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Small Area Estimation of the Homeless in Los Angeles: An Application of
Cost-Sensitive Stochastic Gradient Boosting

Abstract
In many metropolitan areas efforts are made to count the homeless to ensure proper provision of social
services. Some areas are very large, which makes spatial sampling a viable alternative to an enumeration of the
entire terrain. Counts are observed in sampled regions but must be imputed in unvisited areas. Along with the
imputation process, the costs of underestimating and overestimating may be different. For example, if precise
estimation in areas with large homeless c ounts is critical, then underestimation should be penalized more
than overestimation in the loss function. We analyze data from the 2004–2005 Los Angeles County homeless
study using an augmentation of L1 stochastic gradient boosting that can weight overestimates and
underestimates asymmetrically. We discuss our choice to utilize stochastic gradient boosting over other
function estimation procedures. In-sample fitted and out-of-sample imputed values, as well as relationships
between the response and predictors, are analyzed for various cost functions. Practical usage and policy
implications of these results are discussed briefly.
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SMALL AREA ESTIMATION OF THE HOMELESS IN
LOS ANGELES: AN APPLICATION OF COST-SENSITIVE

STOCHASTIC GRADIENT BOOSTING1

BY BRIAN KRIEGLER AND RICHARD BERK

Econ One Research and University of Pennsylvania

In many metropolitan areas efforts are made to count the homeless to
ensure proper provision of social services. Some areas are very large, which
makes spatial sampling a viable alternative to an enumeration of the entire
terrain. Counts are observed in sampled regions but must be imputed in un-
visited areas. Along with the imputation process, the costs of underestimating
and overestimating may be different. For example, if precise estimation in ar-
eas with large homeless c ounts is critical, then underestimation should be pe-
nalized more than overestimation in the loss function. We analyze data from
the 2004–2005 Los Angeles County homeless study using an augmentation
of L1 stochastic gradient boosting that can weight overestimates and under-
estimates asymmetrically. We discuss our choice to utilize stochastic gradient
boosting over other function estimation procedures. In-sample fitted and out-
of-sample imputed values, as well as relationships between the response and
predictors, are analyzed for various cost functions. Practical usage and policy
implications of these results are discussed briefly.

1. Introduction. Dating as far back as the 1930s, homelessness has been a
visible, public issue in the United States [Rossi (1989)]. At least over the past
decade, the homeless problem has been underscored due to the rise in unemploy-
ment and foreclosures. In the 2010 census, there are no plans to perform street
counts, thereby making it challenging for stakeholders (e.g., homeless service ad-
vocates and selected government agencies) to estimate the magnitude of the nec-
essary social resources. This is especially difficult in large metropolitan areas be-
cause the homeless are often dispersed due to the changing availability of homeless
services, commercial development and the government’s homeless criminalization
practices [Berk, Brown and Zhao (2010)]. Areas needing these services are lit-
erally “moving targets.” Adequate spatial apportionment of homeless-related re-
sources requires a great deal of local information that is oftentimes prohibitively
expensive to obtain.

In a typical census design, people are contacted through their place of residence.
With the possible exception of individuals living on private property, the homeless
will not be found using this design [Rossi (1989)]. An alternative approach is to
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locate homeless individuals in temporary shelters or while they are receiving ser-
vices (e.g., meals) from public and private agencies. It is widely known, however,
that a large number of the homeless still will not be found this way because many
do not use these services. Therefore, it is common for enumerators to canvas ge-
ographical areas and to count the homeless as they find them. Some metropolitan
areas are very large, making spatial sampling a viable substitute to a full canvasing.
One trades a reduction in the burden of data collection in exchange for the need to
impute homeless counts for locales not visited by enumerators.

Estimation and imputation raise the issue of how best to represent the cost of
underestimation relative to overestimation (“cost function”). The apportionment of
homeless-related resources depends, at least in part, on the estimated size of the lo-
cal homeless population. Some stakeholders, such as homeless service providers,
are more troubled by the prospect of numbers that are too small rather than too
large. This is especially true in areas where homeless counts are high, in which un-
dercounting may carry serious consequences. Other stakeholders, such as elected
city officials faced with budget constraints, may have the opposite preference. In
general, one needs the flexibility to penalize overestimation and underestimation
distinctly.

The homeless problem is especially serious in Los Angeles, which has a large
homeless population and consists of specific areas with very densely populated
homeless encampments [Berk, Kriegler and Ylvisaker (2008)]. These encamp-
ments can be a nuisance to local commerce and can compound the demand,
for example, for police and hospital services [Harcourt (2005)]. One such area
is “Skid Row” [Magnano and Blasi (2007)], located just outside downtown Los
Angeles. Historically, this area has been marked by high crime rates in terms of
drug markets, robberies, vandalism and prostitution, as well as drug and alcohol
abuse [Lopez (2005)].1 Individuals (especially the homeless) who spend signifi-
cant amounts of their time in public areas of such locales have higher victimization
rates than those who reside outside these areas [Koegel, Burnam and Farr (1988);
Kushel et al. (2003)]. In short, the set of public and private resources dependent on
the homeless population extends beyond the services dedicated to the homeless’
physical and mental health (e.g., soup kitchens, shelters, affordable housing, etc.).

