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Subsampling Methods for Genomic Inference

Abstract
Large-scale statistical analysis of data sets associated with genome sequences plays an important role in
modern biology. A key component of such statistical analyses is the computation of p-values and confidence
bounds for statistics defined on the genome. Currently such computation is commonly achieved through ad
hoc simulation measures. The method of randomization, which is at the heart of these simulation procedures,
can significantly affect the resulting statistical conclusions. Most simulation schemes introduce a variety of
hidden assumptions regarding the nature of the randomness in the data, resulting in a failure to capture
biologically meaningful relationships. To address the need for a method of assessing the significance of
observations within large scale genomic studies, where there often exists a complex dependency structure
between observations, we propose a unified solution built upon a data subsampling approach. We propose a
piecewise stationary model for genome sequences and show that the subsampling approach gives correct
answers under this model. We illustrate the method on three simulation studies and two real data examples.

Keywords
genome structure correction (GSC), subsampling, piecewise stationary model, segementation-block
bootstrap, feature overlap

Disciplines
Applied Statistics | Biostatistics | Genetics and Genomics | Statistics and Probability

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/statistics_papers/357

http://repository.upenn.edu/statistics_papers/357?utm_source=repository.upenn.edu%2Fstatistics_papers%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages


The Annals of Applied Statistics
2010, Vol. 4, No. 4, 1660–1697
DOI: 10.1214/10-AOAS363
© Institute of Mathematical Statistics, 2010

SUBSAMPLING METHODS FOR GENOMIC INFERENCE1
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Large-scale statistical analysis of data sets associated with genome se-
quences plays an important role in modern biology. A key component of such
statistical analyses is the computation of p-values and confidence bounds for
statistics defined on the genome. Currently such computation is commonly
achieved through ad hoc simulation measures. The method of randomization,
which is at the heart of these simulation procedures, can significantly affect
the resulting statistical conclusions. Most simulation schemes introduce a va-
riety of hidden assumptions regarding the nature of the randomness in the
data, resulting in a failure to capture biologically meaningful relationships.
To address the need for a method of assessing the significance of observa-
tions within large scale genomic studies, where there often exists a complex
dependency structure between observations, we propose a unified solution
built upon a data subsampling approach. We propose a piecewise stationary
model for genome sequences and show that the subsampling approach gives
correct answers under this model. We illustrate the method on three simula-
tion studies and two real data examples.

1. Introduction.

1.1. Background. This paper grew out of a number of examples arising in data
coming from the Encyclopedia of DNA Elements (ENCODE) Pilot Project [Birney
et al. (2007)], which is composed of multiple, diverse experiments performed on a
targeted 1% of the human genome. Computational analyses of this data are aimed
at revealing new insights about how the information coded in the DNA blueprint
is turned into functioning systems in the living cell. Variations of some of the
methods described here have been applied at various places in that paper, as well
as in Margulies et al. (2007), for assessing significance and computing confidence
bounds for statistics that operate along a genomic sequence. The background of
these methods is described in cookbook form in the supplements to those papers,
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and it is the goal of this paper to present them rigorously and to develop some
necessary refinements.

Essentially, we will argue that, in making inference about statistics computed
from “large” stretches of the genome, in the absence of real knowledge about the
evolutionary path which led to the genome in question, the best we can do is to
model the genome by a piecewise stationary ergodic random process. The variables
of this process can be base pair composition or some other local features, such as
various annotated functional elements.

In the purely stationary case some of the types of questions that we will ad-
dress, such as tests for independence of point processes, confidence bounds for
expectations of local functions and goodness of fit of models, have been consid-
ered extensively. However, inference for piecewise stationary models appears not
to have been investigated. With the advent of enormous amounts of genomic data,
all sorts of inferential questions have arisen. The proposed model may be the only
truly nonparametric approach to the genome, although, just as in ordinary non-
parametric statistics, there are many possible ways of carrying out inference.

Our methods are based on a development of the resampling schemes of Poli-
tis and Romano (1994), Politis, Romano and Wolf (1999) and the block bootstrap
methods of Künsch (1989). As we shall see, in many situations, Gaussian approx-
imations can replace these schemes. But in these situations, as with the ordinary
bootstrap, we believe that a subsampling approach is valuable for the following
reasons:

• Letting the computer do the approximation is much easier.
• Some statistics, such as tests of the Kolmogorov–Smirnov type, are functions

of stochastic processes to which a joint Gaussian approximation applies. Then,
limiting distributions can only be computed by simulation.

• The bootstrap distributions of our statistics show us whether the approximate
Gaussianity we have invoked for the “true” distribution of these statistics is in
fact warranted. This visual confirmation is invaluable.

This paper is organized as follows. We begin with some concrete examples from
the ENCODE data as well as other types of genomic data in Section 1.2, and
proceed with a motivated description of our model in Section 2. Our methods are
discussed both qualitatively and mathematically in Sections 3 and 4. Section 5
contains results from simulation studies and real data analysis. Proofs of theorems
stated in Sections 3 and 4 can be found in the supplemental article [Bickel et al.
(2010)].

The statistics and methods discussed in this paper have been implemented
in several computing languages and are available for download at http://www.
encodestatistics.org/. Each of these implementations runs in n log(n) time, where
n is the number of instances of the more frequent feature. On a desktop PC (Intel
Core Duo 3 GHz and 2 Gb RAM) the Python version takes over 1000 samples per
second for features on the order of 104 instances.

http://www.encodestatistics.org/
http://www.encodestatistics.org/
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1.2. Motivating examples. We start with several fundamental questions that
arise in genomic studies.

• Association of functional elements in genomes. In genomic analyses, a natural
quantity of interest is the association among different functional sites/features
annotated along the DNA sequence. Its biological motivation comes from the
common belief that significant physical overlapping or proximity of functional
sites in the genome suggests biological constraints or relationships. In the EN-
CODE project, to understand the possible functional roles of the evolutionarily
constrained sequences that are conserved across multiple species, overlap be-
tween the constrained sequences and several experimental annotations, such as
5’UTR, RxFrags, pseudogenes, and coding sequences (CDSs), have been eval-
uated using the method discussed in this paper. It was found that the overlap of
most experimental annotations with the constrained sequences are significantly
different from random [Birney et al. (2007)]. An illustrative example from The
ENCODE Project [Birney et al. (2007)] is detailed in Section 5.1.

• Cooperativity between transcription factor binding sites. In some situations,
there is interest to study the associations between neighboring functional sites
that do not necessarily overlap. For instance, it is known that transcription fac-
tors often work cooperatively and their binding sites (TFBS) tend to occur
in clusters [Zhang et al. (2006)]. Consequently, methods for identifying inter-
acting transcription factors usually involve evaluating the significance of co-
occurrences of their binding sites in a local genomic region [Zhou and Wong
(2004); Das, Banerjee and Zhang (2004); Yu, Yoo and Greenwald (2004);
Huang et al. (2004); Kato et al. (2004); Gupta and Liu (2005)]. This problem
has the same formulation as the above ENCODE examples given a functional
site defined as follows: for a TFBS of length l at position i, we define the region
(i −m, i + l +m) as a functional site. Then two overlapping functional sites are
equivalent to two neighboring TFBSs with interdistance less than 2m, and the
methods discussed in this paper for evaluating the significance of overlapping
functional features can be applied. We leave this and related applications which
involve considering statistics of the K-S type to a later paper.

• Correlating DNA copy number with genomic content. Recent technology has
made it possible to assay DNA copy number variation at a very fine scale along
the genome [for review, see Carter (2007)]. Many studies, for example, Redon
et al. (2006), have shown that such variation in DNA copy number is a common
type of polymorphism in the human genome. To what extent do these regions
of copy number changes overlap with known genomic features, such as coding
sequences? Redon et al. performed such an analysis and argued that copy num-
ber variant regions have a significant paucity for coding regions. The p-values
supporting this claim were based on random permutations of the start locations
of the variant segments. This assumes uniformity and stationarity of the copy
number variants. However, CNVs do not occur at random and are often clus-
tered in regions of the genome containing segmental duplications. The methods
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discussed in this paper for evaluating the significance of overlapping features,
which assume neither uniformity nor stationarity, can again be applied to this
problem. Actually, the results from our method suggest a different conclusion
on this problem (see Section 5.5).

As we have seen in these examples, a common question asked in many appli-
cations is the following: Given the position vectors of two features in the genome,
for example, “conservation between species” and “transcription start sites,” and
a measure of relatedness between features, for example, base or region percent-
age overlap, how significant is the observed value of the measure? How does it
compare with that which might be observed “at random?”

The essential challenge in the statistical formulation of this problem is the ap-
propriate modeling of randomness of the genome, since we observe only one of
the multitudes of possible genomes that evolution might have produced for our and
other species.

How have such questions been answered previously? Existing methods employ
varied ways to simulate the locations of features within genomes, but all center
around the uniformity assumption of the features’ start positions: The features
must occur homogeneously in the studied genome region, for example, Blakesley
et al. (2004) and Redon et al. (2006). This assumption ignores the natural clump-
ing of features as well as the nonstationarity of genome sequences. Clumping of
features is quite common along the genome due to either the feature’s own char-
acteristic, for example, transcription factor binding sites (TFBSs) tend to occur
in clusters, or the genome’s evolutionary constraints, for example, conserved ele-
ments are often found in dense conservation neighborhoods. Ignoring these natural
properties could result in misleading conclusions.

In this paper we suggest a piecewise stationary model for the genome (see Sec-
tion 2) and, based on it, propose a method to infer the relationships between fea-
tures which we view as “nonparametric” as possible (see Sections 4.2 and 4.4).
The model is based on assumptions which we demonstrate in real data examples
to be plausible.

2. The piecewise stationary model.

2.1. Genomic motivation. We postulate the following for the observed ge-
nomes or genomic regions:

• They can be thought of as a concatenation of a number of regions, each of which
is homogenous in a way we describe below.

