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THE EFFECT OF WINNING AN OSCAR AWARD ON SURVIVAL:
CORRECTING FOR HEALTHY PERFORMER SURVIVOR BIAS
WITH A RANK PRESERVING STRUCTURAL ACCELERATED

FAILURE TIME MODEL

BY XU HAN, DYLAN S. SMALL, DEAN P. FOSTER AND VISHAL PATEL

Princeton University, University of Pennsylvania, University of Pennsylvania and
University of Pennsylvania

We study the causal effect of winning an Oscar Award on an actor or
actress’s survival. Does the increase in social rank from a performer winning
an Oscar increase the performer’s life expectancy? Previous studies of this
issue have suffered from healthy performer survivor bias, that is, candidates
who are healthier will be able to act in more films and have more chance to
win Oscar Awards. To correct this bias, we adapt Robins’ rank preserving
structural accelerated failure time model and g-estimation method. We show
in simulation studies that this approach corrects the bias contained in previous
studies. We estimate that the effect of winning an Oscar Award on survival is
4.2 years, with a 95% confidence interval of [−0.4,8.4] years. There is not
strong evidence that winning an Oscar increases life expectancy.

1. Introduction. Does an increase in a social animal’s social “rank” cause
the animal to live longer? This question has been studied extensively in both non-
human primates and humans. Animals with social ranks that experience more
stress have been shown to experience adverse adrenocortical, cardiovascular, re-
productive, immunological, and neurobiological consequences [Sapolsky (2005)].
Redelmeier and Singh (2001) studied the impact of social rank on lifetime in an
intriguing context: among Hollywood actors and actresses, does winning an Oscar
Award (Academy Award) cause the actor’s/actress’s expected lifetime to increase?
In Redelmeier and Singh’s most emphasized comparison (the one cited in their
abstract), they stated that life expectancy was 3.9 years longer for Oscar Award
winners than for other less recognized performers and that this difference corre-
sponded to a 28% mortality rate reduction for winners compared to less recognized
performers (95% CI: 10% to 42%). In an interview, Dr. Redelmeier stated, “Once
you’ve got that statuette on your mantel place, it’s an uncontested sign of peer ap-
proval that nobody can take away from you, so that any subsequent harsh reviews
leave you more resilient. It doesn’t quite get under your skin. The normal stresses
and strains of everyday life do not drag you down.” [Associated Press Story, Feb-
ruary 26 (2005)].

Received August 2008; revised September 2010.
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In Redelmeier and Singh’s analysis emphasized in their abstract, they fit a Cox
proportional hazards model with whether a performer ever wins an Oscar Award in
his or her lifetime treated as a time-independent covariate and survival measured
from the performer’s date of birth. Sylvestre, Huszti and Hanley (2006) pointed
out that this analysis suffers from immortal time bias—for a winner, the time
before winning is “immortal time.” In other words, performers who live longer
have more opportunities to win Oscar Awards. To eliminate immortal time bias,
Sylvestre et al. fit a Cox proportional hazards model with winning status treated as
a time-dependent covariate and survival measured from a performer’s date of first
nomination (Redelmeier and Singh also fit one time-dependent covariate model
with survival measured from the performer’s date of birth). Sylvestre et al. es-
timated that winning an Oscar Award had a positive effect on lifetime, but the
estimated effect was not significant. Although a valuable step forward, Sylvestre
et al.’s analysis still suffers from healthy performer survivor bias: Candidates who
are healthier will be able to act in more films and have more chances to win Oscar
Awards. We provide a more detailed description of healthy performer survivor bias
in Sections 2 and 3.

In this paper we adapt James Robins’ rank preserving structural accelerated fail-
ure time model with g-estimation [Robins (1992); Robins et al. (1992)] to elimi-
nate healthy performer survivor bias; it also eliminates immortal time bias, which
can be seen as one aspect of healthy performer survivor bias. Our analysis is based
on the assumption that the winner of each award is selected randomly among the
nominees conditional on age at time of nomination, number of previous nomina-
tions and number of previous wins. We first show in a simulation study the poten-
tial for healthy performer survivor bias to make inferences from Cox models, with
or without time-dependent covariates, incorrect, and then show that g-estimation
provides correct inferences. We then analyze the effect of winning an Oscar on life
expectancy using g-estimation.

Our study also contributes to the debate that high socio-economic status is as-
sociated with good health and long life. Famous examples are the Whitehall stud-
ies of British civil servants; see Reid et al. (1974), Marmot, Rose and Hamilton
(1978), Marmot, Shipley and Rose (1984), Marmot et al. (1991) and Ferrie et al.
(2002). Recently, Rablen and Oswald (2008) studied the causal effect of winning
a Nobel Prize on scientists’ longevity. Correcting for potential bias, they estimated
that winning the Nobel Prize, compared to merely being nominated, is associated
with between 1 and 2 years of extra longevity. Abel and Kruger (2005) studied
the longevity of Baseball Hall of Famers compared to the other players. They
concluded that median post-induction survival for Hall of Famers was 5 years
shorter than for noninducted players, which does not support the role of celebrity
on longevity.

The rest of our paper is organized as follows: Section 2 discusses previous
methods and their biases and presents a simulation study that documents these
biases, Section 3 describes the rank preserving structural failure time model and
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g-estimation, Section 4 analyzes the Oscar Award data and Section 5 provides
conclusion and discussion.

2. Existing methods and biases.

2.1. Background for Oscar Awards. The Oscar Awards are the most promi-
nent and most watched film awards ceremony in the world. They are presented
annually by the Academy of Motion Pictures Arts and Sciences. We will focus
on the awards in four categories—Best Lead Actor, Best Lead Actress, Best Sup-
porting Actor, and Best Supporting Actress. The annual awards selection process
is complex, but the brief schedule is as follows: In December, the Academy com-
piles a list of eligible performers for an award. In January, all Academy members
nominate five performers in each of the four categories (Best Lead Actor, Best
Lead Actress, Best Supporting Actor, Best Supporting Actress). In February, nom-
inations for each performer are tabulated, and the top five are publicly identified as
nominees for each category. Then all Academy members vote for one out of five
nominees, and the winner is the one who gets the most votes.

