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Limit Distributions of Self-Normalized Sums

Abstract

If Xi are i.i.d. and have zero mean and arbitrary finite variance the limiting probability distribution of S,,(2)
=(2"=1X5)/ (Z"jz 1XjZ) 1/2 a5 n>c0 has density f(t) = (2)~1/2 exp(~t2/2) by the central limit theorem and
the law of large numbers. If the tails of X; are sufficiently smooth and satisfy P(X; > t) ~ vt *and P(X; < —t) ~
It~ as t>00, where 0 < a < 2,7 >0,1> 0, S,(2) still has a limiting distribution F even though Xi has infinite
variance. The density f of F depends on a as well as on /1. We also study the limiting distribution of the more
general S,(p) = (Z”,-lei)/(Z”jzl |X]|P) 1/P where X; are i.i.d. and in the domain of a stable law G with tails as
above. In the cases p = 2 (see (4.21)) and p = 1 (see (3.7)) we obtain exact, computable formulas for f(t) =

f(t,a,r/1), and give graphs of f for a number of values of a and r/1. For p = 2, we find that fis always symmetric
about zero on (-1,1), even though fis symmetric on (—o0,00) only when r =1.
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The Annals of Probability
1973, Vol. 1, No. 5, 783-809

LIMIT DISTRIBUTIONS OF SELF-NORMALIZED SUMS

By B. F. LogaN, C. L. MALLOWS, .
S. O. Rice AND L. A. SHEPP

Bell Laboratories, Murray Hill

If X; are i.i.d. and have zero mean and arbitrary finite variance the
limiting probability distribution of Sa(2) = (X7_; X:)/(X7-1 X;2)t as n— oo
has density f(f) = (2r)~% exp(—#2/2) by the central limit theorem and the
law of large numbers. If the tails of X; are sufficiently smooth and satisfy
PX; > t)~rt—*and P(X; < —t) ~ lt-2ast— oo, where0 < a < 2,r >0,
1> 0, Su(2) still has a limiting distribution F even though X; has infinite
variance. The density fof Fdependson aas wellason r/l. Wealso study the
limiting distribution of the more general Su(p) = (7=, X:)/(X 75— | X5|?)Y/»
where X; are i.i.d. and in the domain of a stable law G with tails as above.
In the cases p = 2 (see (4.21)) and p = 1 (see (3.7)) we obtain exact, com-
putable formulas for f(#) = f(¢, @, r/]), and give graphs of f for a number
of values of « and r/l. For p = 2, we find that f is always symmetric about
zero on (—1, 1), even though f is symmetric on (—oo, c0) only whenr = I.

1. Introduction. Consider the statistic

(1.1) Sa(p) = (L X)/(Z3- 1 Xs17)7
where X; are independent and identically distributed (i.i.d.) and 0 < p < co.
For p = oo, we define

(1.2) S,(00) = 2%, X, /max, ;. |X;|

which is the limit of S,(p) as p — co. Darling [2], in his study of the influence
of the maximum term on a sum of i.i.d. random variables, obtained the limiting
characteristic function of S,(co) when X, is in the domain of attraction of a
positive stable law. The methods used by Darling for p = co fail when p < oo,
and those we use for p < co fail when p = co. A further difference between
Darling’s work and ours is that we obtain the limiting distribution function (for
p = 1, 2) rather than the limiting characteristic function (which is not simply
obtainable and usually of less interest).

Student’s T-statistic T, and S,(2) are closely related, T, being defined (=,) by

(1.3) T, =A-nl; P X/(;{”T Lia (X — X)gy
=5.0)(" 53 -

It follows that whenever T, has a limiting distribution, §,(2) has a limiting
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distribution, and the two coincide. This fact was pointed out by Efron [3],
who studied the limiting behavior of S,(2) for X, in the domain of a stable law,
among other cases. Hotelling [6] also studied the asymptotics of T, for long-
tailed X; and has many additional references.

In the sequel, whenever X are assumed to belong to the domain of attraction
of a stable law G, the parameter of the attracting stable law G is denoted by a,
following customary usage [5]. The fact that 0 < « < 2 and other well-known
facts about the stable laws may be found in [3].

Under certain conditions, the denominator of S,(p) may be equivalently re-
placed by a sequence of constants; for example, when p < @, X; has a finite
pth moment, and the law of large numbers applies. In particular, if p = 2 and
X, has zero mean and finite variance, $,(2) is asymptotically normal. (One is
tempted to conjecture that S,(2) is asymptotically normal if [and perhaps only
if] X, are in the domain of the normal law. However, these questions are not
of primary interest for us here.) Thus the case p < « reduces to normalization
of partial sums by constants which has been thoroughly studied [5]. The case
p = a is also handled in this way, and so we shall assume throughout that

(1.4) a<lp.