• Features that are located very far from each other on the average have little to
do with each other.

• The number of such homogeneous regions is small compared to the total length
of the observed genome.
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These assumptions, which form the underpinning of our block stationary model for
genomic features, are motivated by earlier studies of DNA sequences, which show
that there are global shifts in base composition, but that certain sequence character-
istics are locally unchanging. One such characteristic is the GC content. Bernardi
et al. (1985) coined the term “isochore” to denote large segments (of length greater
than 300 Kb) that have fairly homogeneous base composition and, especially, con-
stant GC composition. Even earlier, evidence of segmental DNA structure can be
found in chromosomal banding in polytene chromosomes in drosophila, visible
through the microscope, that result from underlying physical and chemical struc-
ture. These banding patterns are stable enough to be used for the identification
of chromosomes and for genetic mapping, and are physical evidence for a block
stationarity model for the GC content of the genome.

The experimental evidence for segmental genome structure and the increasing
availability of DNA sequence data have inspired attempts to computationally seg-
ment DNA into statistically homogeneous regions. The paper by Braun and Müller
(1998) offers a review of statistical methods developed for detecting and model-
ing the inhomogeneity in DNA sequences. There have been many attempts to seg-
ment DNA sequences by both base composition [Fu and Curnow (1990); Churchill
(1989, 1992); Li et al. (2002)] and chemical characteristics [Li et al. (1998)]. Most
of these computational studies concluded that a model that assumes block-wise
stationarity gives a significantly better fit to the data than stationary models [see,
for example, the conclusions of two very different studies by Fickett, Torney and
Wolf (1992) and Li et al. (1998)].

A subtle issue in the definition of “homogeneity” is the scale at which the
genome is being analyzed. Inhomogeneity at the kilobase resolution, for exam-
ple, might be “smoothed out” in an analysis at the megabase level. The level of
resolution is a modeling issue that must be considered carefully with the goal of
the analysis in mind.

Implicit in our formulation is an “ergodic” hypothesis. We want probabilities
to refer to the population of potential genomes. We assume that the statistics of
the genome we have mimic those of the population of genomes. This is entirely
analogous to the ergodic hypothesis that long term time averages agree with space
averages for trajectories of dynamic systems.

2.2. Mathematical formulation. In mathematical terms, the block stationarity
model assumes that we observe a sequence of random variables {X1, . . . ,Xn} po-
sitioned linearly along the genomic region of interest. Xk, k = 1, . . . , n, may be
base composition, or some other measurable feature. We assume that there exist
integers τ = τ (n) = (τ0, . . . , τU ), where 0 = τ0 < τ1 < · · · < τU = n, such that
the collections of variables, {Xτi

, . . . ,Xτi+1}, are separately stationary for each
i = 0, . . . ,U − 1. We let ni = τi − τi−1 be the length of the ith region, and let
there be U such regions in total. For convenience, we introduce the mapping

π : {1, . . . , n} → {(i, j) : 1 ≤ i ≤ U,1 ≤ j ≤ ni}
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which relates the relabeled sequence, {Xij : 1 ≤ i ≤ U,1 ≤ j ≤ ni}, to the original
sequence {X1, . . . ,Xn}. We write π = (π1, π2) with π(k) = (i, j) if and only if
k = τi + j . We will use the notation Xij and Xk interchangeably throughout this
paper.

For any k1, k2, let F k2
k1

be the σ -field generated by Xk1, . . . ,Xk2 . Define m(k)

to be the standard Rosenblatt mixing number [Dedecker et al. (2007)],

m(k) = sup{|P(AB) − P(A)P(B)| :A ∈ F l
1,B ∈ F n

l+k,1 ≤ l ≤ n − k}.
Then, assumptions 1–3 stated in Section 2.1 translate to the following:

A1. The sequence {X1, . . . ,Xn} is piecewise stationary. That is, {Xij : 1 ≤ j ≤ ni}
is a stationary sequence for i = 1, . . . ,U .

A2. There exists constants c and β > 0 such that m(k) ≤ ck−β for all k.
A3. U/n → 0.

An immediate and important consequence of A1–A3 is that, for any fixed
small k, if we define W1 = (X1, . . . ,Xk),W2 = (Xk+1, . . . ,X2k), . . . ,Wm =
(Xn−k+1, . . . ,Xn), where m = n/k, then {W1, . . . ,Wm} also obey A1–A3. This
is useful, for example, in the region overlap example considered in the next sec-
tion.

The remarkable feature of these assumptions, which are more general to our
knowledge than any made heretofore in this context, is that they still allow us to
conduct most of the statistical inference of interest. Not surprisingly, these assump-
tions lead to more conservative estimates of significance than any of the previous
methods.

3. Vector linear statistics and Gaussian approximation. We study the dis-
tribution of a class of vector linear statistics of interest under the above piecewise
stationary model. As an illustration, we consider the ENCODE data examples, and
suppose that we are interested in base pair overlap between features A and B . We
can represent base pair overlap by defining

Ik = 1, if position k belongs to feature A and 0 otherwise,

Jk = 1, if position k belongs to feature B and 0 otherwise.

We can then define Xk = IkJk to be the indicator that position k belongs to both
features A and B . Then, for the n = 30 megabases of the ENCODE regions, the
mean base pair overlap is equal to

X̄ =
n∑

k=1

Xk/n.

Another biologically interesting statistic is the (asymmetric) region overlap, de-
fined as follows: suppose the consecutive feature stretches are T1, . . . , Tα with
lengths τ1, . . . , τα , and the corresponding nonfeature stretches S1, . . . , Sβ with
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lengths ρ1, . . . , ρβ . We assume here that the initial and final stretches consist of
one feature and one nonfeature stretch. The complementary situation, when both
initial and final stretches are of the same type, is dealt with similarly. Without loss
of generality, suppose the initial stretch is nonfeature. Then, S1 = {1, . . . , ρ1}, T1 =
{ρ1 +1, . . . , ρ1 +τ1}, S2 = {ρ1 +τ1 +1, . . . , ρ1 +τ1 +ρ2}, etc. Using Ik , Jk as indi-
cators of feature identity, we define the (unnormalized) region overlap of feature A

stretches with feature B stretches as 1
n

∑α
t=1 Vt where Vt = 1 − ∏

k∈TA,t
(1 − Jk),

where TA,1, . . . , TA,α denote the feature A stretches. This statistic is not linear in
terms of functions of single basepairs, but is linear in functions of blocks of fea-
ture B . These blocks are of random sizes, but are consistent with our hypothesis of
piecewise stationarity that, except for end effects due to feature instances crossing
segment boundaries, the Vt are also stationary. If the lengths τ1, . . . , τα are negligi-
ble compared to n and α is of the order of n, we can expect the mixing hypothesis
to remain valid.

In general, we focus our attention on statistics that can be expressed as a func-
tion of the mean of g(Xi), where g is some well behaved d-dimensional vector
function to be characterized in later sections. By the flexible definition of g, this
encompasses a wide class of situations.

First, we consider vector linear statistics of the form

Tn(X) = n−1
n∑

k=1

g(Xk).

We introduce the following notation:

E[Tn] ≡ μ ≡
U∑

i=1

fiμi ,

where

μi ≡ E[g(Xi1)],
fi ≡ ni/n

and

�n ≡ Var(n1/2Tn) =
U∑

i=1

fiCi(nfi),(3.1)

where

Ci(m) = Ci0 + 2
m∑

	=1

Ci	

(
1 − (	 − 1)

m

)
and

Ci0 ≡ Var g(X1), Ci	 ≡ Cov
(
g(Xi1),g

(
Xi(l+1)

))
.(3.2)

In Theorem 3.1 below, we show asymptotic Gaussianity of Tn given a few more
technical assumptions:
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A4. 1
n

∑
i:ni≤l ni → 0 for all l < ∞.

A5. ∀i, |g|∞ ≤ C < ∞.
A6. 0 < ε0 ≤ ‖�n‖ ≤ ε−1

0 , for all n, where ‖ · ‖ is a matrix norm.

In particular, A4 implies that the contribution of “small regions” to the overall
statistic must not be too large.

THEOREM 3.1. Under conditions A1–A6,

n1/2�−1/2
n (Tn − μ) ⇒ N (0, I),(3.3)

where I is the d × d identity.

The proof of the theorem is in the supplemental article [Bickel et al. (2010)]. If
we have estimates τ̂ of τ which are consistent in a suitably uniform sense, then
estimates of Ci	, Ci(m) using τ̂ in place of τ are also consistent. However, simply
plugging these estimates into (3.1) does not yield consistent estimates of σ 2 if
our approach were to compute confidence intervals by Gaussian approximation.
This is well known for the stationary case. Some regularization is necessary. We
do not pursue this direction but prefer to approach the inference problem from a
resampling point of view—see next section.

In many cases, the statistics of interest are not linear. For example, in the analy-
sis of the ENCODE data a more informative statistic is the %bp overlap defined
as

B ≡ X̄

D
,(3.4)

where

D =
n∑

k=1

Ik

is the total base count of feature A.
More conceptually, the region overlap is

R ≡ 1

WI

K∑
k=1

Vk,(3.5)

where WI = ∑n
k=1 Ik−1(1 − Ik), the number of feature A instances.

A standard delta method computation shows that the standard error of B can be
approximated as follows: Let μ(D) and μ(X̄) be respectively the expectation of
D and X̄. Then,

X̄

D
− μ(X̄)

μ(D)
≈ X̄ − μ(X̄)

μ(D)
− μ(X̄)

(D − μ(D))

μ2(D)
,
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and, hence, we can approximate X̄
D

by a Gaussian variable with mean μ(X̄)
μ(D)

and
variance

σ 2(B) ≈ σ 2(X̄)

μ2(D)
+ μ2(X̄)

μ4(D)
σ 2(D) − 2

μ(X̄)

μ3(D)
Cov(X̄,D),(3.6)

where σ 2(B), σ 2(X̄), σ 2(D) are the corresponding variances and Cov(X̄,D) de-
notes the covariance. In doing inference, we can use the approximate Gaussianity
of B with σ 2(B) estimated using the above formula with regularized sample mo-
ments replacing the true moments.