2.2. Previous work. Redelmeier and Singh (2001) compiled a list of all nom-
inees for the Oscar Awards from 1929 to 2000 (72 years). They also matched
each nominee to a cast member who performed in the same film as the nominee
and was the same sex and born in the same era as the nominee. Redelmeier and
Singh’s analysis was based on comparing 235 Oscar winners to 527 nonwinning
nominees, and 887 performers who were never nominated (controls). In their pri-
mary analysis, survival was measured from performers’ dates of birth.1 In most of
Redelmeier and Singh’s analyses, they used the winner status as a fixed-in-time
covariate, that is, a performer would be considered a winner throughout the study
if he or she won an Oscar Award at least once in his or her lifetime. Kaplan–
Meier curves showed that life expectancy was 3.9 years longer for winner than for
controls, and 3.5 years longer for winners than for nonwinning nominees. In Cox
proportional hazards models with no adjustment for other covariates, winning was
estimated to reduce mortality by 28% compared to controls and by 26% compared
to nonwinning nominees, with lower 95% confidence limits for both comparisons
greater than 0%, suggesting that winning an Oscar has a beneficial effect on life-
time. Adjustment for demographic and professional factors yielded similar results,
with lower confidence limits for the mortality reduction due to winning remaining
above 0%. Redelmeier and Singh considered one Cox proportional hazard model
that used the winner status as a time-dependent covariate, that is, an Oscar Award

1Redelmeier and Singh also considered survival from the day each performer’s first film was re-
leased, each performer’s 65th birthday (excluding performers who died before 65), and each per-
former’s 50th birthday (excluding performers who died before 50). As noted by Sylvestre, Huszti
and Hanley (2006), all of these methods of measuring time-zero suffer from immortal time bias.
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winning performer is treated as a winner only after he or she won an Award. This
model estimated a mortality rate reduction of 20% for winners vs. controls, with a
lower 95% CI limit of 0%.

Sylvestre, Huszti and Hanley (2006) pointed out that analyses that treat winner
status as a fixed in time covariate credit the winners’ lifetime before winning to-
ward survival subsequent to winning. These “immortal” years will cause bias in
the estimate of the causal effect of winning. We will focus on Sylvestre et al.’s
method for correcting this bias in comparing winners to nonwinning nominees.
Sylvestre et al. used a Cox proportional hazard model that differed in two ways
from Redelmeier and Singh’s primary analyses: (1) winning was treated as a time-
dependent covariate, an Oscar Award winning performer only becomes a winner
after he or she wins an award (as noted above, Redelmeier and Singh also con-
sidered this approach in one of their analyses); (2) a performer was only part of
the risk set once he or she was first nominated. Using this model, Sylvestre et
al. estimated a mortality rate reduction of 18% for winners vs. nonwinning nom-
inees with a 95% CI of −4% to 35%. Thus, this model estimates that winning
an Oscar has a beneficial effect on lifetime, but there is not strong evidence for a
beneficial effect. Note that Sylvestre et al. used an updated data set compared to
Redelmeier and Singh’s; Sylvestre et al. considered a selection interval for Oscar
Awards from 1929 to 2001 (73 years) with 238 winners and 528 nonwinning nom-
inees. Sylvestre, Huszti and Hanley (2006) also used the survival analysis method
suggested by Efron (2002) and did an analysis with a binomial logistic regression
model. Death in each year of a performer’s life was treated as a Bernoulli random
variable and regressed on covariates such as winning status, age of nomination,
and calendar year of nomination. This model yielded a similar result as Sylvestre
et al.’s Cox proportional hazards model analysis. The results from previous studies
are listed in Table 1.

2.3. Healthy performer survivor bias. Previous studies have suffered from
healthy performer survivor bias, that is, candidates who are healthier will be able
to act in more films and have more chances to win Oscar Awards.

One aspect of healthy performer survivor bias is immortal time bias, that is,
candidates will have more chances to win Oscar Awards if they live longer. When
a performer is classified as a winner throughout the study, regardless of when the
performer wins the award, there are unfair comparisons between winners and non-
winning performers who died before the winner won the award. As an example,
consider Henry Fonda and Dan Dailey, who were both first nominated for an Oscar
Award at the age of 35 but did not win in their first nominations. Fonda first won
an Oscar at age 77 and died four months after, while Dailey never won an Oscar
and died at age 64. Fonda lived 13 years beyond the age of Dailey’s death before
winning an Oscar. It is not fair to consider the 13 years before Fonda won his Oscar
as being affected by winning.
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TABLE 1
Winners vs. nominees

Reduction in
mortality rate

Type of analysis Status Time-zero (95% CI) (%)

PH1 Static3 Birthday 23 (3 to 39)

PH Dynamic4 Birthday 11 (−12 to 30)
PH Dynamic Nomination day 18 (−4 to 35)

PY2 Dynamic Nomination day 18 (−4 to 36)

Notes: These results are based on the updated data set in Sylvestre, Huszti and Hanley (2006). The
first row is the Cox model without adjustment for any covariates; the second row is the Cox model
with winning status as a time-dependent covariate and with sex and year of birth as time-independent
covariates; the third row is the Cox model with the same covariates as the second row, but with
nomination day as time-zero; the fourth row is the binomial logistic regression model with sex, age,
and calendar year as covariates. The first two rows are from Redelmeier and Singh’s analysis (using
Sylvestre et al.’s updated data set), and the last two rows are from Sylvestre et al.’s analysis.
1PH stands for Cox proportional hazard model.
2PY stands for performer years analysis, which is the binomial logistic regression model described
above.
3Static status treats the winning status as a fixed-in-time covariate.
4Dynamic status treats the winning status as a time-dependent covariate.

To correct for immortal time bias, Sylvestre et al. used a Cox proportional haz-
ard model with the winning status as a time-dependent covariate. In this model, the
survival comparison between a winner and a nonwinning nominee starts appropri-
ately only at the time the winner wins.

Although Sylvestre et al.’s analysis was an important advance in that it cor-
rects for immortal time bias, it still suffers from other aspects of the healthy per-
former survivor bias. Winning an Oscar Award is an indicator of being healthy. In
Sylvestre et al.’s analysis, the risk set at a given age consists of those performers
who have been nominated by that age. Among these performers, those who are
healthy at the given age have had more opportunities to perform and to win an
Oscar. These healthy performers are also more likely to live longer. Since having
won an Oscar is associated with survival in a risk set even if winning has no causal
effect on survival, there is the potential for bias.

As an example consider Jack Palance and Arthur O’Connell who were first
nominated for Oscars but did not win at ages 34 and 48, respectively. Palance won
an Oscar at age 73, while O’Connell never won an Oscar. Palance was an active
actor when he was in his 70s, acting in ten films in his 70s, and lived to be 87.
On the other hand, O’Connell was stricken with Alzheimer’s disease by the time
he turned 70 and by the time of his death at age 73, he was appearing solely in
toothpaste commercials (www.imdb.com). The fact that Palance lived longer than

http://www.imdb.com
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O’Connell in the risk set that started at age 73 after Palance’s first win is not likely
due to the effect of winning but to the healthy performer survivor bias.

One way of attempting to control for healthy performer survivor bias is to con-
dition on (control for) confounders in the Cox model. In particular, nomination
history is a confounder because it is a strong risk factor for subsequently winning
on Oscar Award (indeed, it is necessary) and for mortality, since sick individuals
do not get nominated. Previous studies did not condition on nomination history
and thus suffered from confounding bias.