In 2004–2005, the Los Angeles Homeless Services Authority (LAHSA) esti-
mated the homeless population in Los Angeles County as the aggregate of peo-
ple who were living on the streets, in shelters or who were “nearly homeless”
(i.e., homeless people living on private property with the consent of its residents).
At any given time, shelters cater to just a fraction of the local homeless popula-

1In 2005, the Los Angeles Police Department tested a pilot program, called “Safer Cities Initiative”
(SCI), which was designed to target specific geographical crime “hot spots” [Wilson and Kelling
(1982); Bratton and Knobler (1998)]. Part of this program entailed reducing the density of homeless
encampments. A full-scale version of SCI began in September 2006 [Berk and MacDonald (2010)].
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tion; consequently, locating and estimating the street count was a daunting task.2

It would have been prohibitively costly to canvas the entire county, which cov-
ers over 4000 square miles, includes 2054 census tracts, and is the most populous
county in the United States.

A stratified spatial sampling of census tracts called for two steps. First, tracts
believed to have large numbers of homeless people were visited with probabil-
ity 1. There were 244 tracts of this nature, known as “hot tracts.” The second step
was to visit a stratified random sample of tracts from the population of nonhot
tracts. The strata were the county’s eight Service Provision Areas (SPAs), and the
number of tracts drawn from each stratum was proportional to the number of tracts
assigned to each SPA. In all, there were 265 tracts in the stratified random sam-
ple, leaving 1545 tracts’ counts to be imputed.3 In that analysis, the cost function
was symmetric, and emphasis was placed on estimating the homeless population
within each SPA, for various aggregations (e.g., cities), and for the entire county
[Berk, Kriegler and Ylvisaker (2008)]. Almost certainly, symmetric costs are in-
sufficiently responsive to the policy needs of local stakeholders because both actual
and imputed counts can vary dramatically.

In this paper we re-analyze the Los Angeles data of 1810 nonhot tracts us-
ing stochastic gradient boosting [Friedman (2002)] subject to an asymmetrically
weighted absolute loss function. We focus on evaluating the relationship between
homeless counts and covariates in visited tracts and imputing the counts in unvis-
ited tracts. By boosting a cost-sensitive loss function, we are able to respond to
the cost functions of various stakeholders and focus on a particular region of the
conditional response. Depending on which cost function is applied, widely varying
fitted and imputed values can follow. We also explore how different regions of the
conditional response are related to the predictors. We show that it can be practi-
cal and instructive to employ asymmetric costs when using boosting for function
estimation and imputation.

The remainder of this paper consists of five sections plus an Appendix. Sec-
tion 2 includes a description of the Los Angeles County homeless and census data.
In Section 3 we provide an overview of stochastic gradient boosting and a literature
review on cost-sensitive estimation procedures. Our analysis of the homeless data,
which includes comparisons between fitted and observed counts, imputed counts,
and model diagnostics, is in Section 4. Section 5 includes a discussion on how our
proposed methodology and analysis can have a profound effect on policy-making

2Homeless people were paid $10 per hour to help the field researchers identify locations in which
the homeless could be found. Presumably, this helped address the problem of finding “hidden home-
less” [Rossi (1989)].

3This is a “small area estimation” analysis. Rao (2003) defines a domain, or area, as “small” if “the
domain-specific sample is not large enough to support direct estimates of adequate precision.” In the
context, homeless counts in the 265 randomly sampled tracts were used to impute the numbers of
homeless people in unvisited tracts and ultimately the entire county.
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decisions. In Sections 4 and 5 we stress the results based on models that place
heavier penalties on underestimating, as this represents what stakeholders would
likely employ to ensure proper allocation of homeless-related services. We con-
clude the paper in Section 6, in which we mention some aspects of cost-sensitive
statistical learning to be explored. In the Appendix we derive the functional forms
for the deviance, initial value, gradient and terminal node estimates when employ-
ing boosting subject to asymmetrically weighted absolute loss.

2. Data description. In the 2004–2005 Los Angeles homeless study, Berk,
Kriegler and Ylvisaker (2008) considered the use of dozens of predictors in the
estimation process.4 The 10 predictors in Table 1 were relatively important to fit-
ting the conditional distribution of street counts, capturing information about each
tract’s geographical location, land usage, socioeconomic information and ethnic
demographic data. With the exception of median household income and planar co-
ordinates, all other covariates are presented in terms of percentages. While street
counts were obtained only in sampled tracts, predictor values were available for
all of the county’s tracts.

Looking ahead to Section 4, none of our models are intended to necessarily
suggest causal relationships. We utilized predictor information described in Ta-
ble 1 primarily to estimate the conditional distribution between StTotal and each
covariate and to construct sensible fitted and imputed street counts. Whether the
predictors are causally related to homeless counts is at best a secondary concern.

TABLE 1
Names and descriptions of variables in Los Angeles County homeless data set

Description

Response name
StTotal Homeless street count

Predictor name
Commercial % of land used for commercial purposes
Industrial % of land used for industrial purposes
MedianHouseholdIncome Median household income
PctMinority % of population that is non-Caucasian
PctOwnerOcc % of owner-occupied housing units
PctVacant % of unoccupied housing units
Residential % of land used for residential purposes
VacantLand % of land that is vacant
XCoord Planar longitude
YCoord Planar latitude

4In that study, fitted and imputed counts were obtained using random forests [Breiman (2001)].
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The distribution of StTotal is highly unbalanced. 75 percent of the observed
counts are less than 28 people, and 22 of the 265 tracts have at least 50 homeless, of
which 11 have over 100 homeless (Min = 0, Q1 = 4, Median = 12, Mean = 21.6,
Q3 = 27, Max = 282). To ensure adequate local resources, stakeholders such
as police departments and homeless shelter advocates may place heavy emphasis
on accurately estimating the counts in areas that have large homeless populations
(e.g., over 100 people). If so, one is willing to trade overall accuracy for a better fit
in the right tail of the street count distribution, and underestimates are more costly
than overestimates. For policy purposes, resources may still be adequate in an area
with a predicted count of 30 people when in fact the count is 50. However, if the
prediction is 30 and the actual count is 150, there may well be a severe shortage of
local resources.