If X, is symmetric, S,(2) automatically has zero mean and unit variance, which
shows that S,(2) is a natural statistic in the sense that it is normalized.

Suppose that X; have as common distribution the stable distribution G itself,
with density g satisfying

(1.5) xatg(x) —r, xHg(—x) — 1

where 0 < @ < 2, r + I > 0 and G is centered so that

(1.6) U, :AXIJF—'I'/'JFL» has df G
n a

for each n. By [5] page 544, |X,|” belong to the domain of the positive stable
law H with parameter a/p provided a < p, so that if (1.4) holds,

(17) Vnp =, (Vn(P))p = lelp + o+ IXnIp

ne/«

has limiting distribution H. It will be seen that (U,, V,) has a joint limiting dis-
tribution and we are interested in the limiting distribution of their ratio

U,
(1.8) S(p) = -
We remark that S,(p) will have the same limiting distribution even if X; is
merely in the domain of the corresponding stable law G. Indeed, working with
the joint characteristic function of U, and V, and ([5], page 544) it may be shown
with some effort that for appropriately chosen constants, a,, U,a, and V,%a,”
have the same joint limiting distribution as in the case when X, have exactly
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the distribution G. The ratio S,(p) then has the same limiting distribution, and
so we may and do restrict our attention to the case when X, are exactly stable
which simplifies the choice of the normalizing constants in (1.6) and (1.7). That
is, we assume henceforth,

(1.9) X, has the stable distribution G .

For 1 < a < 2, if EX, # 0, (1.6) fails and S,(p) has no limiting distribution.
Thus we are forced to assume henceforth,

(1.10) EX,=0 for 1<a<?2.

Finally when a« = 1, G must either be symmetric (the Cauchy law), ora
translate of the Cauchy law, for S,(p) to have a limiting distribution which is
not simply degenerate at zero, because the suitable normalization in (1.6) for
an unsymmetric stable law with a = 1 is nlog n, ([5] page 167).

We should mention what happens when the tails of the distribution of X; are
even fatter than stable tails, for example if P(X, > x) and P(X; < —x) are slowly
varying as x — co, say as x — oo

(1.11) P(X; > x) ~ , PX, < —X) ~ ——.

log x
As Theorem (3.2) of [2] easily implies, S,(p) then degenerates asymptotically to
the two point law with mass r/(r + [) and [/(r + I) at 1 and —1 respectively.
In such cases, all terms except the one of maximum modulus in the numerator
and denominator of S,(p) are asymptotically negligible. It seems worthy of
conjecture from the above results that the only possible nontrivial limiting dis-
tributions of S,(p) are those obtained when X, follows a stable law. Of course,
it is entirely possible that S,(p) has no limiting distribution at all as would be
the case if the density of X, in (1.5) oscillated sufficiently slowly as x — co be-
tween those of two different stable laws.

For p =1 and 0 < a < 1, the limiting distribution F has a very simple ex-
plicit formula (3.6). It is seen that F is concentrated on (—1, 1) (because
[S,(1)] < 1), with infinite singularities at +1.

Graphs of the density f of F are given in Section 6.

For p = 2and 0 < a < 2, fis given by (4.21) which involves an integral of
a ratio of parabolic cylinder functions and so is much more complicated. Never-
theless based on (4.21) we can compute f and F and it is seen in Section 5 that

(i) the tails of F are Gaussian-like at + co,
(ii) the density f has infinite singularities |1 T x|~ at +lfor0<a<1
(except if r =0 or I = 0),
(iii) fissmooth for 1 < a < 2and converges to the standard Gaussian density
as a — 2.

Graphs of f are given in Section 6 for various parameter values.
In addition to the characteristics noted above of the limiting density f in the
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case p = 2, one phenomenon, which was first discovered on the basis of numerical
(computer) analysis of (4.21) and only later proved by analytical techniques,
still appears unexplainable from a purely probabilistic viewpoint. Namely, [ is
always symmetric in (—1, 1) although only for a« =2 or r =1/ is f actually
symmetric on (— oo, co). Another curiosity is that f has noticeable bumps around
+1, +2% +3% at least for small @. It seems reasonable to explain the bumps
as follows: It is known [2] that the sums in the numerator and denominator of
S,(p) are essentially determined by a few summands of largest modulus for a < 2.
If there are say k summands dominating the rest, and if these are approximately
equal, then S,(2) is approximately +k?, and this occurs with enough probability
to be apparent in the density.