However, even if we condition on nomination history, as well as past age and
Oscar wins, and there are no other confounders besides these variables, the time-
dependent Cox model can be biased if Oscar winning affects future nominations
[Robins (1986, 1992)]. It is substantively plausible that previous Oscar winning
affects future nomination (even under the stronger null hypothesis that neither
nomination nor winning affects health). The effect could go in either direction.
For example, among two subjects with the same nomination history, only one of
whom won before, the winner would have a higher probability of being renomi-
nated if increased fame coming from previously winning results in an increased
chance of nomination per film, all else being equal. On the other hand, the winner
would have a lower probability of being renominated if nominators felt those who
have not won before are more deserving of a chance to win.

To understand the bias in the Cox analysis when previous Oscar winning affects
future nomination, suppose a previous winner has a higher probability of being
renominated, all else being equal. Then one would expect that among the nominees
in a given year with same past nomination histories, the previous winners would be
less healthy than the previous nonwinners, since the nonwinners might have had
to be in a large number of movies in the previous year to get nominated for one
of them, while for the winner it often would suffice to be in just one. But only a
healthy person could be in many movies in one year. Note that this bias persists
even if we had data on the number of movies performed in each year and adjusted
for this variable as well as nomination.

2.4. Simulation studies. To illustrate the potential of previous studies of sur-
vival in Oscar Award winning performers to suffer from healthy performer survivor
bias, we conducted a simulation study.

We first assigned a lifetime for each performer and a time at when the performer
became sick. Then for each year, we randomly pick nominees from performers
who are still alive and healthy, and randomly select one of them as the winner.
Hence, winning an award does not have any effect on prolonging performers’ life-
time, because lifetime is predetermined before deciding who wins the awards. If a
method shows an effect of winning over repeated simulations from this setting, it
is biased.

For each year between 1830 and 1999, we simulated five performers being born.
Each performer was randomly selected to have one of the three age patterns shown
in Table 2.
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TABLE 2
Performers’ age pattern

Sick age Death age

Group 1 60 70
Group 2 70 80
Group 3 80 90

For each year from 1927 to 2004, we have one award and we select 5 nom-
inees from those performers who are still alive and healthy. The details are that
we select two nominees from the age group 30–39, and one from 70–79, select-
ing randomly among healthy performers in those age groups. We also select two
nominees from the age group 60–69, but with different selection probabilities for
healthy performers in this age group. For age group 60–69, the selection weight
for a healthy candidate is in Table 3.

In this sense, for age group 60–69, winning in the past increases the chance to
be selected as a nominee, and previous nonwinners tend to be healthier than pre-
vious winners (i.e., in Group 3 rather than in Group 2). This corresponds to the
fact that previous nonwinners might have had to be in a large number of movies
in the previous year to get nominated for one of them, while for the previous win-
ners it often would suffice to be in just one film to get nominated. Consequently,
nominated previous winners tend to be less healthy than nominated previous non-
winners, because nominated previous nonwinners tend to be very healthy to be
able to act in many films.

Nominees from different age groups have a different probability to be selected
as the winner, with older nominees having a better chance. The winning probability
also depends on the nomination history and winning history. Let 130, 160, and
170 be the indicators of current nomination age group 30–39, 60–69, and 70–79,
respectively. Let N30, N60, N70 be the number of previous nominations in the age
group 30–39, 60–69, and 70–79, respectively. Let W30, W60, W70 be the number
of previous wins in the age group 30–39, 60–69, and 70–79, respectively. The

TABLE 3
Selection weight for age 60–69

Previous winner Previous nonwinner

Group 1 0 0
Group 2 8 1
Group 3 9 7
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winning probability for each nominee in a given year is calculated as

P(Ai = 1|Ni,Ai)

= exp
(
0.5 ∗ 1i

30 + 1i
60 + 2 ∗ 1i

70

+ 0.5(Ni
30 + Ni

60 + Ni
70 + Wi

30 + Wi
60 + Wi

70)
)

/ 5∑
j=1

exp
(
0.5 ∗ 1j

30 + 1j
60 + 2 ∗ 1j

70

+ 0.5(N
j
30 + N

j
60 + N

j
70 + W

j
30 + W

j
60 + W

j
70)

)
.

We choose these coefficients to magnify the healthy performer survivor bias.
In our simulation setting, death ages are determined before winning, thus win-

ning has no causal effect on lifetime. Therefore, for the null hypothesis that there is
no treatment effect of winning an Oscar Award on an actor’s survival, the p-values
should be uniformly distributed between 0 and 1, and the mean of p-values should
be around 0.5. If the mean of p-values from a method is much smaller than 0.5,
then the method is biased.

The results from 1000 simulations are shown in Table 4 and histograms of p-
values can be found in Figure 3 of Section 3.5.

Redelmeier and Singh’s results were based on the first two methods in Table 4,
and Sylvestre et al.’s results were based on the last two methods in Table 4. All of
these four methods are biased.

In our simulation setting, past winning history affects future nominations, and
past nomination history also affects future winning. The previous methods did not
account for the nomination history in the time-dependent Cox model. Next we
will show that even if one correctly models the effect of nomination history on
the hazard of death, the hazard model still provides biased estimates of the causal
effect of winning on survival.

To simplify the consideration of nomination history and winning history, we re-
strict every candidate to be nominated at most twice and win at most twice. Let D70
and D80 denote death at age 70 and 80, respectively. Let S69 and S79 denote sur-
vival at age 69 and 79, respectively. Let N(30) and N(60) denote the numbers of

TABLE 4
Simulation results

Type of analysis Status Time-zero Mean of p-value

PH Static Birthday 0.03
PH Dynamic Birthday 0.12
PH Dynamic Nomination day 0.12
PY Dynamic Nomination day 0.04
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TABLE 5
Mortality rates for death at 70 conditional on survival to 69

with nomination history and winning history when
nomination is affected by past winning history

Mortality rates
N(30) A(30) N(60) A(60) (95% CI)

2 2 0 0 0.355 (0.299, 0.411)
2 1 0 0 0.349 (0.332, 0.366)
2 0 0 0 0.327 (0.320, 0.334)
1 1 0 0 0.508 (0.494, 0.523)
1 0 0 0 0.407 (0.404, 0.410)
0 0 0 0 0.380 (0.378, 0.381)

nominations in the age group 30–39 and 60–69, respectively. Let A(30) and A(60)

denote the numbers of wins in the age group 30–39 and 60–69, respectively. Based
on 1000 Monte Carlo simulations, we obtained estimated mortality hazard rates
and corresponding 95% confidence intervals for this full model in Tables 5 and 6.