3. Estimating the conditional distribution. Let Y be a set of real response
values, X be a vector of one or more real predictor variables (1, . . . ,P ), and f (xi)

be a fitting function for observation i (i = 1, . . . ,N ). We seek to minimize some
loss function, � , to fit the conditional response distribution, G(Y |X = x):

G(Y |X = x) = arg min
f

E{�(Y,f (x))}.(3.1)

We could minimize the L1 loss so that the estimate is

GL1(Y |X = x) = arg min
f

E{|Y − f (x)|},(3.2)

in which overestimating and underestimating the response are weighted symmetri-
cally, and f̂ is the median of Y . But if underestimating and overestimating are not
equally costly, then the loss criteria needs to be asymmetric. Let L1(α) be the ab-
solute loss function that weights underestimates by α and overestimates by 1 − α,
where 0 ≤ α ≤ 1. Then GL1(α)(Y |X = x) is defined as

GL1(α)(Y |X = x)

= arg min
f

E
{
α|Y − f (x)| · I (

Y > f (x)
)

(3.3)

+ (1 − α)|Y − f (x)| · I (
Y ≤ f (x)

)}
,

where I (Y > f (x)) and I (Y ≤ f (x)) are mutually exclusive indicator variables.
For each i = 1, . . . ,N , if yi is underestimated, then the former equals 1 and the
latter equals 0. Conversely, if yi is estimated perfectly or is overestimated, then
these binary values are reversed. Note that GL1(α) reduces to GL1 when α = 0.5.

In general, f̂ (x) from equation (3.3) is the quantile of Y , which exhibits a
straightforward translation between the cost function (or “cost ratio”) and descrip-
tions of the response distribution. For example, a 3 to 1 cost ratio implies that
underestimating is three times as costly as overestimating, the ratio of underesti-
mates to overestimates will be 3 to 1, and f̂ is the 3/(3+1)×100 = 75th percentile
of Y . If instead the cost ratio is less than 1 to 1, then f̂ is less than the median of Y .
Henceforth, we refer to α/(1 − α) as the cost ratio.
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3.1. Stochastic gradient boosting: An overview. Stochastic gradient boosting
[Friedman (2002)] is a recursive, nonparametric procedure that has become one
of the most popular machine learning algorithms among statisticians. It exhibits
extraordinary fitting flexibility, as it can handle any differentiable and minimizable
loss function. It can handle and produce highly complex functional forms, and
there is growing evidence that it outperforms competing procedures (e.g., bagging
[Breiman (1996)], splines, CART [Breiman et al. (1984)] and parametric regres-
sion) in terms of prediction error [Friedman (2001); Bühlmann and Yu (2003);
Madigan and Ridgeway (2004)], provided that one utilizes reasonable tuning pa-
rameters.5 Shortly after Friedman (2001) introduced gradient boosting, Friedman
(2002) augmented the algorithm by taking a random sample of observations at
each iteration, thereby creating the stochastic gradient boosting machine. This ad-
ditional feature to the algorithm resulted in marked reduction in bias and variance.
Given stochastic gradient boosting’s success at estimating the center of Y |X, one
may deduce that it also performs well at estimating other regions of the conditional
response distribution.

The stochastic gradient boosting algorithm in its most general form is provided
below6 [Friedman (2002); Ridgeway (2007); Berk (2008)]:

1. Initialize f̂ (x) to the same constant value across all observations, f̂0(x) =
arg minρ0

∑N
i=1 �(yi, ρ0).

2. For t in 1, . . . , T , do the following:
(a) For i = 1, . . . ,N , compute the negative gradient as the working response:

zti = −
[
∂�(yi, ft−1(xi))

∂ft−1(xi)

]
ft−1(xi )=f̂t−1(xi )

.

(b) Take a simple random sample without replacement of size N ′ from the data
set with N observations.

(c) Fit a regression tree with Kt terminal nodes, gt (x) = E(zt |x) using the
randomly selected observations.

(d) Compute the optimal terminal node estimates, ρ1t , . . . , ρKt , as

ρkt = arg min
ρkt

∑
xi∈Skt

�
(
yi, f̂t−1(xi) + ρkt

)
,

where Skt is the set of x-values that defines terminal node k at iteration t .

5This is especially true when the number of predictors is large [Bühlmann and Yu (2003)].
6Our augmentation of stochastic gradient boosting and data analysis were conducted using gbm in

R [Ridgeway (2007)]. We found four boosting libraries in R in addition to gbm: ada [Culp (2006);
Culp, Michailidis and Johnson (2006)], GAMBoost [Binder (2009)], gbev [Sexton (2009)] and
mboost [Hothorn (2009)]. The respective maintainers of these packages are Mark Culp, Harald
Binder, Joe Sexton and Torsten Hothorn.
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(e) Again using the sampled data, update f̂t (x) as

f̂t (xi) ← f̂t−1(xi) + λρkt (xi),

where λ is the “learning rate.”