We also note that goodness of fit or equality of population test statistics, such
as Kolmogorov–Smirnov and many others, can be viewed as functions of empir-
ical distributions, which themselves are infinite-dimensional linear statistics, and
we expect, but have not proved, that the methods discussed in this paper and the
underlying theories apply to those cases as well, under suitable assumptions.

4. Subsampling based methods. Here we propose a subsampling based ap-
proach, in particular, a combined segmentation-block subsampling method to con-
duct statistical inference under the piecewise stationary model, which we call “seg-
mented block subsampling.” In our method, the segmentation parameters govern-
ing scale are chosen first and then the size of the subsample is chosen based on
stability criteria. The segmentation procedure, as we discussed, is motivated by
the heterogeneity of large-scale genomic sequences. The block subsampling ap-
proach takes into account the local genomic structure, such as natural clumping
of features, when conducting statistical inference. We explicitly demonstrate the
advantages of using segmentation and block subsampling by simulation studies in
Section 5.

4.1. Stationary block subsampling. Below we first review the results related to
the stationary block bootstrap method in a homogeneous region (U = 1), and then
show how the method breaks down when it is applied to a piecewise stationary
sequence (U > 1).

4.1.1. Review of results for the case of U = 1. For completeness, we recall
the following basic algorithm of Politis and Romano (1994) to obtain an estimate
of the distribution of the statistic Tn(X1, . . . ,Xn) under the assumption that the
sequence X1, . . . ,Xn is stationary (i.e., U = 1).

ALGORITHM 4.1. (a) Given L � n choose a number N uniformly at random
from {1, . . . , n − L}.

(b) Given the statistic T, as above, compute

TL(XN+1, . . . ,XN+L) ≡ T∗
L1.
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(c) Repeat B times with replacement to obtain T∗
L1, . . . ,T∗

LB .
(d) Estimate the distribution of

√
n(Tn − μ) by the empirical distribution L∗

B

of {√
n

L
[T∗

Lj − Tn(X1, . . . ,Xn)],1 ≤ b ≤ B

}
.

By Theorem 4.2.1 of Politis, Romano and Wolf (1999),

L∗
B �⇒ Nd(0,�)(4.1)

in probability for some constant � if (3.3) holds and if L → ∞, L/n → 0. As
usual, convergence of L∗

B in law in probability simply means that if ρ is any metric

for weak convergence on Rd , then ρ(L∗
B, L)

P→0.
Since all variables we deal with are in L2, we take ρ to be the Mallows metric,

ρ2
M(F,G) = min{EP (W − V )2 :P such that W ∼ F,V ∼ G}.

Useful properties of ρM are as follows:

(a) ρ2
M(�πiFi,�πiGi) ≤ �πiρ

2
M(Fi,Gi) for all πi ≥ 0,�πi = 1 and

(b) If F = F1 ∗ · · · ∗ Fm, G = G1 ∗ · · · ∗Gm, that is, F and G are distributions
of sums of m independent variables, then ρ2

M(F,G) ≤ ∑m
i=1 ρ2

M(Fi,Gi).

For convenience, when no confusion is possible, we will write ρM(W,V ) for
ρM(F,G) for random variables W ∼ F , V ∼ G.

4.1.2. Performance of the block subsampling method in the piecewise station-
ary model when U > 1. We turn to the analogue of Theorem 4.2.1 in Politis, Ro-
mano and Wolf (1999) for U > 1. We consider a vector linear statistic, for which
the true distribution was described in Section 3. Here, we ask how Algorithm 4.1,
which assumes stationarity, performs in this nonstationary context. We show that,
in general, it does not give correct confidence bounds but is conservative, some-
times exceedingly so. The results depend on L, the subsample size, which is a
crucial parameter in Algorithm 4.1. We sketch these issues in Theorem 4.2 below,
for simplicity, letting g be the one-dimensional identity function g(x) = x. Let

τ 2 = U−1
U∑

i=1

(μi − μ̄)2,

X̄i ≡ n−1
i

ni∑
j=1

Xij , X̄ ≡ n−1
n∑

k=1

Xk =
U∑

i=1

fiX̄i .

Also let

n∗
i ≡ Cardinality of Si ≡ {k :k ∈ [N,N + L], π1(k) = i}
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and

X̄∗
i = 1(n∗

i �= 0)
∑
j

{Xij : j ∈ Si}/n∗
i ,

X̄∗
L =

U∑
i=1

f ∗
i X̄∗

i where f ∗
i ≡ n∗

i

L
.

We introduce one assumption that is obviously needed for any analysis of the
block or segmented resampling bootstraps:

A7. L → ∞,

and two other assumptions which are used in different parts of Theorem 4.2 but
not in the rest of the paper, and are thus given a different numbering:

B1. L/n → 0.
B2. (LU)/n → 0.

THEOREM 4.2. Let Ln be the distribution which assigns mass fi to (μi −μ),
1 ≤ i ≤ U , and write Ci for Ci(nfi). Suppose assumptions A1–A5 and A7 hold:

(i) If B2 holds, ρM(X̄∗
L − X̄, Ln)

P−→0.
(ii) If

U∑
i=1

fi(μi − μ)2 = o(L−1)(4.2)

and B1 holds, then

ρM

[√
L(X̄∗

L − X̄),

U∑
i=1

fi N (0,Ci)

]
P−→ 0.

(iii) If (4.2) and B1 hold and

U∑
i=1

fi1
(|�n − Ci | ≥ ε

) → 0(4.3)

for all ε > 0, then

ρM

(√
L(X̄∗

L − X̄), N (0,�n)
) P−→0.

The implications of Theorem 4.2 are as follows. If equation (4.2) does not hold,
then X̄∗

L − X̄ does not converge in law at scale L−1/2 so that it does not reflect
the behavior of L1/2(X̄L − μ) at all. This is a consequence of inhomogeneity of
the segment means. Evidently in this case, confidence intervals of the percentile
type for μ, [X̄ + cn(α), X̄ + cn(1 − α)], where cn(α) is the α quantile of the
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distribution of X̄∗
L−X̄, will have coverage probability tending to 1, since cn(α) and

cn(1−α) do not converge to 0 at rate L−1/2 as they should. If B2 does not hold, we
have to consider the possibility that [N,N + L] covers KN consecutive segments,
whose total length is o(n), such that the average over all such blocks is close to
μ. However, in the absence of a condition such as (4.2) or mutual cancellation
of μ∗

i , the scale of X̄∗
L will be larger than L−1/2. These issues will be clarified

by the proof of Theorem 4.2 in the supplemental article [Bickel et al. (2010)].
We note also that (4.2) can be weakened to requiring that the mean of blocks of
consecutive segments whose total length is small compared to n be close to μ to
order o(L−1/2). But our statement makes the issues clear. Finally, note that B2
holds automatically if the number of segments U is bounded and if B1 holds.

If (4.2) does hold but (4.3) does not, then
√

L(X̄∗
L − X̄) converges in law to the

Gaussian mixture
∑U

i=1 fi N (0,Ci). The mixture of Gaussians is more dispersed
in a rough sense than a Gaussian with the same variance, which is

σ 2
n =

U∑
i=1

fiCi;

see Andrews and Mallows (1974). Especially note that, if W has the mixture dis-
tribution and V is the Gaussian variable with the same variance, then

EetW = ∑
fie

−(t2/2)ci ≥ e−t2/2
∑

fiCi = EetV

by Jensen’s inequality. This suggests that the tail probabilities will also be over-
estimated. The overdispersion here, which leads to conservativeness that is not as
extreme as in case (i), is due to inequality of the variances from segment to seg-
ment. Finally, if (4.3) holds, then the segments have essentially the same mean and
variance and stationary block subsampling works.

A mark of either (4.2) or (4.3) failing is a lack of Gaussianity in the distribution
of X̄∗

L − X̄. This was in fact observed at some scales in the ENCODE project,
which led us to crudely segment on biological grounds with reasonable success.
However, the correct solution, which we now present in this paper, is to estimate
the segmentation and appropriately adjust the subsampling procedure.

4.2. A segmentation based block subsampling method. We saw in the previous
section that the naïve block subsampling method that was designed for the station-
ary case breaks down when the sequence follows a piecewise stationary model.
We propose a stratified block subsampling strategy, which stratifies the subsample
based on a “good” segmentation of the sequence which is estimated from the data.
We first state the block subsampling method, and then in Section 4.2.3 give min-
imal conditions on the estimated segmentation for its consistency. In Section 4.3
we discuss possible segmentation methods.
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4.2.1. Description of algorithm. Assume that we are given a segmentation
t = (0 = t0, t1, . . . , tm+1 = n), where m is the number of regions in t. Assume
that the total size L of the subsample is pre-chosen. We define a stratified block
subsampling scheme as follows.

ALGORITHM 4.3. For i = 1, . . . ,m, let λi = λi(t) = �(ti − ti−1)L/n�. We
use the notation Xi;l to denote the block of length l starting at i:

Xi;l = (Xi, . . . ,Xi+l−1).

Then, for each subsample,
Draw integers N = {N1, . . . ,Nm}, with Ni chosen uniformly from {ti−1 +

1, . . . , ti − λi(t) + 1}, and let

X∗ = (X∗
1, . . . ,X∗

m) = (
XN1;λ1(t), . . . ,XNm;λm(t)

)
.

Repeat the above B times to obtain B subsamples: X∗,1, . . . ,X∗,B .

