 = ēr(ξ)A′(κ2/3ζ )σκ2/3ζ̇ (ξ),

D3 = ēr(ξ)σ∂ξ ε2(ξ, κ).

Since ṙ(ξ) is bounded, we again use (80) and (79) to conclude that |D1| ≤
CσNe−2s for all s ≥ sL. From (77) and (69), we observe that

σNκ
2/3
N ζ̇ (ξ) ≤ C|ξ |1/3 ≤ C(1 + σ

1/3
N |s|1/3).(84)

Turning to the second term, we have from (84) and (81) that

|D2| ≤ C|A′(κ2/3ζ )σκ2/3ζ̇ (ξ)| ≤ C(1 + σ
1/3
N |s|1/3)(1 + |s|1/3)e−2s ≤ Ce−s .
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Using (65) and (66), we can rewrite D3 as

|D3| ≤ CN−1 · r(ξ)σNκ
2/3
N ζ̇ (ξ) · (N/E)(κ2/3ζ ).

Using also boundedness of r(ξ), (84) and (81), we conclude for all s ≥ sL,

|D3| ≤ CN−1 · √2 · (1 + σ
1/3
N |s|1/3)(1 + |s|1/3)e−2s ≤ CN−2/3e−s .

This completes the proof of bound (12) for τN φ̄Nj . �

Turning to the error bound (13) and its analog for τN φ̄Nj , we first note that
we may confine attention to s ∈ [sL,N1/6], since for s ≥ N1/6, the bounds follow
trivially from (12) and its analog and (14).

We use the decomposition suggested by (82),

φ̄Nj (x) − A(s) = [eNj r(ξ) − 1]A(κ
2/3
Nj ζ ) + [A(κ

2/3
Nj ζ ) − A(s)]

+ eNj r(ξ)ε2(ξ, κNj )

= EN1 + EN2 + EN3.

For the EN1 term, first use ξ = 1 + σNj s to write

|ζ̇ (ξ)/ζ̇ − 1| =
∣∣∣∣
∫ 1+sσNj

1
ζ̈ (u)/ζ̇ du

∣∣∣∣ ≤ CsσNj ,(85)

since ζ̈ (u) is bounded for u ∈ [1,1+sσNj ] ⊂ [1,1+N−1/2]. Together with r(ξ) =
[ζ̇ (ξ)/ζ̇ ]−1/2, this yields

|eNj r(ξ) − 1| ≤ C(1 + s)σNj .(86)

Combined with (79), we obtain |EN1| ≤ CσNj (1 + s)e−2s ≤ CN−2/3e−s/2.

For the EN2 term, we use (74) and (78) to write

|A(κ
2/3
Nj ζ ) − A(s)| ≤ C|s|N−2/3(N−1/3 + |s|) sup

{|A′(t)| : 3
4s ≤ t ≤ 5

4s
}

≤ CN−2/3e−s/2,

uniformly for s ∈ [sL,N1/6], where we used (14).
Finally, for the EN3 term, (80) and boundedness of r imply that

|EN3| ≤ eNj r(ξ)(M/E)(κ
2/3
Nj ζ )N−1 ≤ CN−1e−2s .

We turn now to the proof of (13) for τN φ̄Nj on [sL,N1/6]. Using (83), we may
write the difference τN φ̄′

Nj (x) − A′(s) as D1(s) + [D2(s) − A′(s)] + D3(s). Now
decompose D2(s) − A′(s) = G1 + G2 + G3, with

G1 = [ēr(ξ) − 1][ζ̇ (ξ)/ζ̇ ]A′(κ2/3ζ ), G2 = [ζ̇ (ξ)/ζ̇ − 1]A′(κ2/3ζ )
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and G3 = A′(κ2/3ζ ) − A′(s). Combining (86), (81) and then (85), we find

|G1| ≤ C(1 + s)σN · 2 · C(1 + |s|1/3)e−2s ≤ CN−2/3e−s/2,

|G2| ≤ CsσN · C(1 + |s|1/3)e−2s ≤ CN−2/3e−s/2.

G3 is treated in exactly the same manner as the EN2 term above, additionally using
the equation A′′(x) = xA(x).

APPENDIX B: IDENTIFICATION OF cN

We first remark that as ζ → ∞ when ξ → ∞, we may substitute A(x) ∼
[2√

πx1/4]−1 exp{−(2/3)x3/2} into (60), along with ζ̇−1/2 = [ζ/f (ξ)]1/4 from (7)
to obtain

w2(ξ, κ) ∼ [2√
π ]−1κ−1/6f −1/4(ξ) exp{−(2/3)κζ 3/2}.

Consequently we may express cN in terms of the limit

cN = lim
ξ→∞wN(ξ) · 2

√
πκ1/6f 1/4(ξ) · exp{(2/3)κζ 3/2}.

Write N+ for N + 1/2. Since wN(ξ) = φN(x) with x = √
2N+ξ , and since

HN(x) ∼ 2NxN , we have as ξ → ∞,

wN(ξ) = h
−1/2
N e−N+ξ2

HN

(√
2N+ξ

) ∼ h
−1/2
N e−N+ξ2+N log ξ 2N(2N+)N/2,

and f 1/4(ξ) = e(log ξ)/2+O(ξ−2), while from (68)

exp{(2/3)κζ 3/2} = eN+ξ2−N+ log ξ−N+/2−N+ log 2+O(ξ−2).

Multiply the last three quantities: the coefficients of ξ2 and log ξ cancel, leaving
ξ -dependence of only O(ξ−2) as ξ → ∞. Hence

cN = 2
√

πκ1/6h
−1/2
N (2N+)N/2e−N+/22N−N+,

and noting that (N/2) logN+ = (N/2) logN + 1/4 + O(N−1), we get

κ−1/6cN

√
hN = √

2π exp
{
N

2
log 2 + N

2
logN − N

2
+ O

(
1

N

)}
.

Applying Stirling’s formula to hN = √
π2NN !, and dividing into the previous dis-

play yields (70).
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