In the Appendix we build on equation (3.3) to derive the deviance subject
to L1(α). Subsequently, we identify the functional form of the initial value, gradi-
ent and terminal node estimates from steps 1, 2a and 2d of the stochastic gradient
boosting algorithm.

3.2. Literature review. To our knowledge, the inclusion of asymmetric costs to
boosting algorithms has applied solely to classification problems. Fan et al. (1999)
introduce an algorithm called AdaCost, a more flexible version of AdaBoost
[Freund and Schapire (1997)].7 Mease, Wyner and Buja (2007) propose a boosting
algorithm called JOUS-Boost, (Jittering and Over/Under-Sampling). By adding
small amounts of noise to the data and weighting the probability of selection ac-
cording to each class, one can obtain different misclassification rates than if using
no jittering or unweighted sampling according to classes. Berk, Kriegler and Baek
(2006) incorporate costs into a classification framework using stochastic gradient
boosting by specifying a threshold between 0 and 1; observations with predicted
probabilities below or above the threshold are assigned values of 0 or 1, respec-
tively. The threshold was established so that the ratio of misclassification errors
(false negatives to false positives) approximated the cost ratio.

In a regression context, we found three methods capable of handling asym-
metric error costs, each building on quantile estimation. If the functional form
is specifiable a priori, one can employ parametric quantile regression [Koenker
(2005)]. However, if the functional form is not known, it is important and help-
ful to exploit statistical learning. Then, one could apply nonparametric quantile
regression [Takeuchi et al. (2006)]. Yet there is evidence that ensemble proce-
dures, such as gradient boosting, typically yield superior bias-variance tradeoffs
in comparison [Bühlmann and Hothorn (2007)]. Meinshausen (2006) introduced
quantile regression forests, an augmentation of random forests [Breiman (2001)].
The drawback to this method is that the fitted and imputed values are calculated
after all of the trees are grown using random forests. Consequently, the conditional
response function does not adapt to the cost ratio. It follows that there are no new
partial dependence plots and predictor importance measurements (not even when
employing L1, since the usual random forests algorithm estimates the conditional
mean).

7In a follow-up study of AdaCost and other cost-sensitive variations of AdaBoost, Ting (2000)
shows that AdaCost stumbles in certain situations, and that this could be due to the algorithm’s
weighting structure.
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Just as with parametric quantile regression, estimates based on L1(α) stochastic
gradient boosting do not necessarily increase monotonically with respect to α.8

Each cost function yields a different model and fitted values that minimize the
L1(α) loss. Therefore, a fitted (or imputed) count may be 30 when the cost ratio
is 5 to 1 and 20 when the cost ratio is 10 to 1. With L1(α) stochastic gradient
boosting, our experience—both in this case study and with other data sets—is that
(i) all (or nearly all) fitted and imputed values tend to increase with respect to α,
and (ii) when decreases do occur, they tend to be small in magnitude. We found
that the use of larger terminal node sizes can reduce this occurrence; however, for
reasons we explain in Section 4, we purposely grew trees that potentially had small
terminal node sizes. Ultimately, we were not concerned with this “side effect”
because its occurrence was rare and inconsequential, and our analysis extended
beyond simply calculating fitted and imputed values.

In summary, we employed L1(α) stochastic gradient boosting for three main
reasons. First, the functional form can be arrived at inductively. Second, we have
the prospect of a good bias-variance tradeoff. Third, we can apply unequal error
costs at each step of the function estimation process so that all of the output is
properly cost-sensitive. We found L1(α) stochastic gradient boosting to provide
a formidable set of features for this case study, though it should not be seen as
a universal preference for cost-sensitive stochastic gradient boosting in different
settings.

4. Analysis. Based on our discussions with key stakeholders, including peo-
ple from LAHSA and government representatives, underestimation is typically
seen to be more problematic than overestimation. The prospect of having too few
shelter beds, for instance, is more troubling than if a few beds are open. With this
in mind, our analysis emphasizes results in which α ≥ 0.5. Output based on cost
functions that penalize overestimation more heavily are also reported, primarily to
demonstrate that they are employable if one desires.

All boosting models were built using the following tuning parameters: 10 splits
per tree subject to at least 5 observations per terminal node kt , a learning rate of
λ = 0.001, and a maximum of T = 6000 trees. For stochastic gradient boosting
models, we applied these same tuning parameters along with a random sample
of N ′ = 133 observations (i.e., a sampling fraction of 50 percent of N = 265,
rounded to the nearest whole number). A sensible number of iterations was deter-
mined using 10-fold cross-validation, and we found no problems in converging on
a reasonable number of trees to grow in any of our cost-sensitive models.9

8Incidentally, quantile regression forests does not share this feature because the quantile estimation
is performed on the distribution of each observation’s fitted values across regression trees.