2. The limiting distribution of S,(p), 0 < a < 1. Suppose 0 < a < 1 and
X,, i =1, ..., n are independent identically distributed stable variables with
density ¢ satisfying « < p. We show first that (U,, V,) has a limiting joint dis-
tribution. Denoting X, by X, we have

Eexp(iU,s + iV,71)
2.1 = {E exp(iXs/n'/* + i|X|Pt/n?/=)}"
= {1 + §=. [exp(ixs/n/= 4 i|x[Pt/n?/*) — 1]g(x) dx}" .
The integral in the last term in (2.1) is, setting x = n'/y

1

Iyl1+a

1 o
~ - = fexp(iys + ilyP) - 1]|7|1151<(y)dy, as n— oo

(n/e|y[)*+eg(nay) dy

@22 Lgelfexp(iys + ilylrr) — 1]

because of dominated convergence, (1.4), and the fact that |x|'**g(x) is bounded
in —oo < x < oo, noting that the integral on the right side converges if a < 1
and @ < p, and from (1.4)

(2.3) K(y)=r, y>0
Ky)=1, y <0,

Putting (2.2) into (2.1) and letting n — co, we obtain

(2.4) lim, ., Eexp(iU,s + iV,t)

= exp {§=. [exp(iys + ilyP0) — 1] m‘— KO v}
Since (2.4) holds for s real and Im ¢ > 0, the continuity theorem ([5] page 481)
shows that (U,, V,?) has a limiting distribution. It then follows that S,(p) =
U,/V, has a limiting distribution since ¥, has a limiting distribution concentrated
on the positive half-line. Let (U, V) denote random variables whose joint dis-
tribution is that of the limiting joint distribution of (U, V,). Thus,

(2.5) E exp(iUs + iV?t) = lim,_,, Eexp(iU,s + iV,??).
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Setting first # = is?a then ¢ = is?b with a and b positive, in (2.4) and (2.5),
subtracting, dividing by s and integrating over 0 < s < co, we obtain

(2,6) §3° EieiUs{e—VpsPa _ e_Vpspb} ds — Sgo_l_ (esa¢(“’ _ esa¢(b)) ds
S s
where we have used the change of variable ys = x on the right in (2.4), and

@.7) 9(a) = §=. [exp(ix — |xPa) — 1] —__ K(x)dx.

lxla+l

Noting that V is with probability one strictly positive as remarked above, we
may set Vs = t to obtain

(2.8) E §g°_1- e VPPe — V™M) ds = E 1 [e="* — e} ds < oo .
s s

From (2.8) it follows that the necessary absolute convergence holds and we may
interchange the expectation and integration in the left side of (2.6), which be-
comes upon setting Vs = ¢ in the integral,

(29) E sg°_l_ ei(U/V)t{e—tPa _ e—zpb} dt = sgo L (esa¢(a) . ea¢(b)) ds .
t s

Noting that U/V is a random variable with the limiting distribution of S,(p),
we obtain from (2.9) after again interchanging integration and expectation

(2.100 % (1)exp(—17a) — exp(—rb)} di = §3 1 ("0 — ) ds
N

where ¢ is the characteristic function (ch.f.) of the distribution function (df) F,
(211) gD(I) — EelUmit — limn_m EeiSate)t |

Finally, differentiating both sides of (2.10) with respect to a, justified because
the formally differentiated integrands are absolutely integrable, we obtain for
a > 0 since Re ¢(a) < 0,

(212)  §5 () exp(—ra) di = — /(@) {7 sletw ds = 1 £ @)

a $(a)
Our next task is to invert (2.12) to obtain the distribution F corresponding to
¢. That this is possible in principle can be shown as follows:

(i) substitute r» = u in the left side of (2.12) which then becomes the Laplace
transform of ¢(u'/?),
(ii) by uniqueness of the Laplace transform ¢(u*/?) is obtainable by inverting
the Laplace transform and so ¢ is known,
(iii) an inversion of the Fourier transform finally yields F.

Although the method sketched just above does produce a mathematical for-
mula for F, it is not suitable for numerical analysis. However, in the cases
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p = 1land p = 2 there are other inversions of (2.12), which are given below
and which yield computationally usable formulas for F.

These inversions are rigorous forms of the following heuristic development.
Assuming the probability density f{(x) corresponding to the ch.f. ¢(r) exists, let

(2.13) D(s) = (5 (et dt , Re(s) > 0.
Then ¢(—1) = ¢*(f) when 1 is real and formally,
(2.14) J(x) = 77 Re § o(n)e~** dt

= n7'lim,_, Re O(c + ix) .