To obtain a confidence interval for μ, we assume that the statistic Tn has approx-
imately a N(μ,�n/n) distribution as in the previous section. For each subsam-
ple drawn as described in Algorithm 4.3, compute the statistic T∗,b

L = T∗,b
L (t) =

TL(X∗,b). Form the sampling estimate of variance,

�̂n ≡ L

B

B∑
b=1

(T∗,b
L − T̄∗

L)′(T∗,b
L − T̄∗

L),(4.4)

where T̄∗
L ≡ ∑B

b=1 T∗,b
L /B . We can now proceed to estimate the confidence inter-

val for Tn in standard ways. For example, in the univariate case where σ 2
n ≡ �n is

a scalar:

(a) Use X̄ ± z1−α/2
σ̂n√
n

, where z1−α/2 is the 1 − α/2th quantile of N(0,1), for
a 1 − α confidence interval.

(b) Efron’s percentile method: Let X̄∗
(1) < · · · < X̄∗

(B) be the ordered X̄∗,b, then

use [X̄∗
([Bα/2]), X̄∗

([B(1−α/2)])] as a 1 − α confidence interval.
(c) Use a Studentized interval [Efron (1981)] or Efron’s (1987) BCA method;

see Hall (1992) for an extensive discussion.

Although the theory for (c) giving the best coverage approximation has not been
written down, as it has been for the ordinary bootstrap, we expect it to continue to
hold. Evidently, these approaches can be applied not only to vector linear statistics
like Tn but also to smooth functions of vector linear statistics.

This algorithm assumes a given segmentation t, which should be set to some
good estimate τ̂ (n) = {0 = τ̂0, τ̂1, . . . , τ̂m = n} of the true change points τ (n). In
order for the algorithm to perform well, a good segmentation is critical unless the
sequence is already reasonably homogeneous. In Section 4.2.2 below we state the
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result that the algorithm is consistent if the given segmentation equals the true
changepoints. Then, in Section 4.2.3, we state a few assumptions on the data de-
termined segmentation τ̂ (n) which would enable us to act as if the segmentation
were known and state Theorem 4.5 to that effect.

4.2.2. Consistency with true segmentation. Under the hypothetical situation
where the segmentation t assumed in Algorithm 4.3 is equal to the set of true
changepoints, then the algorithm can be easily shown to be consistent. Here we
state the result, which will be proved in the supplemental article [Bickel et al.
(2010)].

First, we state a stronger version of the assumption B1, which requires that the
square of the subsample size L = Ln be o(n):

A8. L2
n/n → 0.

Then, the consistency of Algorithm 4.3 given the true segmentation follows from
the following theorem.

THEOREM 4.4. If assumptions A1–A8 hold, then

L1/2
n �n

−1/2[T ∗
Ln

(τn) − Tn] ⇒ N(0, I )(4.5)

in probability, where I is the d × d identity.

4.2.3. Consistency with estimated segmentation. Let

τ̂ = τ̂ (n) = (
τ̂

(n)
1 , . . . , τ̂

(n)

Ûn

)
be a segmentation of the sequence X1, . . . ,Xn, which is determined from the data,
and which is intended to estimate the true changepoints τ = τ (n). We will state
conditions on τ̂ such that the statistic obtained from Algorithm 4.3 based on τ̂ is
close to the statistic obtained from the same algorithm based on the true segmenta-
tion τ . This can be stated formally as follows. For any segmentation t, let X∗(t) be
a subsample drawn according to Algorithm 4.3 based on t. Let F ∗

n,t(·) be the dis-

tribution of
√

L{T [X∗(t)] − E∗T [X∗(t)]} conditioned on X1, . . . ,Xn and t. Then,
the desired property on the estimated segmentation τ̂ is that

ρ2
M

[
F ∗

n,τ̂ (n) , F
∗
n,τ (n)

] →p 0, as n → ∞,(4.6)

where ρ2
M is the Mallows’ metric described in Section 4.1.1. That is, for inferential

purposes, T [X∗(τ̂ )] has approximately the same distribution as T [X∗(τ )]. Then,
since we have shown in Section 4.2.2 that

ρ2
M

[
F ∗

n,τ (n) ,�(�n)
] →p 0,
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where �(�n) is the Gaussian distribution with mean 0 and variance �n, (4.6)
implies that √

Ln�
−1
n

{
T

[
X∗(

τ̂ (n))] − E∗T [X∗(t)]} → N(0, I ).

Let n̂i = τ̂
(n)
i+1 − τ̂

(n)
i . We now state conditions on the estimated segmentation

which guarantee (4.6):

A9. Ûn/n → 0,
A10. n−1 ∑

i:n̂i≤k n̂i → 0 for all k < ∞,

A11. Lnn
−1 ∑Un

i=1 min1≤j≤Ûn
|τi − τ̂j | →p 0.

Assumptions A9 and A10 for τ̂ (n) mirror assumptions A3 and A4 for τ (n). As-
sumption A11 is a consistency criterion: As the data set grows, the total discrep-
ancy in the estimation of τ (n) by τ̂ (n) must be small.

THEOREM 4.5. Under assumptions A1–A11, (4.6) holds.

The proof is given in the supplemental article [Bickel et al. (2010)]. There are
trivial extensions of this theorem to smooth functions of vector means, which are,
in fact, needed but simply cloud the exposition.

Theorem 4.5 implies that confidence intervals based on subsamples{
X∗,j (

τ̂ (n)) : j = 1, . . . ,B
}

constructed by Algorithm 4.3 conditional on τ̂ (n) are consistent, as long as τ̂ (n)

satisfies A9–A11. Here is the formal statement of this fact in the one-dimensional
case, where σ̂ 2

n replaces �̂n and g is the identity.

COROLLARY 4.6. Under assumptions A1–A11:

1. Let σ̂ 2
n be the block subsampling estimate of variance defined in (4.4), then

P
(
X̄ − z1−α/2σ̂n/

√
n < μ < X̄ + z1−α/2σ̂n/

√
n
) →p 1 − α.

2. Confidence intervals estimated by Efron’s percentile method are consistent.
That is,

P
(
X̄∗

([nα/2]) < μ < X̄∗
([n(1−α/2)])

) →p 1 − α.

4.3. Segmentation methods. The objective of the segmentation step is to di-
vide the original data sequence X1, . . . ,Xn into approximately homogeneous
regions so that the variance estimated in Algorithm 4.3 approximates the true vari-
ance of Tn. A segmentation into regions of constant mean is sufficient for guaran-
teeing that Algorithm 4.3 gives consistent variance estimates. Therefore, we focus
here on the segmentation of X into regions of constant mean.
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In our simulation and data analysis, we use the dyadic segmentation approach,
which we motivate and describe here using the simple case where g is the identity
function. First consider the simple case where X1, . . . ,Xn are independent with
variance 1. In testing the null hypothesis

H0 :E[Xi] = μ,

versus the alternative HA that there exists 1 < τ < n such that E[Xi] = μ1 for
i < τ and E[Xi] = μ2 �= μ1 for i ≥ τ , one can show that the following is the
generalized likelihood ratio test:

Reject H0 if max
1<j<n

nM(j) > c,

where

M(j) = j

n
(X̄1:j − X̄1:n)2 + n − j

n
(X̄j+1:n − X̄1:n)2.(4.7)

The maximum likelihood estimate of the changepoint parameter τ is the value that
maximizes M(j).

Our proof of Theorem 4.5 in the supplemental article [Bickel et al. (2010)]
shows that, in the case where there is one true change in mean at τ , the increase in
the variance estimated by block subsampling with block length L, given no seg-
mentation [i.e., t(n) = {0, n}] over the variance estimated by Algorithm 4.3 con-
ditioned on a change-point at τ , is LM(τ) + op(1). Subsampling conditioned on
any segmentation t �= τ would inflate the variance estimate. Hence, segmenting at
τ̂ = arg maxj M(j) is optimal in the sense that τ̂ is the changepoint estimate that
minimizes the asymptotic error of the block subsampling variance estimate. This
fact does not require the assumption of independence observations, and is true for
any second order stationary sequence. Thus, if we knew that there were only one
changepoint, and if the goal of the segmentation is to obtain the best stratified vari-
ance estimate, then the best place to segment is τ̂ . The block subsampling variance
estimate, given the segmentation {0, t, n}, would be

V (t) =
(

t

n2

) t−tL/n∑
i=1

(X̄i:i+tL/n − X̄1:t )2

(4.8)

+
(

n − t

n2

) n−(n−t)L/n∑
i=t+1

(
X̄i:i+(n−t)L/n − X̄t+1:n

)2
.

The dyadic segmentation procedure recursively applies the above logic, as de-
scribed below.

ALGORITHM 4.7. Fix minimum region length 0 < Ls < n and threshold
b > 0. Initialize t = {t0 = 0, t1 = n}. Repeat:
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1. For i = 1, . . . , |t|−1, let M(i)(j) and V (i)(j) be respectively the processes (4.7)
and (4.8) computed on the subsequence Xti−1+1, . . . ,Xti . If ti − ti−1 > 2Ls ,
then let t ′i = arg maxti−1+Ls<j<ti−Ls

M(i)(j), Bi = M(i)(t ′i ) and Vi = V (i)(t ′i ).
Otherwise, let Bi = 0, Vi = ∞.

2. Let λi = L(ti − ti−1)/n, and

Ji = 1
(

(ti − ti−1)Bi√
Viλ̂i

> b

)
.

If
∏

i Ji = 0, stop and return t.
3. Let i∗ = arg maxi Bi , and tnew = t ′i∗ .
4. Let t = t ∪ tnew, reordered so that ti is monotonically increasing in i.