9For example, in the stochastic models when the cost ratio α/(1 − α) ∈ {1 to 10, 1 to 1, 10 to 1},
the respective “best” numbers of iterations were 436, 1843 and 1340. Small deviations from these
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Using a handful of different learning rates and sampling fractions ranging from
0.001 to 0.01 and 35 to 75 percent, respectively, we saw inconsequential differ-
ences in terms of street counts estimates—both fitted and imputed—and condi-
tional distribution diagnostics, for each α. The same held true for models subject
to 1 to 10, 1 to 5, and 1 to 1 costs. By contrast, when we employed cost ratios of
5 to 1 and 10 to 1, we learned that the number of splits and the minimum termi-
nal node size can have a substantial impact on point estimates. The gbm library
uses the inverse of the empirical distribution to estimate quantiles, so each ter-
minal node estimate depends on just one value. Given the unbalanced nature of
StTotal, differences between consecutive values in the right tail within a terminal
node can be very large. If employing a 10 to 1 cost function and a terminal node
includes 25 points, then the estimate will be the third highest value. The use of a
highly skewed cost function implies a particular interest in estimating the handful
of large response values well, yet the top two values in this terminal node of this
size will not factor into the estimation process. To ensure that large gradients were
given ample opportunities to be terminal node estimates, we permitted large trees
and small terminal node sizes. This was facilitated by tuning the number of splits
and the minimum number of observations in each terminal node at each iteration.10

4.1. Fitted and imputed street counts. Figure 1 shows fitted versus observed
street counts for the 265 visited census tracts using stochastic gradient boost-
ing subject to 1 to 10, 1 to 1, 5 to 1, and 10 to 1 cost ratios (α ∈ {1/11,1/2,

5/6,10/11}, respectively). Using 1 to 1 costs (L1 boosting), the magnitude of the
error is less than 20 people in 232 of 265 visited census tracts. In terms of re-
source needs, errors of this magnitude are likely tolerable. Conversely, among the
22 tracts with observed counts with at least 50 homeless, all of these tracts’ counts
are underestimated. The maximum fitted value is approximately 37 people, and
the median error is approximately 70 people less than the true count. These large
undercounts need to be reduced substantially in order to ensure adequate local
resource allocation.

Figure 1 demonstrates that L1(α) stochastic gradient boosting fitted values tend
to increase with respect to α.11 Although the overall fit worsens when the cost ratio

numbers of iterations (e.g., 1400 trees subject to a 10 to 1 ratio) yielded no substantive differences
in any results. Just as one would expect when using symmetric costs, the cross-validation error ex-
hibited a concave-up parabolic behavior that tended to decrease with respect to t , until it reached
a number of iterations corresponding to the minimum cross-validation error. Beyond the minimum
cross-validation error iterations, the models overfit the data [Zhang and Yu (2005)]. The key here is
that these iteration estimates are well short of T = 6000, suggesting that we have in fact identified a
sensible number of iterations.

10By default, in gbm each tree at each iteration has one split, subject to at least 10 observations in
each terminal node.

11Of the 265 visited training data observations, 10 observations’ fitted values were lower for
α = 10/11 than for α = 5/6. We did not consider this to be problematic for two reasons. The largest
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FIG. 1. Fitted versus observed census tract street counts using L1(α) stochastic gradient boosting.

diverges from 1 to 1, we observe smaller errors in specific regions of the response.
Using a 10 to 1 cost ratio, just 15 out of 265 tracts are underestimated. Among
the 22 tracts with at least 50 people, the median difference between observed and
fitted counts is 1 person, and the interquartile range is 40 people. Admittedly, most
of the very large counts are still underestimated even when using a 10 to 1 cost
ratio, a topic we will pick up again in Section 5.12

In a way, training data fitted values are irrelevant because one’s estimates of vis-
ited tracts might simply be the observed street count. Berk, Kriegler and Ylvisaker
(2008) employed this practice when they provided estimates to LAHSA at both
the tract and aggregate levels. But provided the sampled tracts are representative
of the population of all nonhot tracts and the model does not overfit the training
data, fitted counts in Figure 1 reveal how close (or far) the unsampled tracts’ im-
puted counts are to the true counts. Figure 2 shows the distribution of imputed
counts for various cost ratios. The distributions tend to shift upward with respect

of these differences was 4 people. Also, this was generally not a problem among tracts with very
large counts; one tract had a street count of 62, and the next highest count was 43.

12Recognizing that it is in the nature of all regression models to overestimate small values and un-
derestimate large ones, we demonstrate that the use of asymmetric costs can alleviate the problem. As
the cost ratio increases, fitted values for tracts with large counts tend to move closer to the 45-degree
line.
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FIG. 2. Distribution of predicted street counts in unvisited census tracts using L1(α) stochastic
gradient boosting.

to α.13 Using 1 to 10 and 1 to 5 costs, all tracts have imputed counts of fewer
than 5 people. Conversely, using 10 to 1 costs, we find that 53 of 1545 tracts have
imputed counts over 100 homeless people.

Recognizing that portions of our analysis will be data set specific, one may
also be interested in how L1(α) boosting performs relative to other cost-sensitive
methods. Figure 3 shows fitted versus observed street counts using stochastic and
nonstochastic gradient boosting, and parametric quantile regression, subject to a
10 to 1 cost function.14 All three methods have a substantial number of overesti-
mates, which is to be expected given the cost ratio of choice. Among tracts with at
least 50 homeless people observed, L1(α) stochastic gradient boosting performs
noticeably better than the other two methods in terms of bias and variance. Nonsto-
chastic gradient boosting exhibits a median deviation of 35 people underestimated
and an IQR of 77 people. Quantile regression’s median deviation and IQR are 7
and 63 people, respectively.

4.2. Conditional distribution diagnostics. With 10 predictors, a highly unbal-
anced response distribution and abrupt spatial variation in the data, the boosted

13Of the 1545 unvisited tracts, imputed values were higher using α = 5/6 versus α = 10/11 in 44
tracts. Over half of these deviations were less than 2 people, and the largest deviation was 6 people.