For p = 1, (2.12) is already of the form (2.13) and (2.14) can be applied di-
rectly with @(s) = a~'¢'(s)/¢(s). When P = 2, (2.12) may be put in the form
(2.13) by multiplying both sides of (2.12) by a function 0(a, s), integrating from
a =010 a = co, and requiring that

§o°0(a, s)texp(—ra)da = et .

Regarding this as a Laplace transform and inverting gives 6(a, s5) =
2(za)~* exp(—s*/4a). Comparison with (2.13) gives @(s) as a definite integral
with limits @ = 0 and a = oo (shown on the right side of (4.4) below). The
integral converges in the sector |args| < 7/4, but not at s = ix, the point at
which @(s) is needed to get f(x) from (2.14). The value of ®(ix) can be obtained
by analytic continuation. The procedure is, in effect, to rotate the path of
integration from the positive real a-axis to the positive (assuming x > 0) imagi-
nary axis. Actually, it is more convenient to seta — 1 /(27%) so that the positive
imaginary a-axis corresponds to the ray arg v = —n/4 as indicated by the upper
limit of integration r = oo/i* in (4.21) (with ¢ for 7). The resulting integral
converges when s = ix and f(x) is given by (2.14).

We recall that since p must be > «, as remarked above, when p = 1 we must
have 0 < o < 1.

3. Thecasep =1,0 < a < 1. We need the following slight variation of the
usual inversion formula ([5] page 484), where the second equality follows from
the fact that ¢(—7) is the complex conjugate of ¢(r).

LEMMA. If ¢ is the ch.f. of the df F, then
3.1 F(x) — F(y) = limwoi > ot (7" — ™) e—<ltl gy
J 4 -
2r it
=lim_, L Re §& o() € =€) pu g
T it

whenever x and y are points of continuity of F.
Set p = 1 in (2.12) and obtain for all a > 0,

© o(fe-ot d — L ¢'(a)
(3-2) §5 (e dt = ;W
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where ¢, given by (2.7) with p = 1, is after a short calculation,

(3:3) $(@) = L(=a)(r(@ — )" + lla + i)%) ,

where the phases are chosen so that arg(a — i) and arg(a + i) tend to O as
a — +oco and branch cuts are taken in the complex a-plane from —co + i to
+i. Both sides of (3.2) are analytic in the half-plane Re (¢) > 0 and so (3.2) must

continue to hold throughout Re (a) > 0. Set a = ¢ + iu with ¢ > 0, —o0 <
u < oo in (3.2) to obtain

1 .. it 1 1 ¢'(e 4 in)
3.4 — He~™etdt = — — T - 1 2.
(3.4) 55 (1) e
Integrating (3.4) on « from x to y and applying (3.1) we see that the limiting
distribution function F of §,(1) satisfies for —co < y < x < oo.

. 1 . .
(3.5)  Fx) — F() = lim,_o——TIm log g(c + ix) — log 4(c + i)] .
Since F(—oo) = 0 by convention, a short calculation from (3.5) gives for 0 <
a<l,|x]<1,r=0,1=0,r+ >0, the limiting distribution for p = 1,
(3.6) F(x) = lim,_, P(S,(1) < x)
=3+ _l-tan—l[l(1 )=l = ) oy m] ;

T«

1+ x)* + r(1 — x)* 2

while F(x) = F(1) =1 for x = 1, F(x) = F(—1) = 0 for x < —1 which is as
expected since |S,(1)] < 1. For r = 0 or [ = 0 F degenerates to the one point
distribution at —1 or 41 respectively which is not surprising because in these
cases S,(1) = +1 since all X, are of one sign. On the other hand, for r > 0,
[>0,0< a<1,p=1, Fhasadensity f given for |x| < 1 from (3.6) by

B.7 flx)= %’_I_Sjrﬂﬂ [(1 — x®=«(r*(1 — x)** + 2rlcos ma(l — x?)*

+ (1 4 1))
Of course, f vanishes for [x| > 1. We have from (3.7)

(3.8) /u)~_%2wsm”“(1_xyﬂ, as x11
T
(3.9) ﬂ@A“ézﬂsf:“u-Fw*h as x| —1,

showing that f has infinite singularities at +1. From the graphs of f, given in
Section 6, it seems that f has one minimum for 0 < « < } and two minima for
F<a<l

4. Thecase p =2,0 < o < 2. Setting p = 2in (2.12) with 0 < o < 1 we
obtain for a > 0,

(4.1) 5> to(t) exp(—tPa) dt = .Cl_(. 9;/((:))
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where ¢ is the limiting characteristic function of S,(2) and ¢, given by (2.7), is
4.2) d(a) = §=, [exp(ix — x%a) — 1] H%K(X) dx, *