Each step of the recursion in Algorithm 4.7 proceeds as follows: In step 1,
M(i)(j), the generalized likelihood ratio process, and V (i)(j), the block subsam-
pling variance process, are computed for each segment [ti−1 + 1, ti] of the current
segmentation. For each segment i, Bi is the maximum squared difference in mean
for segment i, t ′i is the changepoint estimate that achieves this maximum, and λ̂iVi

is the estimate of variance given a changepoint at t ′i . In computing Bi and Vi we
do not allow break points that create a region with length less than Ls . In step 2,

we normalize the statistic (ti − ti−1)Bi by the estimated standard deviation
√

λ̂iVi .
If this normalized statistic is below the threshold b for every subsegment, then the
recursion stops and returns the current segmentation. Otherwise, in step 3, the op-
timal changepoint over all regions t (new) is chosen to be the cut that maximizes the
decrease in error of the block subsampling variance estimate. In step 4, this new
changepoint t (new) is added to the current segmentation t.

The computation of Vi in step 2 requires an appropriate choice L = Lb of the
block subsampling sample size. If the correct segmentation is known, then the
choice of Lb is easier, as described in Section 4.6. When the segmentation is not
known, but a ball park value of Lb is available, then a segmentation can be com-
puted using the ballpark value. The segmentation can then be used to obtain a better
choice of Lb. If a ball park value of Lb is not available, then the normalization by
Vi can be omitted, in which case the parameter b in step 3 should be set to 0. This
would be equivalent to stopping the segmentation only when the next optimal cut
will violate the minimum region length Ls . In the examples of Section 5.1 we set
b = 0, thus decoupling the choice of Ls from that of Lb.

Two more parameters required by Algorithm 4.7 are Ls and b. The choice
for Ls is discussed in Section 4.5. The choice of b can be guided by the
fact that, under the null hypothesis, if L were chosen appropriately, then (ti −
ti−1)M

(i)(j)/[V (i)(j)λ̂i]1/2 is a pivot with approximate distribution χ2
1 . Asymp-

totic approximations for the family-wise error rate have been derived in the case of
independent sequences [James et al. (1987)]. In the case of dependent sequences a
Bonferroni adjustment can be applied to adjust for multiple testing. We also used



SUBSAMPLING METHODS FOR GENOMIC INFERENCE 1677

the formulas given in James et al. (1987) to get a crude cutoff, which seems to
work in practice.

Algorithm 4.7 belongs to the class of dyadic segmentation algorithms for detec-
tion of changepoints, the consistency of which were studied by Vostrikova (1981).
These algorithms are greedy procedures that avoid the search over all possible
segmentations. They have been applied successfully to various settings in biology,
including segmentation of GC content [Li et al. (2002)] and the analysis of DNA
copy number data [Olshen et al. (2004)].

The consistency of Algorithm 4.3 requires conditions A9–A11 to be satisfied
by the estimated segmentation. The key condition is A11 which defines a consis-
tency criterion on the segmentation. Consistency of dyadic segmentation has been
proved in Vostrikova (1981) for sequences that satisfy the following conditions:

1. Let εt = Xt − E[Xt ], then ‖εt‖2 is a submartingale and E‖εt‖2 < ctβ , c > 0,
β < 2.

2. The number of regions is fixed and the region sizes are of order n, that is,

τn = (nr1, . . . , nrU ), 0 < r1 < · · · < rU .

It is easy to verify that condition 1 is satisfied by the piecewise stationary model
due to the mixing condition A2. Condition 2 is more stringent than our assump-
tions A3 and A4, under which Un is allowed to increase with n. The consistency
of dyadic segmentation for the case of Un → ∞ has been explored in Venkatra-
man (1992), who gave asymptotic conditions on the rejection threshold and on the
sizes of the regions to ensure consistency under the assumption of an indepen-
dent Gaussian sequence. However, these conditions are hard to verify in practice,
and for many applications in genomics the more stringent condition of Vostrikova
(1981) is sufficient. Previous studies on segmenting the genome based on features
such as the GC content [Fu and Curnow (1990); Li et al. (2002)] have used this
finite regions assumption to achieve reasonable results.

The dyadic segmentation procedure uses information from the entire sequence
to call the first change, and then recursively uses all of the information from each
subsegment to call each successive change in that segment. An alternative is to
use pseudo-sequential procedures, which are sequential (online) schemes that have
been adapted for changepoint detection when the entire sequence of a fixed length
is completely observed. The basic idea of this class of methods is to do a directional
scan starting at one end of the sequence. Every time a changepoint is called, the
observations prior to the changepoint are ignored and the process starts over to
look for the next change after the previously detected changepoint. Specifically,
let τ̂0 = 0 and, given τ̂1, . . . , τ̂k ,

τ̂k+1 = inf{l > τ̂k :S(Xτ̂k
,Xτ̂k+1, . . . ,Xτ̂l

) > b},
where S is a suitably defined changepoint statistic and b is a pre-chosen boundary.
The estimates from pseudo-sequential schemes depend on the direction in which
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the data is scanned. Thus, while they may be suitable for, say, timeseries data, they
may not be natural for segmentation of genomic data, which in most cases do not
have an obvious directionality. The consistency of pseudo-sequential procedures
has been studied by Venkatraman (1992), who gave conditions on b = bn and τ̂ (n)

for consistency of τ̂ (n) under the setting that Xi are independent Gaussian with
changing means.

4.4. Testing the null hypothesis of no associations. Here we extend the results
in Section 4.2 to testing the null hypothesis of no association using nonlinear sta-
tistics. As we discussed in Section 1.2, the inference problem typically posed in
high-throughput genomics is that of association of two features. In terms of our
framework we have two 0–1 processes {Ik}k=1,...,n and {Jk}k=1,...,n both defined
on a segment of length n of the genome. We assume that the joint process {Ik, Jk}
is piecewise stationary and mixing and want to test the hypothesis that the two
point processes {Ik}k=1,...,n and {Jk}k=1,...,n are independent. We have studied two
fairly natural test statistics in ENCODE, the “percent basepair overlap,”

Bn =
∑n

k=1 IkJk∑n
k=1 Ik

,

and the “regional overlap,” Rn, which we define in Section 3, with large values of
these statistics indicating dependence. The major problem we face in constructing
a test is what critical values onα, rnα we should specify so that

PH0[Bn ≥ onα] ≈ α,(4.9)

where H0 is the hypothesis that the vectors (I1, . . . , In)
T and (J1, . . . , Jn)

T are
independent, and the corresponding rnα for Rn.

We aim for statistics based on Bn, Rn (respectively) which are asymptotically
Gaussian with mean 0 under H0. In general, we have to be careful about our def-
inition of independence. If we interpret H0 as we stated, simply as independence
of the vectors (I1, . . . , In)

T and (J1, . . . , Jn)
T , then

EH0(Bn) ≈
∑U

i=1
∑

k=1 niEH0(Iik)EH0(Jik)∑U
i=1

∑
k=1 niEH0(Iik)

,

where Iik and Jik refer to the kth basepair in the ith segment and, hence, we have

EH0(Bn) ≈
∑U

i=1 λiE
(i)
H0

(I )E
(i)
H0

(J )∑U
i=1 λiE

(i)
H0

(I )
.(4.10)

The natural estimate of this expectation is then

1

Ī

U∑
i=1

λi Īi J̄i ,
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where λi ≡ ni

n
, Īi is the average of Iik , J̄i is the average of Jik , and Ī is the grand

average. We assume the correct segmentation.
We proceed with construction of a test statistic and estimation of the null distri-

bution. In view of (4.10), our test statistic based on Bn is

T O
n ≡ n1/2(Bn − J̃n),(4.11)

where

J̃n ≡
(

Û∑
i=1

λ̂i
ˆ̄I i

ˆ̄J i

)/
1

n

n∑
k=1

Îk,

(4.12)
where λ̂i = λi(t̂), ˆ̄I i = n−1

i (t̂)
∑t̂i

k=t̂i−1+1
Ik

with ˆ̄J i similarly defined. Here is the algorithm based on this statistic.

ALGORITHM 4.8. In order to estimate the null distribution, we do the follow-
ing:

1. Pick at random without replacement two starting points, K1 and K2, of blocks
of length L from {1, . . . , n − L}.

2. Let (IK1+1, . . . , IK1+L)T and (JK1+1, . . . , JK1+L)T , (IK2+1, . . . , IK2+L)T and
(JK2+1, . . . , JK2+L)T be the two sets of two feature indicators.

3. Form

IJ
∗1
nL ≡ 1

L

L∑
l=1

IK1+lJK2+l ,

Ī ∗1
nL ≡ 1

L

L∑
l=1

IK1+l ,

IJ
∗2
nL ≡ 1

L

L∑
l=1

IK2+lJK1+l

and define Ī ∗2
nL, J̄ ∗1

nL, J̄ ∗2
nL analogously. Let

F ∗
nL ≡ 1

2

(
IJ

∗1
nL

Ī ∗1
nL

+ IJ
∗2
nL

Ī ∗2
nL

)
,

T ∗
nL ≡ F ∗

nL − J̄ ∗
nL,

where

J̄ ∗
nL = 1

2
(J̄ ∗1

nL + J̄ ∗2
nL)

and Ī ∗
nL is defined analogously. Let F ∗

nLb, IJ
∗1
nLb, etc., be obtained by choosing

(K1b,K2b), b = 1, . . . ,B , independently as usual.
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4. We use the following cnLα as a critical value for Bn at level α,

cnLα = J̄n +
(

2L

n

)1/2

T ∗
nL(B(1−α)),

where T ∗
nL(1) ≤ · · · ≤ T ∗

nL(B) are the ordered T ∗
nLb and [·] denotes integer part

and J̄n = 1
n

∑n
k=1 Jk .