14Parametric quantile regression was performed using the quantreg library in R, maintained by
Roger Koenker (2009).
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FIG. 3. Fitted versus observed street counts using quantile regression, L1(α) gradient boosting
and L1(α) stochastic gradient boosting, subject to a 10 to 1 cost ratio (α = 10/11).

models’ conditional distribution diagnostics are practical and necessary to under-
standing relationships between the response and the predictors. Since the cost func-
tion is built into each step of L1(α) boosting, partial plots and variable importance
measures can be examined in the same manner as when employing L1 boosting.
These results are especially important if stakeholders are inclined to give causal
interpretations to the associations.

One may assume that the partial relationships between the response and each
predictor exhibit similar directional behavior and are nothing more than vertical
shifts in the conditional response’s magnitude. An analogous argument might be
made regarding variable importance: if a predictor is important using symmetric
costs, then perhaps the same is true using asymmetric costs. If these inferences are
correct, cost-sensitive partial and predictor importance plots are less critical. Yet
Figures 4 and 5 demonstrate that predictors’ relationships with the response are
not necessarily the same across cost ratios, underscoring the need to examine the
conditional distribution diagnostics for each cost ratio of interest.

4.2.1. Partial relationships. To show partial relationships between the re-
sponse and each predictor, Friedman (2001) describes a weighted tree traversal
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FIG. 4. Partial dependence plots from L1(α) stochastic gradient boosting.

FIG. 5. Variable importance from L1(α) stochastic gradient boosting.
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method to “integrate out” all predictor variables, excluding the predictor(s) of in-
terest [see also Ridgeway (2007)]. Figure 4 shows partial relationships between the
response and each predictor for five different cost ratios. Since each of the predic-
tors exhibits real values, each partial relationship is shown using a two-dimensional
smoother.15 For cost ratios of 1 to 10 and 1 to 5, all of the partial relationships are
nearly flat, a result consistent with the small variation in tract-level estimates re-
ported in Figures 1 and 2. Using symmetric L1 boosting, street counts increase
with respect to PctVacant between 0 and 10 percent, and street counts decrease
with respect to PctOwnerOcc between 20 and 60 percent. Pragmatically, all other
partial relationships are close to null.

When underestimating StTotal is more costly, the conditional response can vary
substantially with respect to several other predictors in addition to the housing
vacancy rates and the fraction of owner-occupied units. For example, using a 10
to 1 cost function, street counts are indifferent to PctMinority until approximately
90 percent, but increase substantially between 90 and 100 percent. Street counts
decrease in a stepwise manner with respect to MedianHouseholdIncome; we see
plateaus for incomes between $0 and $15,000, $30,000 to $75,000, and $100,000
and above.

4.2.2. Variable importance. One may be interested in identifying which pre-
dictors are “important” to fitting the conditional response for various cost ratios.
One measure of variable importance is the reduction in loss attributed to each pre-
dictor. Friedman (2001) and Ridgeway (2007) define the “relative influence” as
the empirical reduction in squared error in predicting the gradient across all node
splits on predictor j , divided by the total reduction in error across all splits.

Even if the response and predictor j are completely unrelated, it is still possible
for the predictor to be selected to split a regression tree node. Provided there is
at least one split on predictor j , the empirical influence will not be zero. How
then, does one know the extent to which a predictor’s influence is by chance?
Along the same lines as in random forests [Breiman (2001)], in which importance
is computed by shuffling each predictor in turn and comparing the change in error,
we employed the following steps to estimate each predictor’s “baseline relative
influence”:

1. For a given predictor p, randomly permute the values. Keep all other predictors’
values as is.

15The gbm library estimates the partial response at equally-spaced values (by default, 100) spanning
the range of the predictor but independent of the predictor’s empirical density. As a result, decile
rugs are shown at the bottom of each plot for each corresponding predictor to better understand the
distribution of each predictor. For example, the vacancy rate is 33 percent for one tract, 43 percent
for another tract and less than 20 percent for all other tracts. For PctVacant greater than 20 percent, it
is difficult to determine the extent to which these partial smoothers are robust because they are based
on so few points.
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2. Construct a boosted model using the modified data in step 1 and compute the
relative influence for the shuffled predictor. Apply the same tuning parameter
settings and means for estimating a sensible number of iterations.

3. Repeat steps 1 and 2 many times, each time computing the relative influence of
the shuffled predictor.16

4. Compute the baseline relative influence as the average relative influence from
steps 1–3.

5. Repeat steps 1–4 for each predictor in turn.

Figure 5 shows each predictor’s empirical and baseline relative influence val-
ues subject to five different cost ratios. If a predictor’s baseline relative influence
(denoted by a thick black line and the diagonally shaded area) is larger than its em-
pirical influence, this suggests that the contribution to the model is happenstance.
Just as in the partial plots, we learn that a predictor’s relative influence is not nec-
essarily similar across cost functions. This can be a very important practical matter
insofar as stakeholders come to accept or reject the homeless estimates depending
on whether predictors “make sense.”

One should also be mindful of the difference between the overall reduction
in error from t = 0—at which all estimates are equal to the grand α quantile of
StTotal—to the “optimal” number of iterations. If the total reduction in error is very
small, then the absolute influence will be minimal. It follows that the differences
between each fitted response value and the initial constant will likely be small as
well. Under these circumstances, the relative influence results are inconsequential.
Such is the case for boosted models subject to 1 to 10 and 1 to 5 costs. Figures 1,
2 and 4 suggest minimal variation in fitted and predicted counts; substantively,
the relationships between StTotal and each predictor are null. Importance statistics
subject to these two cost ratios are reported primarily for demonstrative purposes.