For a reduced model without winning history, the mortality rates just adjusting
the nomination history are shown in Table 7. From the above probabilities, we can
see even though winning has no causal effect on survival, winning history affects
the hazard of death given nomination history, for example, the hazard of dying at

TABLE 6
Mortality rates for death at 80 conditional on survival to 79 with nomination history

and winning history when nomination is affected by past winning history

Mortality rates
N(30) A(30) N(60) A(60) N(70) A(70) (95% CI)

2 2 0 0 0 0 0.472 (0.401, 0.544)
2 1 0 0 0 0 0.511 (0.489, 0.534)
2 0 0 0 0 0 0.493 (0.484, 0.502)
1 1 0 0 0 0 0.555 (0.533, 0.577)
1 0 0 0 0 0 0.674 (0.669, 0.678)
1 1 1 1 0 0 0.474 (0.437, 0.511)
1 1 1 0 0 0 0.468 (0.444, 0.492)
1 0 1 1 0 0 0.191 (0.177, 0.206)
1 0 1 0 0 0 0.190 (0.184, 0.196)
0 0 1 1 0 0 0.439 (0.418, 0.460)
0 0 1 0 0 0 0.521 (0.514, 0.528)
0 0 2 2 0 0 0.137 (0.119, 0.155)
0 0 2 1 0 0 0.092 (0.087, 0.098)
0 0 2 0 0 0 0.039 (0.036, 0.041)
0 0 0 0 0 0 0.617 (0.615, 0.619)
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TABLE 7
Mortality rates conditional on nomination history when

nomination is affected by past winning history

Mortality rates
Death age N(30) N(60) N(70) (95% CI)

70 2 0 0.331 (0.324, 0.337)
70 1 0 0.413 (0.410, 0.416)
70 0 0 0.380 (0.378, 0.381)

80 2 0 0 0.495 (0.487, 0.503)
80 1 0 0 0.668 (0.664, 0.672)
80 1 1 0 0.227 (0.222, 0.232)
80 0 1 0 0.513 (0.506, 0.519)
80 0 2 0 0.059 (0.057, 0.062)
80 0 0 0 0.617 (0.616, 0.619)

80 for people with one nomination during their 30s and no further nominations is
much higher for people who did not win an award (0.674) than for those who won
one award (0.555).

If we consider a discrete time hazard model, the mortality rate can be modeled
as follows:

h = 1

1 + exp(−∑
i αiZi)

,

where h is the mortality rate, and Zi is the indicator function of nomination and
winning history in the full model, or the indicator function of nomination history in
the reduced model. Then we can estimate the coefficients αi based on the mortality
rates calculated above. With this discrete time hazard model, we can calculate the
log likelihood of the full model and the reduced model for each simulation round.
Because

−2
(
loglikelihood(Reduced Model) − loglikelihood(Full Model)

) D→ χ2
12

when the reduced model is true, we can obtain approximate p-values for the test of
whether winning has an effect on mortality given nomination history. If the mean
of p-values is significantly different from 0.5, then it shows that even if one has
a correct model for the conditional hazard of death given all the measured time-
dependent confounding factors, the model still provides a biased estimate of the
effect of winning on survival.

The mean of p-values over 1000 simulation round is 0.404, showing that there
is bias. The histograms of p-values and test statistics are shown in Figure 1.

In the above simulation setting, nomination history is both a confounder for
winning history’s effect on survival and has been affected by winning history. We
now show that if nomination history is only a confounder and has not been affected
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FIG. 1. Histograms for p-values and test statistics from the likelihood ratio test of whether winning
has an effect on mortality given nomination history based on the discrete time hazard model when
the nomination is affected by past winning history.

by winning history, then the time-dependent Cox model that controls for nomina-
tion history produces correct inferences. We keep the same simulation set up as
before, except that we change the selection weights for age group 60–69 in Table 3
to the selection weights in Table 8.

We still restrict every candidate to be nominated at most twice and win at most
twice. Based on 1000 Monte Carlo simulations, we obtained estimated mortality
hazard rates for this full model in Table 9. For a reduced model without winning
history, the mortality rates just adjusting the nomination history are shown in Ta-
ble 10. From the probabilities in Tables 9 and 10, conditioning on the same nomi-
nation history, winning does not have a significant effect on the mortality rates.

Similarly, based on the discrete time hazard model, the mean of p-values in
1000 Monte Carlo simulations is 0.52, and the p-values and test statistics of like-
lihood ratio test are shown in Figure 2. The simulation illustrates that when nomi-
nation is not affected by the past winning history, a correct time-dependent hazard
model does not suffer from the healthy performer survivor bias.

TABLE 8
Selection weight for age 60–69 when nomination

history is not affected by winning history

Previous winner Previous nonwinner

Group 1 0 0
Group 2 8 8
Group 3 9 9
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TABLE 9
Mortality rates conditional on nomination history and winning history when nomination is not

affected by past winning history

Mortality rates
Death age N(30) A(30) N(60) A(60) N(70) A(70) (95% CI)

70 2 2 0 0 0.317 (0.267, 0.368)
70 2 1 0 0 0.327 (0.310, 0.343)
70 2 0 0 0 0.337 (0.330, 0.344)
70 1 1 0 0 0.424 (0.411, 0.436)
70 1 0 0 0 0.425 (0.422, 0.429)
70 0 0 0 0 0.389 (0.388, 0.390)

80 2 2 0 0 0 0 0.514 (0.449, 0.578)
80 2 1 0 0 0 0 0.508 (0.486, 0.529)
80 2 0 0 0 0 0 0.494 (0.485, 0.503)
80 1 1 0 0 0 0 0.592 (0.574, 0.611)
80 1 0 0 0 0 0 0.575 (0.570, 0.580)
80 1 1 1 1 0 0 0.461 (0.418, 0.504)
80 1 1 1 0 0 0 0.483 (0.454, 0.513)
80 1 0 1 1 0 0 0.481 (0.464, 0.498)
80 1 0 1 0 0 0 0.480 (0.472, 0.487)
80 0 0 1 1 0 0 0.686 (0.674, 0.697)
80 0 0 1 0 0 0 0.688 (0.683, 0.693)
80 0 0 2 2 0 0 0.428 (0.396, 0.459)
80 0 0 2 1 0 0 0.453 (0.440, 0.465)
80 0 0 2 0 0 0 0.451 (0.444, 0.458)
80 0 0 0 0 0 0 0.559 (0.558, 0.561)

TABLE 10
Mortality rates conditional on nomination history when

nomination is not affected by past winning history

Mortality rates
Death age N(30) N(60) N(70) (95% CI)

70 2 0 0.334 (0.328, 0.340)
70 1 0 0.425 (0.422, 0.428)
70 0 0 0.389 (0.388, 0.390)

80 2 0 0 0.499 (0.491, 0.507)
80 1 0 0 0.577 (0.572, 0.581)
80 1 1 0 0.480 (0.474, 0.487)
80 0 1 0 0.687 (0.682, 0.691)
80 0 2 0 0.451 (0.445, 0.457)
80 0 0 0 0.559 (0.558, 0.561)
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FIG. 2. Histograms for p-values and test statistics from the likelihood ratio test of whether winning
has an effect on mortality given nomination history based on the discrete time hazard model when
the nomination is not affected by past winning history.