X! a

K being given by (2.3). Multiplying (4.1) by (wa)~* exp(—s*/4a), integrating
over a from 0 to oo, and using the identity

4.3) _2 {o exp[—(s?/4a) — ar’la~tda = e**, s>0,t>0,
T
we obtain for s > 0,
(4.4) (@ p(fe= dt = 1 {3 (na)~+ exp(—s/4a) LD da .
a $(a)

Note that (4.4) gives the Laplace transform of the Fourier transform of the
distribution function we are seeking. We can apply the same method to (4.4)
that we used to invert (3.2) provided we can analytically continue the right side
of (4.4), which only converges for |arg s| < 7/4, to s = iy, —c0 < y < co. To
do the continuation, it is convenient to use the parabolic cylinder functions [7],
D,(z), which are entire functions of z for each real v. We shall make use of
the following properties of D, (z), [7]:

(4.5) D,(z) = lf('_z’:) fo emst=tnp-tgr v <0
(4.6) D, y(z) — zD,(z) + vD, 4(z) = 0
4.7) 4 D(2) + 32D,(z) — vD,_4(z) = O
dz
4.8) D (iz) = B(’;_:;é_l) [e¥*2D_,_,(—z) + e~**2D_,_\(2)]
(4.9) D, (z) ~ z* exp(—2/4), as z— oo, largz| < 3n/4
(4.10) LD+ ¢+ 43— 1D, =0.
z «

Differentiating (4.2) and using the substitutions
(4.11) a=1/(26%, x=¢&b
we obtain from (4.5) for 5 > 0,
(4.12) ¢'(a) = —b*%e VA2 — a)[rD,_y(—ib) + ID,_y(ib)] .
Integrating (4.2) by parts and using (4.5), (4.6), and (4.11) we obtain
(4.13) J(a) = b=e AT (—a)[rD(—ib) + ID(ib)] .
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Putting (4.11), (4.12), and (4.13) into (4.4) we obtain for s > 0,

(4.14) 1§ o(ne-rtdr = {5 en(tydr .
where
(4.15) (1) = (1 — a)(2n~3)} rD,_o(—it) + ID,_y(if) .

rD (—it) 4 ID(it)

We note that (1) is analytic (free of poles) in the region |arg ¢ < x/4 be-
cause the denominator of &7 is given by (4.13) and ¢/(a) has negative real part
if Re (a) > 0 as is clear from (4.2). Verifying from (4.8) and (4.9) that for
0] < /4,

(4.16) [Dpet)| = O(p™)

we may rotate the contour on the right of (4.14) to the ray arg¢t = 6, fors > 0
and fixed || < n/4. Denote, for |f| < /4, the corresponding integral by
(4.17) Hy(s) = {&* e=**2 (1) dt

which is convergent and analytic for

(4.18) Re (s%*%) > 0.

From Cauchy’s theorem we see that H,(s) are merely different representations
of a single analytic function

(4.19) H(s) = Hy(s), Re (s%*%) > 0.
Thus for y > 0, letting s — iy with Re (s) > 0,
(4.20) H(iy) = H_.(iy + 0)

= (ot e dt, it = e,

We can now obtain the limiting df F by the method of Lemma (3.1). Passing
directly (to avoid more cumbersome formulas) to the density f of F we obtain
for y = 0, from (4.20)

(4.21) A7) = lim,_,,, Re % i o(t)e* dr

= Re H(iy) = Re {7/ ™2 (1) dt, y=>0.
Since
(4.22) t)* = D(—r*)
with * denoting complex conjugate, it is easy to check that for y > 0,
(4.23) f(—y) = Re §g e2 1) dr

= Re {7t er®2g(—t)dt, y=0.

Since Z{(p/it) ~ constant - p'~~ exp(p%/2) as p — oo, the integrals in (4.21) and
(4.23) converge only conditionally. The corresponding formula for F, obtained
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by a formal integration of (4.21) and (4.23), involves absolutely convergent
integrals but we omit writing the formula for F since we have not used it for

computation.
It is clear from (4.21)—(4.23) that interchanging r and [ reflects f, that is,
(4.24) fsr, ) =f—y;Lr).
It is not transparent from (4.21)—(4.23) that
(4.25) fO) = A=y for —1<y<1

To see this we first note that from (4.21) and (4.23),
(4.26) f() = fl=y) = Re {7 exp(y*2[D[ (1) — D(—1)] dt
and from (4.15), (4.6) and (4.7), for all values of ¢,

(4.27) 1) — D(—1)

B 2rt — )it

T 7D — a)[rD(—it) + ID(it)][rD,(it) + ID (—if)]
where we have used the Wronskian ([7] page 117)

(4.28) D(—2)D,(2) + D/ (—2)Dy(2) = —(27)!T(—a)

in which z may be complex and D, denotes the derivative of D,. From (4.27)
and (4.9) we have as || — oo in the sector |arg {| < 7 /4
2rt — B)if—* exp(—£[2)

(4.29) Aty — Z(—1) ~ (1 — a)( £ I* + 2rlcos za)

This result shows that when |y| < 1 the contour in (4.26) can be shifted from
the ray arg t = — /4 to the positive real axis, where from (4.27), Z{(t) — Z(—1)
is purely imaginary. Hence f(y) — f(—y) is zero and (4.25) follows.