Using symmetric costs, PctVacant and PctOwnerOcc are relatively important,
collectively accounting for nearly 35 percent of the loss reduction. PctVacant is
also important when the cost ratio is 5 to 1 or 10 to 1, along with PctMinority
and XCoord, and to a lesser extent MedianHouseholdIncome. These predictors’
relative influence are high compared to other predictors’ importance statistics and
is well above their respective baseline influences. Conversely, PctOwnerOcc is
much less important when underestimation is penalized more heavily, evidenced
by its smaller relative influence and proximity to the baseline relative influence.

5. Discussion. L1(α) stochastic gradient boosting is a potentially useful sta-
tistical tool for ensuring adequate allocation of services related to the homeless.
Practitioners might find it useful to build multiple boosted models for various cost
functions and examine the range of imputed counts for a specific tract in order to

16For α ∈ {1/11,1/6,1/2,5/6,10/11}, we repeated steps 1 and 2 50 times per predictor.
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make policy decisions. Suppose a homeless service provider or local police de-
partment considers it critical to identify tracts that have over 100 homeless people;
the former might aspire to ensure a sufficient number of beds at the nearest shel-
ter, and the latter may well decide to allocate additional officers to areas with high
homeless counts. Assume that a particular tract’s imputed count is 30 using 1 to 1
costs and 150 using 10 to 1 costs. Such stakeholders may insist on performing a
full enumeration in this tract because these two imputed counts have very different
resource implications. Alternatively, if the imputed counts using these respective
cost ratios are 30 and 40, a full enumeration may not be worth the trouble because
the difference is likely inconsequential.

Among the 11 tracts with over 100 homeless, stochastic gradient boosting sub-
ject to a 10 to 1 cost ratio yields a better prediction error than gradient boosting
or parametric quantile regression. Still, 9 of the 11 tracts are underestimated, and
the prediction error tends to increase with respect to the observed count. It is rea-
sonable to assume that among unvisited tracts with over 100 homeless, imputed
counts will be similarly biased. In practice, one way to further reduce this prob-
lem is by assigning larger “population weights” a priori to training data tracts with
large street counts. The population weights increase the frequency of specific ob-
servations if they are selected in step 2b of the algorithm described in Section 3.1.
One assumes—and perhaps rightfully so—that some tracts are inherently more im-
portant than others. If larger weights are assigned to tracts with high street counts,
then fitted and imputed counts will also increase. A toy example is provided in
the Appendix.

In addition to evaluating imputed counts, suppose stakeholders (e.g., LAHSA)
want to use response-predictor relationships to determine which unvisited tracts
might require the most resources. Figure 4 suggests that areas with some combina-
tion of high non-Caucasian populations, high vacancy rates, low median household
incomes and low rates of owner-occupied housing may be indicators of high home-
less populations. Based on Figure 5, PctVacant and PctMinority are especially key
to identifying areas potentially in need of services.

6. Conclusion. This case study features a number of characteristics that make
the analysis challenging. Although there are relatively few tracts with large home-
less counts, these are likely the most important tracts to fit reasonably well—
without overfitting the data—so that unvisited tracts with potentially high counts
are identified. In addition, Los Angeles County exhibits considerable heterogeneity
and abrupt spatial changes in terms of land usage and demography. Last, the wide
range of stakeholders would likely assign various costs to over/under-counting
during the estimation and imputation processes. We believed that a cost-sensitive
ensemble statistical learning procedure was appropriate because (i) we did not
presume to understand the underlying mechanisms of the conditional street count
distribution, (ii) we aspired to get favorable results in terms of prediction error for
specified regions of the response, and (iii) we wanted to understand how specific
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regions of the conditional response were related to the predictors. L1(α) stochastic
gradient boosting allowed us to address all of these issues.

There are a handful of practical statistical issues born out of this case study.
First, one might argue that a “cost-sensitive Poisson” loss function is a more ap-
propriate procedure for the homeless data because the outcome is a count. A key
issue, then, is whether L1 or L2 loss is more responsive to the data imputation
task at hand and to the quality of the data. In our case, a few very large observed
counts would likely dominate the analysis under L2. Whether this is good or bad
depends on the accuracy of the few very large counts and on the policy matter of
how much those large counts should be permitted to affect the imputations. We
take no strong position on either issue, but we have concerns from past research on
homeless enumerations that the count data could contain significant error [Cordray
and Pion (1991); Cowan (1991); Rossi (1991); Wright and Devine (1992)]. And,
we find that boosting the L1(α) loss function incorporates cost considerations in a
straightforward and easily interpretable manner.

There is also the matter of statistical inference, a topic we glossed over in
Section 4.2.2 by estimating each predictor’s baseline relative importance. To our
knowledge, statistical inference remains a largely unsolved problem for stochas-
tic gradient boosting and statistical learning in general [Leeb and Pötscher (2005,
2006); Berk, Brown and Zhao (2010)]. We have explored the properties of a pro-
cedure that wraps cost-sensitive boosting in bootstrap sampling cases. Although
this seems to provide some useful information on the stability of our imputed val-
ues, we do not think it addresses the fundamental problems identified by Leeb and
Pötscher (2005).