3. Rank preserving structural accelerated failure time model. Robins
(1986, 1992) and Robins et al. (1992) recognized the potential of conventional
time-dependent proportional hazard models to provide biased estimates of causal
effects when there are healthy performer survivor effects (Robins called these
healthy worker effects). Robins (1986) was particularly concerned with occupa-
tional mortality studies in which unhealthy workers who terminate employment
early are at an increased risk of death compared to other workers and receive no
further exposure to the chemical agent under study. More generally, Robins has
shown that the usual time-dependent Cox proportional hazards model approach
might be biased when “(a) there exists a time-dependent risk factor for, or pre-
dictor of, the event of interest that also predicts subsequent treatment and (b) past
treatment history predicts subsequent risk factor level.” In our context (a) nomi-
nation history is a time-dependent risk factor for death and a predictor of winning
subsequent Oscar Awards, and (b) past winning history predicts future nomination.
Robins developed the rank preserving structural accelerated failure time model
with g-estimation to eliminate bias from the time-dependent Cox proportional
hazards model under conditions (a) and (b) above. We will adapt Robins’ rank
preserving structural accelerated failure time model and g-estimation method.

Our key assumption is as follows:

ASSUMPTION 1 (Randomization assumption). Conditional on age, previous
nominations, and previous wins, the winner of an Oscar Award in each year is
selected randomly among nominees for that award.



SURVIVAL IN OSCAR AWARD WINNING PERFORMERS 759

We make no assumption about the nominees being randomly selected from the
pool of actors and actresses, only that the winner is randomly chosen (conditional
on covariates) among the nominees. Indeed, some pundits suggest that being nom-
inated for an Oscar Award is due to talent, whereas winning one is due to luck
[Sylvestre, Huszti and Hanley (2006)]. Gehrlein and Kher (2004) provide further
discussion of Oscar Award selection procedures.

3.1. Basic setup. We focus on the causal effect of winning an Oscar Award
for the first time on a performer’s survival, and do not consider any additional
effect of multiple wins here. We focus only on comparing winners to nonwinning
nominees.

To simplify our discussion, we use candidate (i, j) to denote a candidate j who
has been nominated for the ith Oscar Award. There are a total of 300 Oscar Awards
in our data, so i = 1,2, . . . ,300. We assume the existence of a latent or potential
failure time variable Ui,j , which represents the potential years candidate (i, j)

would live after the award date if he or she did not win an Award on date i nor
in the rest of his or her lifetime. However, we only observe the observed failure
time variable Ti,j , which means the observed years candidate (i, j) lives after the
award date until his or her death. We will assume that the Ti,j are uncensored until
Section 3.4, where we will consider censoring.

3.2. Rank preserving structural accelerated failure time model. The rank pre-
serving structural accelerated failure time model (RPSAFTM) assumes that win-
ning an Oscar for the first time multiplies a performer’s remaining lifetime by a
treatment effect factor exp(−ψ). The parameter ψ is the additive effect of win-
ning on the log of a performer’s remaining lifetime after the award. A positive ψ

means winning decreases lifetime, a negative ψ means winning increases lifetime
and ψ = 0 means winning has no effect. See Cox and Oakes (1984) and Robins
(1992) for more discussion of the accelerated failure time model.

For the RPSAFTM, the potential failure time Uij can be calculated from the
observed failure time Tij as follows. Let Fi,j be the first time candidate (i, j) won
an Oscar Award (Fi,j = ∞ if the candidate never won an Award), and Di be the
date of the ith Oscar Award. Let set A contain candidates who never won an Oscar
Award in their whole lifetime, set B contain candidates who won Oscar Awards at
least once and for whom Fi,j < Di , and set C contain candidates who won Oscar
Awards at least once and for whom Fi,j ≥ Di . We have

Ui,j =
⎧⎨
⎩

Ti,j , if candidate (i, j) ∈ A ∪ B,
Fi,j − Di

+ exp(ψ)(Ti,j + Di − Fi,j ), if candidate (i, j) ∈ C.
(1)

As an example, consider Marlon Brando who was born on April 3, 1924, and
died on July 1, 2004. Brando was nominated for an Oscar for the first time on
March 20, 1952 (i = 77), but did not win the Award. He won two Oscar Awards in
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TABLE 11
Marlon Brando’s nominations

Nomination date Number of award (i) Award Win

20Mar52 77 Best Actor N
19Mar53 81 Best Actor N
25Mar54 85 Best Actor N
30Mar55 89 Best Actor Y
26Mar58 101 Best Actor N
27Apr73 161 Best Actor Y
2Apr74 165 Best Actor N
26Mar90 231 Best Supporting Actor N

his career: the first time on March 30, 1955 (i = 89) and the second time on April
27, 1973 (i = 161). His information is listed in Table 11.

U77,B(ψ) = (30Mar55 − 20Mar52) + exp(ψ)(1Jul04 − 30Mar55),

U81,B(ψ) = (30Mar55 − 19Mar53) + exp(ψ)(1Jul04 − 30Mar55),

U85,B(ψ) = (30Mar55 − 25Mar54) + exp(ψ)(1Jul04 − 30Mar55),

U89,B(ψ) = exp(ψ)(1Jul04 − 30Mar55),

U101,B(ψ) = 1Jul04 − 26Mar58,

U161,B(ψ) = 1Jul04 − 27Apr73,

U165,B(ψ) = 1Jul04 − 2Apr74,

U231,B(ψ) = 1Jul04 − 26Mar90.

The subscript “B” represents Marlon Brando. Note that in the RPSAFTM (1),
Brando’s multiple wins have no additional effect on his survival beyond his first
win.

3.3. Test of treatment effect on survival. Although the latent failure time vari-
able Ui,j can be calculated based on the treatment effect factor ψ , ψ is still an
unknown parameter that we need to estimate. The basic idea for testing the plau-
sibility of a hypothesized treatment effect under Assumption 1 is the following: if
the hypothesized treatment effect is correct, the latent failure times in the treatment
(winning) and control (nonwinning) groups should be similar, but if the hypothe-
sized treatment effect is too large (small), the latent failure times in the treatment
group will tend to be smaller (larger) than those in the control group.

To explain the details, let Ai,j denote the treatment status for candidate (i, j):

Ai,j =
{

1, if candidate (i, j) wins the ith award,
0, if candidate (i, j) loses the ith award.
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Note that Ai,j is only defined if j was nominated for the ith award. Let Wi,j

denote the vector of candidate (i, j)’s covariates, such as age at time of nomination,
number of previous nominations, and number of previous wins, etc. Note that some
of the covariates in Wij can be time dependent.