We will see in Section 5 that fis symmetric in —oo < y < oo only if r = .

We turn next to the case 1 < a < 2. Suppose then that X, are stable with
parameter «, 1 < @ < 2, and that EX; = 0 and a < p which are necessary, (1.4)
and (1.10), for S,(p) to have a proper, non-stable limiting distribution. The
integrand in (2.1) can be written simply as

(4.30) §=. [exp (ixs/n¥* + i|x|Pt/n?/*) — 1 — ixs[n**]g(x) dx
since § xg(x)dx = 0. The remainder of the proof carries through as before
except that ¢ in (2.7) must be replaced by
(4.31) 3(a) = §%. [exp(ix — |x]a) — 1 — ix] _I_II.HK(x) dx,
X a
which converges for 1 < @ < 2 and a < p.

In particular, for p = 2, (4.1) holds with ¢ replaced by ¢. A calculation
shows however that (4.12) and (4.13) are still valid if ¢ is replaced by . Thus
the formulas (4.21) and (4.23) for the limiting density fare valid without change
also for 1 < a < 2.
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The case @ = 1 is somewhat special. As we noted in the introduction, S,(p)
has a proper limiting distribution only if = /, that is only if X, follow a Cauchy
distribution. However, in contrast to the case when a < 1, we will see that
for a = 1, translating X, to X, + p changes the limiting distribution. Suppose
then that X, = X, 4+ p have the noncentral Cauchy df.

(4.32) G(x) = L §ea (1 + w) du

where —oo < ¢ < co. We will show that the limiting density of §,(2) (that is,
S,(2) with X, replaced by X,), f(y; ), is given by (analogues of (4.21)—(4.23))

(4.33) f(y; 1) = Re §5* e (1) dt y=0
(4.34) f(—y; ) = Re {5/t e (—1y dt
= Re {¢ e*2 (1) dt y=0,
where
(4.35) D) = <‘2§>% {1+ 1e®2(§5 e du — ip|(2m)})}" .
T

We note that (in contrast to the case a 1) the contour in (4.33) may be ro-
tated to the real axis for —1 < y < 1 because D(t) = O(exp(—1*/2)) as real
t — oo from (4.35), thus

(4.36) f(y; 1) = Re §5 eB2 (1) dt , —1<y<1.
It follows immediately from (4.33) and (4.36) that (analogues of (4.24)—(4.25))
(4.37) fOs ) ==y —#) —o0 <y <
(4.38) fo ) =f=y. 1) —1<y<1.

We remark that for ¢ = 0, & is the limit of & as a — 1 keeping r = I.

The proof of (4.33) and (4.34) is again similar to that of (4.21)—(4.23), and
so we only give the new aspects. Let X, denote (symmetric) Cauchy random
variables and (U, V) random variables with the limiting joint distribution of
(U,, V,) as in (1.6) and (1.7). Then

(4.39) 8.2 = UJ; ¢ as n— oo
where $,(2) is S,(2) with X, replaced by X, = X, + ¢, and =~ denotes that the
right side has the limiting distribution of the left side as n — oco. To find this
limiting distribution set & = 1, p = 2 in (2.4) and (2.5), to obtain

(4.40)  Eexp[iUs + iV*] = exp{S"jw [(e* cos ys) — 1] = dy} .
y

Multiplying (4.40) by exp(ips) and proceeding as before, we obtain (4.4) with
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¢ replaced by ¢, the ch.f. of £, and ¢ replaced by
7 o o—sla 1 ;
(4.41) P(a) = §=. [e7** (cos x) — 1];; dx + ip .

A calculation shows that, with the substitution a = 1/26?, (4.4) with ¢ replaced
by ¢ reduces to (4.14) with & replaced by <. The remainder of the proof of
(4.33) and (4.34) is as before.