5. If the sequence is piecewise stationary with estimated segments j = 1, . . . , Ûn

as in Section 4.3, we draw independently B sets of starting points, K
(j)
11 , . . . ,

K
(j)
1B and K

(j)
21 , . . . ,K

(j)
2B , of blocks of length λ̂jL from each segment i =

1, . . . , j when each pair is drawn at random without replacement. Here∑U
i=1 λ̂i = 1 and λ̂i is proportional to the length of estimated segment i. Then

piece T ∗
nLb together as follows. Let

IJ
∗1i

nLb = 1

Lλ̂i

λ̂i∑
l=1

IiK1b+lJiK2b+l ,

Ī ∗1i
nLb = 1

Lλ̂i

L∑
l=1

IiK1b+l ,

etc.,

F̄ ∗
nLb =

Û∑
i=1

λ̂i

(
IJ

∗1i

nLb

Ī ∗1i
nLb

+ IJ
∗2i

nLb

Ī ∗2i
nLb

)
.

Then,

T ∗
nLb = F ∗

nLb − J̃ ∗
nLb,

where

J̃ ∗
nLb =

∑Û
i=1(Ī

∗i
nLb)(J̄

∗i
nLb)λ̂i∑Û

i=1(Ī
∗i
nLb)λ̂i

with Ī ∗i
nLb = Ī ∗1i

nLb + Ī ∗2i
nLb. The critical value is

J̃n +
(

2L

n

)1/2

T ∗
nL(B(1−α)),

as before.

We can apply this principle more generally to statistics which are functions of
sums of products of I ’s and J ’s evaluated at the same positions.

The proof of the following theorem is given in the supplemental article [Bickel
et al. (2010)].
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THEOREM 4.9. If L0, P0 denote distributions under the hypothesis of inde-
pendence and A1–A11 hold, then

1. L0(T
O
n ) �⇒ N (0, σ 2

0 )

2. With probability tending to 1,

L∗
0(T

O∗
n,L) �⇒ N (0, σ 2

0 ).

3. P0[T O
n ≥ (2L

n
)1/2q̂0

1−α] → α where q̂0
1−α is the [(1 − α)B]th of T O∗

nLb, 1 ≤ b ≤
B .

In practice, this definition of independence makes our statistic in effect reflect
conditional independence of Ik and Jk given the segment to which the kth base
belongs. This can be unsatisfactory in practice, for instance, when the features
are concentrated in small segments such that large, sparse segments swamp the
inference.

We define independence irrespective of segment identity as saying that the av-
erage over all permutations of the segments of the joint distribution of the point
process features are independent. Formally, if (P1, . . . ,PU), (Q1, . . . ,QU) denote
the marginal distributions of {{Iik :k = 1, . . . , ni} : i = 1, . . . ,U} and {{Jik :k =
1, . . . , ni} : i = 1, . . . ,U}, and (R1, . . . ,Rn) correspond to the joint distribution
of {(Iik, Jik) : 1 ≤ k ≤ n}, then let (P̄1, . . . , P̄U ) = 1

U !
∑

(Pπ1, . . . ,PπU) where π

ranges over all permutations of 1, . . . ,U . Define (Q̂1, . . . , Q̂U ) and (R̂1, . . . , R̂U )

similarly. Then, our hypothesis is

H1 : R̂ = P̂ × Q̂.(4.13)

This is simply saying that independence is not conditional on relative genomic
position of segments.

It is easy to see that we should now define

T Õ
n = n1/2(Bn − Ĵn),(4.14)

where Ĵn = 1
n

∑n
i=1 Ji .

The reason for this is that

E
R̂
(Bn) ≈ E

R̂
( 1
n

∑n
i=1 IiJj )

E
R̂
(Î )

.(4.15)

Under H1,

E
R̂

(
1

n

n∑
i=1

IiJj

)
= E

P̂
(Î )E

Q̂
(Ĵ )

and

E
R̂
(I ) = E

P̂
(Î ),
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so that the statistic simplifies to the U = 1 form, as above.
It is clear that the conclusion of (4.9) continues to hold when applied to T Õ

n .
Note that the form of the bootstrap is unchanged, since T Õ

n is invariant under
permutation of the segments.

We now turn to Rn as defined in Section 3. We assume that Vi : i = 1, . . . ,K

are strongly mixing and stationary. If we assume H0, we have no closed form for
EH0(

1
W

∑K
k=1 Vk) by which to center Rn. To estimate this quantity, we apply a ver-

sion of the double bootstrap [Beran (1988); Hall (1992); Letson and McCullough
(1998)].

Consider 1
n

∑K
k=1 Vk under H1. We draw B1 pairs of large blocks of length mL,

and we compute the % false region overlap, call it R∗
b, b = 1, . . . ,B , in each pair

of “large” blocks, where mL is still negligible compared to segment size, but m →
∞. Define

ÊH1(Rn) = 1

2B

B1∑
b=1

R∗
b(4.16)

and

T̃ (R)
n = n1/2(

Rn − ÊH1(Rn)
)
.(4.17)

Note that we again want to consider independence irrespective of segment iden-
tity, so that R∗

b above are computed without any segmentation beyond the natural
segmentation, for example, chromosomes. Now compute the empirical distribution
of T̃

(R)
n using the size L segmented block subsampling and proceed as usual. We

can define T̃
(R)
n corresponding to H0 in the same way, though we now have to cut

up our mL blocks in proportion to segment sizes to center. We do not pursue this
since the H1 hypothesis gives stable results while H0 does not.

We have not proved a result justifying the use of the double bootstrap in this
way, but simulations suggest that it behaves as expected; see Section 5.3.

4.5. Choice of segment size Ls . Two tuning parameters appear in our proce-
dure in addition to b appearing in the segmentation scheme. Ls is the smallest
allowed size of a “stationary” piece after segmentation. It essentially determines
the scale of the segmentation, which we view as an application context dependent
quantity that users need to control. The reason is that stationarity is a matter of
scale. To put it concretely, consider the situations where Ik , k = 1, . . . , n, are sim-
ply the base pair nucleotides A,C,G,T and consider the scale of a large gene of
length n. Then, it seems natural that the exons and introns correspond to consec-
utive stationary regimes. However, suppose we now move our scale to a gene rich
genomic region of length N . Now, it is the genes themselves and the intergenic
regions which correspond to an at least initial segmentation.

This dependence of segmentation on scale has a natural intuitive consequence.
Consider a statistic such as base pair overlap of two features. As one increases
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the region size n in which one wishes to declare significant overlap, the standard
deviation of the statistic, which is O(n−1/2), decreases, and p-values decrease.
However, if, as one would expect, the region over which n increases becomes
homogeneous on a larger scale, coarser segmentation would then be called for.
This, as we have noted, necessarily increases the standard deviation of the statistic,
and from that point of view significance becomes more difficult to achieve.

Put another way, it is not impossible to think of the whole genome itself as being
stationary on a large scale, but that we can hierarchically segment the genome in
many ways so that each large subsegment is stationary, but the segments are not
identically distributed, even where they are of equal length. For instance, a natural
initial segmentation is to chromosomes.

Finally, we argue in mathematical terms going the other way from inhomogene-
ity to homogeneity. Start with a sequence of independent (say) Bernoulli variables
X1,X2, . . . ,Xn, with Xk being Bernoulli(pk). If the pk are arbitrary, the only seg-
mentation we can perform is the useless trivial one, where each Xk is its own
segment. But, now we tell ourselves that pk , 1 ≤ k ≤ n/2, are drawn i.i.d. from
U(0,1/2) and for n/2 + 1 ≤ k ≤ n from U(1/2,1), we suddenly just have two
segments to consider.

Thus, Ls in our view needs to be treated as the smallest scale on which homo-
geneity is expected. Note that these considerations are not limited to testing. They
also govern confidence intervals, as discussed in Section 4.2.3.

4.6. Choice of Lb, the subsample size. We believe that the best way to choose
Lb, after segmentation has been estimated, is so that the resulting subsampling
distribution of the statistics is as stable as possible and Ls is large but � n. We
also formally consider Gaussianity of the distribution and, if possible, maximizing
that feature as well. This does not necessarily mean segment more—since A10 and
A11 may then fail. We advocate but do not analyze further the following proposal
put forward in m-out-of-n subsampling by Bickel, Götze and van Zwet (1997) and
analyzed in detail by Götze and Rackauskas (2001) and Bickel and Sakov (2008):

1. Let X̄∗
n(L) be the statistic computed from the sample drawn with blocks of

length L. Compute the block subsampling distribution LLv for the statistic√
Lv

(
X̄∗

n(Lv) − X̄n

)
and Lv = ρvn, where ρ < 1 and v = 1,2, . . . , V . Note that these Lv provide
candidate choices of the subsample size Lb.

2. Compute a “distance” d∗(v) between LLv and LLv−1 .
3. Choose Lb = Lv∗

0
, where v∗

0 = arg mind∗(v).

In practice, we use for d∗(v) the pseudometric∣∣∣∣∣
√

Lv−1

Lv

IQR(LLv) − IQR(LLv−1)

∣∣∣∣∣,
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where IQR(L) is the interquartile range of L.
In continuing work with Götze and van Zwet, we are in the process of try-

ing to show that, under mild conditions, as n → ∞ we have Lb → ∞, Lb/n → 0.
More significantly, we expect that in a fashion analogous to Götze and Rackauskas
(2001) and Bickel and Sakov (2008), under restrictive conditions and for suitable
choice of distance, Lb yields an estimate which is as good as possible in the fol-
lowing sense: If Ln is the actual distribution of

√
n(X̄n − μ), d(m) is the distance

between Ln and LLv , and v0 = arg minv d(v), then

d(v∗
0)

d(v0)
→p c.

Thus, Lv∗
0
= ρv∗

0 n yields performance of the same order as ρv0n.