Finally, the application of L1(α) boosting brings to light the issue of choos-
ing the “right” tuning parameters, a topic explored by Mease and Wyner (2008).
While the number of splits has been researched extensively [e.g., Schapire (1999);
Friedman, Hastie and Tibshirani (2000); Bühlmann and Yu (2003); Ridgeway
(2007)], research on the impact of different terminal node sizes is minimal thus
far. Unlike estimates subject to Poisson or Gaussian loss, which are functions of
all gradients within each terminal node, an L1(α) terminal node estimate is the
quantile of gradients residing in terminal node kt . These estimates depend on just
a very local region of points and can be highly dependent on the terminal node
sizes and the way in which the quantile is estimated [for variants of quantile esti-
mation, see Hyndman and Fan (1996)]. The performance of L1(α) stochastic gra-
dient boosting subject to various quantile estimation procedures remains a topic
for future research.

APPENDIX: BOOSTING THE L1(α) DISTRIBUTION

Ridgeway (2007) specifies the boosted L1 (Laplace) loss function as

�
(
ft (xi) :xi ∈ Skt

) =
{ ∑

xi∈Skt

∣∣wi

(
yi − ft (xi)

)∣∣}/ ∑
xi∈Skt

wi,(A.1)
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where wi is a predetermined population weight for observation i that remains con-
stant across all iterations. Altering (A.1) to allow for unequal costs, the loss func-
tion becomes

�
(
ft (xi) :xi ∈ Skt

) =
{
α

∑
xi∈Skt

yi>f̂t (xi )

∣∣wi

(
yi − f̂t (xi)

)∣∣

(A.2)

+ (1 − α)
∑

xi∈Skt

yi≤f̂t (xi )

∣∣wi

(
yi − f̂t (xi)

)∣∣}/ ∑
xi∈Skt

wi,

which is an asymmetrically weighted absolute loss function if α �= 0.5.17 For short-
hand, denote �(ft (xi) :xi ∈ Skt ) = � . Then, the gradient becomes18

zti = − ∂�

∂ft (xi)
=

{
wiα :yi > f̂t−1(xi),

−wi(1 − α) :yi ≤ f̂t−1(xi),
(A.3)

where the derivative is evaluated at f̂t−1(xi). We wish to find the value of ρkt that
minimizes � subject to the loss function in (A.2):

ρkt = arg min
ρkt

{
α

∑
xi∈Skt

yi>f̂t−1(xi )+ρkt

∣∣wi

(
yi − (

f̂t−1(xi) + ρkt

))∣∣

(A.4)

+ (1 − α)
∑

xi∈Skt

yi≤f̂t−1(xi )+ρkt

∣∣wi

(
yi − (

f̂t−1(xi) + ρkt

))∣∣},

where ft (xi) is the fitted value from the previous iteration, f̂t−1(xi), plus the ter-
minal node estimate from the current iteration, ρkt . Next, we differentiate to find
the value of ρkt that minimizes �:

∂�

∂ρkt

=
{
−α

∑
xi∈Skt

yi>f̂t−1(xi )+ρkt

wi + (1 − α)
∑

xi∈Skt

yi≤f̂t−1(xi )+ρkt

wi

}/ ∑
xi∈Skt

wi,(A.5)

17With this distribution, the estimate f̂ is in the same units as y; therefore, over/under-estimation
are determined by comparing the two. Estimates in some distributions, such as Poisson, are in terms
of logits and must be exponentiated to be on the same scale as y.

18Under the usual L1 loss function, the gradient for observation i is the sign of the difference

between the observed response (yi ) and the predicted value (f̂t (xi)), multiplied by the population
weight, wi .
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0 = −α
∑

xi∈Skt

yi>f̂t−1(xi )+ρkt

wi + (1 − α)
∑

xi∈Skt

yi≤f̂t−1(xi )+ρkt

wi.(A.6)

In the right-hand side of (A.6), each summation reduces to the number of ob-
servations that are underestimated or overestimated, respectively. Let Nkt denote
the number of observations in terminal node kt , and let nkt and Nkt − nkt be the
number of underestimates and overestimates in the terminal node, respectively. For
simplicity, assume that wi = 1 for all i. Solving for nkt , the location parameter is

nkt = αNkt .(A.7)

The way in which unequal population weights affect the terminal node estimate
is worthy of a toy example. Consider terminal node kt with 5 equally-weighted
observations with fitted gradients—the “working responses”—at t − 1 of 0, 3, 5, 6
and 15. If we are estimating the median, then the terminal node estimate is 5. Now
suppose that prior to constructing the boosted model, the observation with the fitted
gradient of 15 at t − 1 was instead assigned a population weight of 3. Then this
observation’s fitted gradient from t − 1 will appear in node kt three times, and the
population-weighted median is 6.19

By weighting the loss function according to overestimates and underestimates,
the fitted value of terminal node kt is the α quantile of the Nkt gradients. In each
terminal node, there are approximately αNkt and (1 − α)Nkt gradients above and
below ρkt , respectively. For all i = 1, . . . ,N , f0(xi) equals 0, and ρ0 equals the α

quantile of the response variable, y. Therefore, the fitted value for observation i

after T iterations, f̂T (xi), equals20

f̂T (xi) = quantileα(y) + λ

T∑
t=1

quantileα(zti).(A.8)

Because L1(α) is differentiable and there exists a solution that minimizes this
loss [Hastie, Tibshirani and Friedman (2001)], we are able to incorporate costs into
stochastic gradient boosting where the response is quantitative, and in some sense
add a distribution to those provided in Friedman (2001).
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19At present, gbm does not allow for unequal population weights when employing the quantile
distribution.

20Note that zti = 0 if observation i is not randomly selected as one of the N ′ observations in step 2b
of the stochastic gradient boosting algorithm described in Section 3.1.
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