5. Asymptotic and numerical analysis of the exact formulas. We first obtain
an alternate formula for the limiting density fin thecase p =2,0 < a < 2,
by shifting the contour in (4.21) and (4.36) still further to the negative imaginary
axis. The resulting formula for y > [1/(2a + 1)]* is, as we shall see

(5.1 f(y) = Re (2;”)< )Z/ Ly

where the sum is taken over the set 4 of poles of <7 (< in the case a = 1) in
the sector {—n/2 < arg t+ < —n/4}, with the special provision (indicated by the
prime on the summation sign in (5.1)) that the term corresponding to the (as
it turns out, unique) pole 7, of &7 on the negative imaginary axis is summed
with weight 1. The series in (5.1) converges absolutely for y > (3/(2a + 1))t,
and converges conditionally, if the terms are ordered according to increasing
modulus of the poles ¢, for y > [1/(2a + 1)]}, y = 1. For a =1, (5.1) gives
Sy, pyif isused in place of <7 in determining the index set A, with the same
convergence criteria.

We begin the proof of (5.1) by observing that the numerator and denominator
of & cannot vanish simultaneously, so that 7 ¢ A if and only if

(5.2) rD, (—it) + ID(if) = 0.

LEMMA A. Unless 0 < a < 1 and r = 0, there is one and only one value t, of t
such that t = t, satisfies (5.2) and t, is on the negative imaginary axis, that is
(5.3) ty = —it,, 7,>0.
For o =1 there is one and only one t, satisfying (5.3) and 52’(1‘0) = oo (see (4.35)),
t, may be approximated using a table of Dawson’s integral [1].

Assuming the lemma true (it will be proved in Section 7) consider the closed
contour C made up of three arcs: C,—from 0 to p exp(—ir/2) along the nega-
tive imaginary axis with an indentation into the fourth quadrant around 7,
C,—from p exp(—in/2) to p exp(—in/4) along the shorter arc of the circle of
radius p centered at 0; C;—from p exp(—ir/4) to 0 along the straight line joining
these points. By Cauchy’s formula,

(5-4) §o e P (t)dt = (271) e anrio) Tes (€M 2(1)) 5

where I(C) is the region interior to C, and res denotes the residue at .
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The residue of exp(y*?/2)Z(1) at ¢ is

y2t2/2 —a __2.'_ ’ rDa—z(—it) + lDa—Z(it)
(3-3) el = a) < > H(—i)D, (—if) + 1iD(if)

71'3

where the prime denotes the derived function. Using (4.6) and (4.7), the ex-
pression in (5.5) becomes

(5.6) res ("2 (1)) = — L (%)* ety
a \T

The real part of the integral along C, in (5.4) vanishes because Z(f) is real
on the imaginary axis; the indentation at ¢, contributes 1 x the residue at ¢,
because the contour goes half-way around #,; the contribution of the integral
along C, is zero provided that p — co along a properly chosen sequence ac-
cording to lemma B, below. Putting the above statements together we obtain
(5.1) from (4.21) and (5.4) except for the assertion about absolute convergence
of the series in (5.1), which is proved in Section 7, along with lemma B.

LemMMmA B. If y > [1/(2a + 1)1}, the integral in (5.4) over Cy(p) tends to zero
for a sequence p = p,* — oo for which the region between C,(p,*) and Cyp},;)
contains only one pole of 7.

The behavior of f(y) as y — co. The expansion (5.1) shows that as y — oo,
for some a and <,

(.7) f(y) ~ aemi?

where a and 7 correspond to the term of (5.1) for which Re 7 is a maximum
(note that Re #* < 0 for re 4). We have not proved but conjecture, on the
basis of both mathematical simplicity and numerical evidence, that Re #* is a
maximum over ¢t € 4 for t = t, = —ir, in (5.3). If this conjecture is true, then
as y — oo, from (5.1),

(5.8) e

However, (5.8) must be regarded as an unproved conjecture although (5.7) holds
rigorously for some a and ¢ > 0. Because of (4.24), as y — — oo, (5.8) holds
with ¢, replaced by z/ > 0 where # = ir/ satisfies (5.2) (equivalently, —ir,
satisfies (5.2) with r and / interchanged). It is easily seen that ¢, == ¢, if r # [
and so f is not symmetric on (— oo, co) unless r = [.

Forr=0and 0 < @ < 1, 4 is empty and in this case, f{y) = 0 for y > 0.
Of course this conclusion is obvious probabilistically anyway because if r = 0
and 0 < a < 1, all X; are negative. In every other case, the tails of fand F
are asymptotically Gaussian (5.7).