5. Simulation and data studies.

5.1. Simulation study I. In this section we perform a simple simulation study
to demonstrate the power of our block-subsampling method in the situation where
features are naturally clustered. We simulated a binary sequence x1, . . . , xn with
n = 10,000 by the following Markovian model:

P(x1 = 1) = p0

2
,

(5.1)

P(xk = 1) = p0

2
+ (1 − p0)

∑k−1
j=k−w xj

w
for k = 2, . . . , n,

where w is the order of the Markov model or, intuitively, the size of the dependency
window, and p0 indicates the level of dependency. Smaller p0 gives stronger de-
pendence between neighboring positions. We define the following two types of
features at position k in the sequence:

• Feature I: the occurrence of sequence 11,100 starting at position k.
• Feature II: the occurrence of more than six 1’s in the next 10 consecutive posi-

tions including the current position k.

From model (5.1), the feature II will occur in clusters in the sequence. The
overlap between the two types of features can be measured by the statistic

S =
∑n

k=1 IkJk∑n
k=1 Ik

with Ik , Jk being binary and indicating the occurrences of sites of types I and II,
respectively.

Figure 1 shows the distribution of S estimated through different ways:

• The true distribution is the empirical distribution of estimated S from 10,000
random sequences generated under model (5.1).
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FIG. 1. Comparison of different subsampling schemes.

• The Ordinary Bootstrap distribution is derived by performing a base-by-base
uniform sampling of the sequence x1, . . . , xn to construct 10,000 sequences of
length n.

• The Feature Randomization distribution is derived by keeping features of type I
fixed and randomizing uniformly the start positions of the features of type II to
construct 10,000 sequences of length n.

• The block subsampling distribution is derived by drawing independent samples
of blocks of length L = 40 and stringing the blocks together to construct 10,000
sequences of length n.

From Figure 1, we see that block subsampling produces more reliable estimates
of the variance of S compared to the naive methods: ordinary bootstrapping and
feature randomization. Both naive methods ignore the dependence between posi-
tions and thus fail to take into account the natural clumps of the feature II. This is
the key reason for the poor performance of the two naive methods.

5.2. Simulation study IIa. Our second simulation study examines the case
where the sequence is generated from a piecewise stationary model where there
is more than one homogeneous region. As before, we consider the problem of esti-
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mating the percentage of base pair overlap between two features, and compare the
performance of four strategies:

1. feature randomization,
2. naive block subsampling from unsegmented sequence,
3. block subsampling from sequence segmented using the true changepoints, and
4. block subsampling from sequence segmented using the changepoints estimated

by the dyadic segmentation method we described in Section 4.3.

In our simulation model, we generate Xt , Yt independently from a Neyman–Scott
process characterized as follows:

1. Cluster centers occur along the sequence according to a Poisson process of rate
λi in region i.

2. The number of features in each cluster follows Poisson distribution with
mean α.

3. The start of features are located at a geometric distance (mean μ) from the
cluster center.

4. The features are generated with length that is geometric with mean β .
5. Overlap between features generated using steps 1–4 are ignored.

For simplicity, we let there be only 2 homogeneous regions, each of length
T = 10,000. Consider the setting where the parameters for the two regions have
the following values: (λ1, α1,μ1, β1) = (0.01,10,10,5) and (λ2, α2,μ2, β2) =
(0.02,10,10,5). Figure 2 shows a simulated example, where features A and B

are plotted as well as their overlap. Figure 2 also shows the cumulative sum and
the segmentation. Figure 3 shows respectively the histograms of the estimated dis-
tribution of the overlap statistic X̄∗ centered and scaled. It is clear that the feature
randomization underestimates the standard deviation, whereas naive block sub-
sampling without segmentation gives a mixture distribution with long tails. Strat-
egy 3, which subsamples assuming the true changepoint at τ is known, gives the
correct distribution as expected. Strategy 4, which uses the estimated changepoint,
reassurringly gives a very similar distribution to strategy 3. Table 1 gives the stan-
dard deviation estimates.

5.3. Simulation study IIb. We utilized the Neyman–Scott process described
in simulation study IIa to study the consistency of the double bootstrap method
described in Section 4.4 for estimating the distribution of Rn. We consider the
simple case where there is one homogeneous region. We utilized a larger re-
gion and a parameterization of the process that results in more and longer fea-
ture instances than we consider in the study above. The parameters are T = 5 Mb
and (λ1, α1,μ1, β1) = (λ2, α2,μ2, β2) = (0.05,10,100,75). This yields a pair of
feature-sets with around 5000 instances, where each feature-set covers around 17%
of the 5 Mb region. We simulated 20,000 pairs of feature-sets from this process,
and found that the mean of region-overlap between pairs, Rn, was 0.293, and the
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FIG. 2. Example of one instance from simulation model 2. Top plot shows cumulative sum and
estimated segmentation.

standard error was 0.0072. We subsampled 1000 sets of 10,000 draws from this
distribution, each of which yielded the mean above (to 3 significant digits), and the
standard errors ranged from 0.0071 to 0.0073, which corresponds almost exactly to
the theoretical 95% confidence interval for the standard error of the standard error
of a Gaussian with standard deviation 0.0072 after 10,000 draws. Not surprisingly,
the distribution of Rn was Gaussian, as indicated by the Lilliefors and the Shapiro–
Wilk test, which did not reject the hypothesis of Gaussianity at a significance level
0.05 with the full sample of 20,000 observations.

In order to test the capacity of segmented subsampling with a version of the
double block bootstrap to discover this distribution based on only a single pair of
observations, we selected the most extreme pair found during simulation, for which
Rn was 0.321, corresponding to a z-score of 3.87. Since the number of feature in-
stances is itself a random quantity, the job of block subsampling is particularly
difficult: when Rn is far to the right of expectation, the feature-sets tend to contain
more feature instances than those closer to the center. The pair we chose was no
exception. The results are given in Figure 4. Hence, it is not surprising that our
subsampling procedure tends to over-estimate the mean. The Lilliefors test fails
to reject the Gaussianity of any of the resulting distributions with sample sizes up
to 1000 at a significance level of 0.05, but does reject it for several of the smaller
block-sizes when the sample size is pushed up to 10,000. The Shapiro–Wilk test,
however, detects departures from Gaussianity for many of the distributions at a sig-
nificance level of 0.05 for samples larger than 500. This is because Rn is predicated
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FIG. 3. Comparison of different subsampling schemes.

on relatively small counts of feature-instance overlaps and, hence, the distributions
tend to have heavy tails.

We note that the global minimum of the Inter-Quantile (IQ) statistic was found
at Lb/Lr = 0.15 and Lr/n = 0.06. That is, 0.9% of the 5 Mb region, or 45 Kb,
were included in each block sample. This block sample size is certainly suffi-
cient to capture multiple feature-clusters, since the parameterized Neyman–Scott
process above yields an average inter-cluster distance of about 1 Kb.

TABLE 1
Estimates of standard error by four sampling strategies in simulation study IIa

Standard error Fold change from
Method estimate true value

True value 1.2e−002 —
Uniform shuffle 3.6e−003 0.3
Subsample, no segmentation 1.7e−002 1.4
Subsample, true segmentation 1.1e−002 0.91
Subsample, estimated segmentation 1.0e−002 0.83
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FIG. 4. Comparison of block subsampling distributions.

To corroborate our hypothesis that the mean was overestimated because the
feature-sets we chose were more dense than most, we applied our method with
learned parametrization, Lb/Lr = 0.15 and Lr/n = 0.06, for a pair of feature-sets
with Rn = 0.293, the population average. Indeed, the mean was estimated, after
10,000 samples, to be 0.293, and σ̂n was 0.0072.

Although the purpose of this simulation was merely to check the consistency
of our version of the double block bootstrap for data not unlike actual genomic
data, for example, ChIP-seq “broad-peaks,” we decided to also check the perfor-
mance of feature-start site shuffling for the same pair of feature-sets used above. In
the case of Bn, the basepair overlap statistic, feature start-site shuffling correctly
estimates the mean, but can (in the stationary case) radically underestimate the
standard deviation. The same is not true in the case of Rn. Start-site shuffling is
not assured (under our model) to provide an unbiased estimate of the mean or the
standard deviation. We drew 10,000 samples from the distribution under shuffling,
and found the mean to be 0.337, and the standard deviation to be 0.0070, which
indicates that the pair of feature-sets under study in fact overlap slightly less than
expected at random (p ≈ 0.011). The fact that this conclusion is actually in the
wrong direction in this relatively easy, stationary example should make us skepti-
cal of studies that rely upon start-site shuffling to draw conclusions about statistics
that cannot be defined locally, such as Rn.
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Our discussion of this simulation and the following real data examples exhibit
the subtleties inherent in our approach. Subtleties appear whenever inference fol-
lows regularization.

5.4. Association of noncoding ENCODE annotations and constrained se-
quences. Here we present a real example of the study of association between
“constrained sequences” and “nonexonic annotations” from the ENCODE project,
limited to the 1.87 Mbp ENCODE Pilot Region ENm001, also known as the CFTR
locus. The constrained sequences are those highly conserved between human and
the 14 mammalian species studied and sequenced by the ENCODE consortium.
Enrichment of evolutionary constraint at the “nonexonic annotations” sites implies
that the biochemical assays employed by the ENCODE consortium are capable of
identifying biologically functional elements. We tested the association of noncod-
ing annotations and constrained elements using the base pair overlap statistic Bn

in Section 4.3 using the conditional formulation. We interpret the lack of associa-
tion as, given sequence composition and the distribution of each feature along the
genome as observed, the assignments (by nature) of features A and B to individual
bases are made independently. We derive the significance of the observed statistic
under this null hypothesis following the method proposed in Section 4.3.

As we discussed, we have several issues to deal with:

(i) How do we segment? That is, what statistic(s) do we use for segmenation?
(ii) Is segmentation necessary or is the region sufficiently homogeneous?

(iii) If we segment, what Ls should we use?
(iv) Given a segmentation, what Lb is appropriate?