Let Uij (ψ0) denote the latent failure time if ψ0 is the true treatment effect;
Uij (ψ0) can be calculated from (1). Consider a logistic regression model for the
probability that candidate (i, j) wins award i conditional on Wij and Uij (ψ0):

P
(
Aij = 1|Wij ,Uij (ψ0)

)
(2)

= exp(βWij + θ(ψ0)Uij (ψ0))

1 + exp(βWij + θ(ψ0)Uij (ψ0))
,

where β and θ(ψ0) are unknown parameters. We use conditional logistic regres-
sion for estimating (2), where we condition on there being one winner among the
nominees for each award. Only the nominees for each award are considered in
the conditional logistic regression, that is, the candidates included in the regres-
sion are (i, j1), . . . , (i, jni

), where i = 1, . . . ,300, and j1, . . . , jni
are the nomi-

nees for the ith award (ni = 5 except for some early awards). See the last two
paragraphs of this section for discussion of a modification of this conditional lo-
gistic regression that improves efficiency. Model (2) combined with condition-
ing on there being one winner for each award is equivalent to the model that the
winner of award i is determined according to McFadden’s (1974) choice model
where (Wij1,Uij1(ψ0)), . . . , (Wijni

,Uijni
(ψ0)) are the covariates that describe the

ni choices for the award.
For the true ψ , the coefficient θ(ψ) on Uij (ψ) in (2) should equal zero. This is

because under Assumption 1, conditional on the covariates Wij ’s of the nominees
for an award, the latent failure times Uij ’s of the nominees are independent of
which nominee wins the award, that is,

P(Aij = 1|Wij ,Uij ) = P(Aij = 1|Wij ).

We test the null hypothesis that ψ equals a particular value ψ0 by seeing whether
a score test accepts or rejects the null hypothesis that the true value of θ(ψ) is 0.
In other words, we test

H10 :ψ = ψ0 vs. H1a :ψ �= ψ0

by testing

H20 : θ(ψ0) = 0 vs. H2a : θ(ψ0) �= 0.

Rejection of H20 implies rejection of H10, and acceptance of H20 implies accep-
tance of H10. We invert this test to find a confidence interval for ψ , that is, the 95%
confidence interval consists of all ψ0 for which we do not reject H20.

We now discuss an efficiency issue for testing ψ = ψ0. If a candidate (i, j) has
already won an award before the date of the ith Oscar Award, then Tij = Uij
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regardless of whether the candidate wins the award at the date of the ith Os-
car Award. Candidate (i, j) contributes no information for testing ψ = ψ0 since
Uij (ψ0) is a constant function of ψ0. Consequently, it is more efficient for testing
ψ = ψ0 to not include candidates (i, j) in the analysis who have already won an
award before the date of the ith Oscar Award. In fact, we found that for the Os-
car data, the confidence interval based on excluding candidates who have already
won an award was 20% shorter than the confidence interval based on including the
already winners.

As an example of excluding the already winner candidates, for Marlon Brando,
we do not include (101,B), (161,B), (165,B), (231,B) because Brando won the
89th Oscar Award (see Table 7). Because we estimate (2) using conditional logistic
regression in which we condition on the number of winners for each award, by
dropping candidates (i, j) who have already won an award before award i, we
effectively drop all data from awards in which the winner had already won an
award before.

3.4. Censoring case. If the lifetimes for all candidates were observed and As-
sumption 1 holds, the above analysis would provide consistent tests for the treat-
ment effect. However, if some of the lifetimes are censored and we treat the cen-
sored lifetime as the observed lifetime, there will be a violation of Assumption 1.
Let Ci,j denote the censoring time of candidate (i, j). For our data, Ci,j = July
25, 2007 for all i, j . Instead of observing the failure time Tij of how long can-
didate j lives after the date Di of award i, we observe the censored failure time
Xij = min(Tij ,Cij − Di). Consider the variable U∗

i,j (ψ) that is generated by sub-
stituting Xi,j for Ti,j in the RPSAFTM (1) to calculate Ui,j . If ψ �= 0, then U∗

ij (ψ)

is not independent of Aij given Wij . To illustrate this, we provide the following
example. Suppose there is a positive treatment effect for winning an Oscar Award
on performers’ survival. Consider a candidate A who just won once in his whole
career. Suppose he won on date D. Assume his actual remaining lifetime after D

is T . If there is a positive treatment effect, his latent failure time value will be U

where U < T . When the censoring time C satisfies U < C − D < T , the corre-
sponding U∗(ψ) generated by substituting C − D for T in the RPSAFTM will
be smaller than U for the true ψ . Now consider a candidate B who has the same
latent failure time U and the same censoring time C as candidate A, but who never
won any awards. For candidate B , we have U∗(ψ) = U . Hence, for these two can-
didates with identical U ’s, winning is associated with U∗(ψ). In summary, when
there is a positive treatment effect, winning an Oscar Award will prolong perform-
ers’ lifetime, making latent failure times more likely to get censored compared to
nonwinning nominees, and causing bias if censored failure times are treated as
actual failure times.
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In the above example, if we want to have the same censored latent failure time
for both winning and losing performers who have the same actual latent failure
time, we can modify the censoring time for the losing performer to be before the
actual censoring time so that U∗(ψ) will be censored in the same way regardless
of whether a performer wins or loses. This is Robins et al.’s (1992) idea of artificial
censoring.

We define an observable variable U∗∗
i,j (ψ0) that is a function of (Ui,j (ψ0),Ai,j )

and use it as a basis for inference concerning ψ0. U∗∗
ij (ψ0) is defined by censoring

Uij (ψ0) at the artificial censoring time Cij (ψ0) that is defined below.
Recall that Fij is candidate (i, j)’s first win time, and Di is the date of ith Oscar

Award.
When Fij ≥ Di ,

Ci,j (ψ0) = min
(
(Ci,j − Di), (Ci,j − Di) exp(ψ0)

)
.

When Fij < Di ,

Ci,j (ψ0) = Cij − Di.

Then U∗∗
i,j (ψ0) = min(Ui,j (ψ0),Ci,j (ψ0)). We substitute U∗∗

i,j (ψ0) for Ui,j (ψ0)

in the conditional logistic regression model (2), and test the null hypothesis
θ(ψ0) = 0. Note that U∗∗

ij (ψ0) could be any observable function of Uij (ψ0),

Cij (ψ0), not just min(Uij (ψ0),Cij (ψ0)). Robins (1993) describes the semipara-
metric efficient such function.

3.5. Simulation results. In Section 2.4 our simulation study showed that pre-
vious studies suffered from healthy performer survivor bias. Here we will use the
same setup to test the RPSAFTM. Recall that a correct analysis method should
produce approximately uniformly distributed p-values in the simulation study.
The results in Table 12 are from 1000 simulations. We have shown the first four
rows from the simulations in Section 2.4 (Table 4), and add the last row for the
RPSAFTM.

TABLE 12
Simulation results

Type of analysis Status Time-zero Mean of p-value

PH Static Birthday 0.03
PH Dynamic Birthday 0.12
PH Dynamic Nomination day 0.12
PY Dynamic Nomination day 0.04
RPSAFTM Dynamic Nomination day 0.49
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FIG. 3. Histograms for p-values from the test of whether winning has an effect on mortality based
on the four methods of previous studies and the RPSAFTM introduced by the current paper.

Figure 3 contains histograms for p-values of the five methods from 1000 simu-
lations.

In the first four plots, the majority of the p-values are smaller than 0.2, while in
the last plot, the p-values are uniformly distributed. The RPSAFTM corrects the
survivor treatment selection bias that previous methods suffer from.

4. Analysis of Oscar Award data. We have compiled a data file that records
the nominees and winners for each award (best lead actor, best lead actress, best
supporting actor, best supporting actress) on each Oscar Award date. We collected
the data from www.imdb.com. The data is in the supplementary materials [Han et
al. (2010)]. The selection interval spanned from the inception of the Oscar Awards
to July 25, 2007. In computing lifetime since being nominated, we use the actual
Oscar Award date which varies from year to year. People who were not reported
dead on www.imdb.com were presumed to be alive. There are 260 winners and
564 nonwinning nominees, 824 performers in all. Of these 824 performers, 448
are censored.

We did not include several candidates in our data set. Margaret Avery was nom-
inated for best supporting actress in 1985, but we could not find her birthday
and day of death from the internet. We did not include the following candidates
who died before the winner of the award for which they were nominated was an-
nounced: Massimo Troisi, Jeanne Eagels, James Dean, Spencer Tracy, Peter Finch,
and Ralph Richardson.

We have shown results from previous studies, which are based on less years
of Oscar data than ours, in Table 1. To compare previous studies with ours, we

http://www.imdb.com
http://www.imdb.com
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TABLE 13
Winners vs. nominees

Reduction in
mortality rate

Type of analysis Status Time-zero (95% CI) (%)

PH Static Birthday 19 (6 to 31)
PH Dynamic Birthday 9 (−6 to 22)
PH Dynamic Nomination day 14 (0 to 26)
PY Dynamic Nomination day 10 (−6 to 23)
PH2 Dynamic Nomination day 8.7 (−7.3 to 24.7)

have applied the methods of previous studies to our updated Oscar Award data
set; the results are shown in Table 13. Compared with the results in Table 1, the
reductions in mortality rate in Table 13 are smaller. The confidence intervals are
also narrower, because we have 7 years more candidates than the original data set,
and also each candidate in our data set has 7 years more information.

In Table 8 the first four rows are based on previous methods. We also add the
fifth row, which corresponds to a Cox time-dependent model adjusting for past
nomination history and winning history; nomination history is adjusted for by con-
ditioning on the number of previous nominations. Note that previous methods did
not consider the nomination history.

We now consider fitting the RPSAFTM. For the conditional logistic regres-
sion (2), we use the following time dependent covariates Wij : age of nomination
(nomage), square of age of nomination (nomage.square), cube of age of nomina-
tion (nomage.cubic), and number of previous nominations (numprenom). Table 14
shows the results of the conditional logistic regression model (2) when ψ = 0.

The p-value for the test of whether the coefficient on U∗∗
ij (0) is 0, that is, the

test of H20 : θ(0) = 0 vs. H2a : θ(0) �= 0, is 0.07. Thus, we do not reject the null
hypothesis that winning an Oscar has no effect on a performer’s survival at the
0.05 level. Looking at the effect of the other covariates (the Wij ) in Table 14, there
is not strong evidence that number of previous nominations has an effect on the

TABLE 14
Summary of conditional logistic model

coef exp(coef) se(coef) z p-value

U∗∗
ij (0) 1.37e−02 1.01 0.007541 1.812 0.07

nomage 5.36e−02 1.06 0.101676 0.527 0.60
nomage.square −9.18e−04 1.00 0.002278 −0.403 0.69
nomage.cubic 7.40e−06 1.00 0.000016 0.462 0.64
numprenom 6.99e−02 1.07 0.071407 0.979 0.33
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TABLE 15
95% confidence interval for treatment effect

Treatment effect CI

ψ [−0.2360,0.0088]
Winning multiplies survival
exp(−ψ) [0.9912,1.2662]

probability of a performer winning. For age at time of nomination, although the p-
values on each of the polynomial terms are not significant, a test that the coefficient
on all three of the terms is zero gives a p-value of 0.03 so age at time of nomination
does appear to affect winning. Older nominees are slightly more likely to win.

The validity of our test of the effect of winning an Oscar depends critically on
correctly controlling for the effect of age at time of nomination on winning since
this age is clearly correlated with Uij (older nominees generally live a shorter time
after the award date, so have smaller Uij ’s). To check that our results are robust to
different ways of controlling for age at time of nomination, we replaced the cubic
polynomial in nomage in Table 10 with a cubic spline of nomage with 1 to 4 knots
placed at equally spaced quantiles. The p-values for the test of H20 : θ(0) = 0
vs. H2a : θ(0) �= 0 ranged from 0.064 to 0.07 in these analyses. Thus, our result
that there is not evidence that winning has an effect on survival at the 0.05 level
is robust to how nomage is controlled for. We will use the cubic polynomial for
nomage in Table 14 in our subsequent discussion.

Table 15 shows the 95% confidence interval for the treatment effect. Our 95%
confidence interval is that the effect of winning is in the range of decreasing sur-
vival (after the award date) by 0.88% to increasing survival by 26.62%.

Robins’ g-estimate for the treatment effect is the ψ0 that makes θ̂ (ψ0) = 0 in
the conditional logistic regression (2). This ψ0 maximizes the p-value for testing
H20 : θ(ψ0) = 0 vs. H2a : θ(ψ0) �= 0. Robins et al. (1992) show that the g-estimate
is asymptotically normal and consistent. The g-estimate can also be viewed as
the Hodges–Lehmann (1963) estimate of the treatment effect based on the test of
H20 : θ(ψ0) = 0.

We search for possible values of ψ0 with θ̂ (ψ0) = 0 in the range [−0.2360,

0.0088] with step size = 0.0001. Figure 4 shows the estimates θ̂ (ψ0) and the p-
values for testing H20 : θ(ψ0) = 0. θ̂ (ψ) is a monotone increasing function of ψ

in [−0.2360,0.0088]. The g-estimate is ψ̂ = −0.1127, which corresponds to win-
ning increasing survival by 12%. To estimate the survival advantage for winners in
terms of years, we consider the performers who won the first time they were nom-
inated. For these performers, we find their censored latent failure time U∗∗

ij (ψ̂)

under the assumption that the point estimate ψ̂ of ψ is the true treatment effect.
Then we make Kaplan–Meier estimates for the distribution of the actual survival
times for these winners and for the distribution of the latent survival times if these
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FIG. 4. Estimate of the coefficient θ of the modified potential failure time variable U∗∗
ij (ψ) in the

conditional logistic regression (2) for different treatment effect value ψ and p-values from the test of
whether θ(ψ) equal zero for different ψ .

winners had never won. The difference between the estimated medians of these
two distributions is an estimate of the survival advantage of winning the award for
these winners. In the current Oscar Award data, we estimate the survival advantage
to be 4.2 years, with a 95% confidence interval of [−0.4,8.4] years.