Here are our methods:

(a) The simplest choice for (i) and the one we followed was to segment accord-
ing to both numerator and denominator in Bn: intersect partitions and enforce
an Ls bound. Given our theory, this should ensure homogeneity in the mean
of Bn.

(b) Although strictly speaking (ii) and (iii) can be combined, we experimented a
bit to also see if the theory of Section 4.1 was borne out in practice.

(c) We did not use the V statistic and thus only had to choose Ls . Again, we
experimented with Ls = 500 Kb to preserve as much genomic structure as
possible, and Ls = 200 Kb to ensure we had not undersegmented.

(d) We explored a variety of values of Lb, and studied the consistency between
nearby values under the interquartile statistic (IQ statistic) discussed in Sec-
tion 4.6. We draw conclusions based on the value of Lb that optimizes local
consistency.

To segment the data, we applied the method in Section 4.3 to both features A and
B , or in the language of Section 4, I and J , and then combined the segmentation.
In segmenting each feature, we experimented with minimum segment lengths Ls
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FIG. 5. Estimated σn as a function of Lb for 10,000 samples.

of 200 and 500 Kb. Before subsampling, we combined the segmentations of A

and B by taking a union of the changepoints. This created regions with length less
than Ls . However, the total length of these regions comprise <0.1% of the total
Encode region, and were left out of the remaining analyses.

If the sequence were sufficiently homogeneous, we could forgo the initial seg-
mentation step. Figure 5 shows an estimate of variance of Bn (with the appropriate
renormalization) for a reasonable range of Lb, both before and after segmenta-
tion. Two trends are clearly evident. First, segmentation greatly reduces the esti-
mated variance. As we discussed in Section 4.1.2, inhomogeneity of the sequence
causes an inflated estimate of variance. If the data were homogeneous, segmenta-
tion should not change the variance estimate. Thus, the fact that the estimated vari-
ances drop after segmentation for such a large range of Lb’s suggests that the data
are inhomogeneous. Second, and more importantly, the estimated variance of Bn

increases sharply with increasing Lb in the unsegmented data. This is evidence of
inhomogeneity in the mean of Bn across this ENCODE region: underlying shifts in
mean, if ignored, can be mistaken for spurious long range autocorrelation, which
also implicitly runs against our assumption. In either case, as Theorem 4.2 sug-
gests, we would be overly conservative. Thus, a preliminary exploration of the
data convinces us that this ENCODE region is inhomogeneous in I and/or J and
segmentation is necessary.

We found that 200 and 500 Kb gave 5 and 3 segments respectively. Figure 6
gives the results for 500 Kb. What is fairly surprising, but reassuring, is that over
the whole broad range of Lb considered, the estimated SD of the statistic under the
null was essentially flat after segmentation. Flat here means that variability was
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FIG. 6. Comparison of block subsampling distributions, ρβn vs. ρβ+1n under the IQR statistic.
Estimates σ̂n and resulting z-scores of Bn shown.

within a Monte Carlo SD for the 10,000 replications we used. We would expect
longer values of Lb to include, in our estimate of σ , additional covariance between
distant genomic positions captured by the extended block-length. The fact that this,
by and large, does not appear to be happening is consistent with our hypothesis
that the relevant mixing distance is indeed quite small compared to the size of
approximately stationary regimes.

We found that there is still moderate deviation from Gaussianity in both the seg-
mented and unsegmented case for 0.05 < Lb < 0.25, both in the tails, as detected
by the Shapiro–Wilk test, and in the body of the distribution under the Lilliefors
test. With a sample size of 100, neither test detects this departure, but at a sam-
ple size of only 500, it is detected under a number of parameterizations of Lb. As
we discussed in Section 4.5, the definition of stationarity depends on the scale at
which we view the genome. This suggests that our segmentation still does not take
care of inhomogenity in the variance. Hence, as we have mentioned, if we use the
variance for the Gaussian approximation, our results are still conservative.

The scientific conclusion of this example is that, indeed, there is strong associ-
ation since the z-value is over 9 SDs. We note that the effect of segmentation on
our scientific conclusion is essentially nonexistent. However, it is comforting to
note that the change in (with and without segmentation) variance is in the correct
direction.
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5.5. The association of copy number variation with RefSeq annotated exons in
the human genome. In this example, we reanalyze a published data set; this re-
analysis leads to a different conclusion from the one made by the original paper.
In 2006, Redon et al. published a set of 1445 genomic regions with observed Copy
Number Variation (CNVs) across individuals. These regions consist of both dele-
tions and insertions, and more than half of them overlap genes. In the paper, the
authors reported, among other things, a paucity of overlap with RefSeq genes at
a significance level of 0.05. The statistic that they used is precisely our marginal
formulation of the region overlap statistic Rn, but the null distribution to which
they referred it is quite different. Their null was computed by randomly permut-
ing both genes and CNVs, and hence treats the entire genome (or at least entire
chromosomes) as homogeneous, and the distances between feature-instances as
exponential. Thus, if feature-instance lengths were all 1 bp, this would be a Pois-
son process. As discussed in Section 5.3, under our model this procedure provides
an unbiased estimate of the mean in the case of the Bn, but is unpredictable with
respect to its estimate of the variance. In the case of Rn, it is unpredictable with
respect to both the mean and the variance. Here, for comparison with the result of
Redon et al. (2006), we examine only Rn.

Although we have attempted to replicate this portion of the Redon study, un-
doubtedly there are small differences between our efforts and those of Redon et al.
(2006). For instance, we have masked all genomic repeats in the “Repeat Masker”
track on the UCSC genome browser (genome.ucsc.edu). Redon et al. also consid-
ered patterns of repeats in their analysis, but may have utilized an at least slightly
different map of genomic repeats. We find that 61.8% of the CNVs overlap Ref-
Seq genes by at least 1 basepair. That is, we wish to assess the significance of our
observed statistic Rn = 0.618.

The calibration of the subsampling procedure is nontrivial, especially in this
application where we must consider the additional parameter Lr . Hence, in the
following we provide complete detail regarding the calibration of our method for
the data of Redon et al. (2006).

As before, our analysis begins with an assessment of the need for segmentation.
In this case, we are dealing with whole human chromosomes, we expect that, in
general, at least some segmentation is necessary. We segmented down to a mini-
mum segment length of 10,000,000 bps (10 Mbs), letting Ls = 10 Mb. The mean
length of these CNVs is around 250 Kb, and they are not uniformly distributed,
so we are compelled not to segment down to regions much smaller than 10 Mb
by our desire to capture the appropriate spatial distribution of clusters of feature-
instances. To assess the sufficiency of the resulting segmentation, we examine the
Gaussianity of the segmented subsampling distributions. This examination is tied
to our selection of block length.

To select an inner block length, Lb, and an outer block-length, Lr , we drew
10,000 samples for each of several lengths. We chose to use a linear, rather than
exponential, scale for Lr/n: we selected 10 values from 0.01 to 0.10 in increments

http://www.genome.ucsc.edu
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FIG. 7. The relationship between the estimated z-score, d∗(k), Lr and Lb . As Lr increases, our
estimate of σ̂n (not shown) increases, which drives the estimated z-score down. As Lr becomes too
small, we lose the stability of our estimates, and d∗(k) increases. For the smallest value of Lr shown
here, the estimated z-score increases sharply, but the corresponding value of d∗(k) indicates that this
parameterization is unreliable. The ideal parameterization under d∗(k) is given by Lr/n = 0.09 and
Lb/Lr = 0.20.

of 0.01. We chose three values of Lb/Lr , 0.05, 0.10 and 0.20. Each of these pa-
rameterizations yields several responses, including: an estimated z-score, d∗(k),
and measures of Gaussianity. In Figure 7, we plot the relationship between the
estimated z-score, d∗(k), Lr and Lb. Regarding the Gaussianity of the resulting
distributions, at a significance level of 0.01 and a sample size of 5000, neither the
Shapiro–Wilk nor the Lilliefors test rejected the null hypothesis of Gaussianity
for any of the 30 explored parameterizations. To supplement our biological intu-
ition that segmentation is necessary when whole chromosomes are considered, we
used the same 30 parameterizations with the unsegmented data, and performed the
same tests to check the Gaussianity of the resulting distributions. Of the 30 para-
meterizations, 3 showed departures from Gaussianity under Lilliefors test, and 9
showed strong departures in the tails under the Shapiro–Wilks test. This indicates,
as expected, that segmentation has substantially improved the Gaussianity of the
sample distributions. In practice, one might attempt a finer segmentation in hopes
of further reducing the (conservative) bias in σ̂n. For this example we are satisfied
with the current segmentation.

The global minimum of d∗(k) occurs for Lr/n = 0.09 and Lb/Lr = 0.20. This
parameterization yields an estimated z-score of 1.25 and, therefore, we conclude
that we cannot corroborate the result of Redon et al. (2006). Under our model it
appears that CNVs are, if anything, very slightly positively associated with genes
(p ≈ 0.105). We note that a few parameterizations, as shown in Figure 7, do pro-
duce z-scores greater than 2. However, these parameterizations correspond to large
values of d∗(k) and, furthermore, significance is in the opposite direction reported
by Redon et al. (2006). This highlights the need for carefully defined null distri-
butions in genomic studies. We are not suggesting that the results presented nec-
essarily invalidate the corresponding result of Redon et al. (2006), but rather we
caution that scientific conclusions of this kind are predicated on how the researcher
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defines “at random,” and that this definition should be made to reflect, as much as
possible, that which is known about the actual distribution of genomic elements.
We presume that authors wish, in general, to err on the side of caution, and hence
do not wish to report significant association when the association can be explained
simply by a conservative choice of null.

SUPPLEMENTARY MATERIAL

Some theorems in subsampling methods for genomic inference (DOI:
10.1214/10-AOAS363SUPP; .pdf). In Supplementary Material, we provide the-
oretical proofs to the theorems presented in the main text.
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