4.1. Diagnostic plots. To examine whether the RPSAFTM is appropriate for
the Oscar Award data set, we use boxplots to check if the randomization assump-
tion (Assumption 1) is violated for latent failure times computed according to the
RPSAFTM at our point estimate ψ̂ of ψ . This is similar to the diagnostics for
testing an additive treatment effect model in Small et al. (2006). Based on the
randomization assumption, for the point estimate ψ̂ , the distributions of U∗∗

ij (ψ̂)

should be approximately the same for the treatment group (winners) and the con-
trol group (nonwinning nominees) in the same range of nomage. We divide the
candidates into five subgroups based on the quantiles of nomage. For each sub-
group, we make boxplots for U∗∗

ij (ψ̂) for the winners and the nonwinning nom-
inees. Figure 5 shows the distribution of U∗∗

ij (ψ̂) is similar among winners and
nonwinning nominees for each range of nomage. This supports the validity of the
RPSAFTM (assuming that Assumption 1 is valid).

4.2. Sensitivity analysis. Our basic assumption, Assumption 1, is that, condi-
tional on covariates such as age at nomination, and number of previous nomina-
tions, who wins the Oscar Award is not related to how long the candidates would
have lived without winning an award. This could be violated if performers who
lead a more healthy lifestyle are more likely to win or if performers who lead a
more reckless lifestyle are more likely to win. We now provide a sensitivity analy-
sis to violations of Assumption 1. Under Assumption 1, θ(ψ) is 0. If Assumption 1
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FIG. 5. Boxplots of U∗∗
ij (ψ̂) for comparison between treatment group (winners) and control group

(nonwinning nominees) in five subgroups based on the quantiles of nomage.

is violated, then θ(ψ) = θ∗ �= 0. For θ(ψ) = θ∗, we can test the plausibility of ψ0
by testing H ′

20 : θ(ψ0) = θ∗ vs. H ′
2a : θ(ψ0) �= θ∗. To calibrate θ∗, we note that we

can interpret exp(10θ∗) as the odds ratio for one candidate to win compared to
another, if the one candidate has a ten year higher latent failure time than the other
and the two candidates are the same age at nomination and have the same number
of previous nominations. Under Assumption 1, exp(10θ∗) = 1. Table 16 shows
confidence intervals for ψ and the survival advantage of winning for winners at
first nomination for different values of θ∗.

As the odds ratio exp(10θ∗) increases from 0.5 to 1.5, the point estimate of the
survival advantage decreases from 16.4 years to −10.3 years. If less healthy candi-
dates are moderately more likely to win than healthy candidates, exp(10θ∗) = 0.9,
then the confidence interval only contains negative ψ , and there is strong evidence
that winning increases survival. But if more healthy candidates are somewhat more
likely to win than less healthy candidates, exp(10θ∗) = 1.2, then the confidence
interval contains predominantly positive ψ and the point estimate is that winning
decreases survival.

5. Discussion. In this paper we point out that healthy performer survivor bias
exists in methods from previous studies of the effect of winning an Oscar on sur-
vival. We show that under Assumption 1 (among nominees, the winner is ran-
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TABLE 16
Sensitivity analysis

exp(10θ∗) =
Odds ratio for two Survival advantage
otherwise equal people in terms of years
one has 10 years point estimate/
higher U∗∗

ij than other θ∗ Confidence interval for ψ confidence interval

0.5 −0.0693 (−0.6587,−0.4174) 16.4/(13.6,19.3)

0.6 −0.0511 (−0.5652,−0.3235) 14.1/(11.0,17.2)

0.7 −0.0357 (−0.4769,−0.2374) 11.7/(8.4,15.1)

0.8 −0.0223 (−0.3911,−0.1550) 9.3/(5.7,12.9)

0.9 −0.0105 (−0.3100,−0.0730) 6.8/(2.8,10.6)

1 0 (−0.2360,0.0088) 4.2/(−0.4,8.4)

1.1 0.0095 (−0.1654,0.0879) 1.4/(−3.7,6.1)

1.2 0.0182 (−0.0940,0.1697) −1.5/(−6.9,3.6)

1.3 0.0262 (−0.0210,0.2515) −4.4/(−10.9,0.8)

1.4 0.0336 (0.0413,0.3359) −7/(−16.4,−1.3)

1.5 0.0405 (0.0985,0.4238) −10.3/(−19.2,−4.2)

domly selected conditional on baseline covariates), Robins’ RPSAFTM eliminates
healthy performer survivor bias. We estimated that the effect of winning an Os-
car Award on survival for winners at first nomination is to increase survival by
4.2 years, but the 95% confidence interval of [−0.4,8.4] years contains negative
effects. Thus, our study indicates that there is not strong evidence that winning an
Oscar increases life expectancy.

The analysis in this paper is a case study of how Robins’ RPSAFTM can provide
an improvement over Cox proportional hazards models for estimating the effect on
survival of a sudden change in a person’s life, for example, becoming ill, starting a
high risk behavior, or starting a treatment. A key assumption (our Assumption 1)
that is needed to obtain inferences from the RPSAFTM is that, conditional on co-
variates recorded up to a given time, the sudden change is “randomly” assigned.
A feature of our application, unlike most other applications of RPSAFTMs [e.g.,
Robins et al. (1992); Hernán et al. (2005)], is that we only assume the sudden
change is randomly assigned among a select subset of the people in the study
rather than all people in the study. In particular, we are only assuming that among
nominees in a given year, who are generally at least somewhat healthy in the given
year, the winner is randomly selected. We are not assuming that the winner is ran-
domly selected from the pool of all actors and actresses who have been nominated
in a previous year or the given year and are still alive. Some performers nominated
in a previous year might be too unhealthy to act even though they are still alive.
Similar consideration of comparability only among a selected subset can be found
in Joffe et al. (1998) and Robins (2008).
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In the RPSAFTM, model (1) is rank preserving, that is, the effect of winning
is the same for each subject. Robins et al. (1992) and Lok et al. (2004) discussed
an expanded class of SAFTMs, which does not need the RHS of (1) at the true
ψ to be equal to the actual counterfactual failure time Uij , rather it just needs
that the RHS and the Uij have the same distribution conditional on past measured
covariates sufficient to control confounding. This eliminates the assumption of
rank preservation without changing the method of estimation of the population
(i.e., distributional) interpretation of ψ .
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SUPPLEMENTARY MATERIAL

Supplement A: Oscar Award data for actors and actresses (DOI: 10.1214/
10-AOAS424SUPPA; .dat). We have compiled a data file that records the nominees
and winners for each award (best lead actor, best lead actress, best supporting actor,
best supporting actress) on each Oscar Award date. We collected the data from
www.imdb.com. The selection interval spanned from the inception of the Oscar
Awards to July 25, 2007.

Supplement B: R code for data analysis and simulation (DOI: 10.1214/10-
AOAS424SUPPB; .zip). We provide the R code for our data analysis and simula-
tion studies. File “R code.txt” is for preprocessing the Oscar data and data analysis
in Section 4. File “simulation 1.txt” is for the simulation studies in Sections 2.4
and 3.5, especially for Tables 4, 12, and Figure 3. File “simulation 2.txt” is for the
simulation studies in Tables 5–10 and Figures 1 and 2.
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