We can also use (4.21) to determine the behavior of fat y = 1. We have:
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(i) for0<a<1,r>0,asy|1,

1 1 r?sinra

5.9 ~ — , 1
(5.9) R yl
where
(5.10) C = rexp(—ina/2) + lexp(ira/2);
(ii) for0<a<1,rl>0,asy11,
1 1 rlsinra
(5.11) f) ~ — ; AR
(I —=yy== |CP
(iii) fora =1, —c0o < pp < 0, as y — 1,
1 1 1
5.12 , ) ~ — lo ;
(5.12) o~ s 8

(iv) for 1 < a < 2, f{y) is continuous at y = 1.

The case | = 0, 0 < a < 1 is interesting. The right side of (5.11) vanishes.
Indeed, in this case f(y) = 0 for y < 1 because as we noted before, X, are posi-
tive in this case and so S,(2) = 1, as is easily verified. Similarly, if r =0,
0<a<l, flyy=0fory> —1.

(v) for0<a =<1, ys +land for 1 <a <2, —o0<y< oo, fiscon-
tinuous at y;

(vi) for —oo <y < o0, as a — 2,

1
(27)~*

e—¥?

(5.13) ) = () =

Assertion (vi) is not surprising because as we noted in the introduction S,(2)
is asymptotically normal when X, are normal. We begin proving (i)—(vi) by
noting that from (4.8) we have

(5.14)  ew=[rD (—if) + ID, if]

, A 3
= (re~oin 4 lemm\D ity — ir 27 _p_ (1),
I'(—a)
and from (4.9) we find that as r — o0, 0 < a < §
. 2ir 1 1 ;
5.15 D(t/ity ~ =82 2 p-taptlisz
1) o oS Vi
It follows from (4.21) that as y — 1, for any T,
; 2r
5.16 ~ Re jpeima-wp-zagy. T
(5.16) fU) ~ Re §; =

at least for 0 < a < 1, r- I > 0 because, as we shall see, in this case the right
side becomes infinite as y — 1 and finite quantities can be neglected. We may
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set 7= 0 and shift the contour to argt = r/4 for y < 1, argt = —x/4 for
y > 1. A short calculation gives (i) and (ii) and (iii) follows similarly.

To prove (iv), we note from (5.15) for a < § and from (5.14) and (4.9) for
a = 3 that as real 1 — oo,

(5.17) Dtit) = O(p—>) l<a<}
(5.18) )ity = O(t7%) , 3<a<2

so that the last integral in (4.21) converges uniformly in y (note that exp()?r?/2)
has modulus one on the contour). Thus f is uniformly bounded and continuous
for I < @ < 2. Using the asymptotic expansion for & (or ) for 0 < a < 1
in a similar way, (v) follows.

To prove (vi), note that as « — 2, from (4.15)

(5.19) () — _<£>* rD(—it) 4 ID(it) _ ( 2>; 1

w2/ rDy(—it) + ID(iry ~ \z*/ 14 ¢~
Thus, from (4.21), we obtain easily
; 2\t =¥ 22 dt
(5.20) lim, _, f(y) = <F) Re §5+7t e -8 = ().

Moments. The moments of f, which all exist by (5.7) can be computed re-
cursively from (4.14) as follows. Expand ¢(f) and <7(¢) in (4.14) into power
series about r = 0 and integrate term by term. Equating coefficients of like
powers of 1/s gives for a =+ 1, after a laborious calculation,

(159)
(5.21) lim, . ES,(2) = ». 7=t 2

(=)

5
f(i-5)

We see from (5.22) that the variance of §,(2) is < 1 if and only if « < 2/x and
checks with known results as « — 0, « — 2, and when r = [.
When r = [, §,(2) is symmetric about zero and as n — oo, we find in the

same way,

(5.22)  lim, ,0%S,(2) =1+ <% - % ) (: J—r §>2

lim ES,}(2) = 1
(5.23) lim ES,%2) = 1 + «a
lim ES,%(2) = 1 + 3a + 2o
lim ES,%2) = 1(3 + 20a + 34a? + 17a%) .
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In the same way as (5.21) and (5.22) were obtained, we find for a = 1,
— 0o < 12 < o,
(5.24) lim, ., ES,(2) = §=. xf(x, p) dx = £

T

. ~ 2 2 1
(5.25)  lim,.. *(5,(2) = {=. <x — %) forpyde =142 <% - ?> .

Numerical analysis of (4.21). In computing f(y) from (4.21) by numerical
integration, the rather slow rate of convergence was increased by subtracting an
asymptotic expression for the tail from the original integrand. The asymptotic
expression, which could be integrated in closed form, was obtained from the
properties of D ,(z).

For |f] < 4, Z(t) was found by using the power series for D (¢) in (4.15); for
[t| > 4 the asymptotic series for <7(f) was used. Both series were stopped when
the absolute value of the last computed term became less than 0.0001. “Single
precision” computation with a machine error of 1 part in 10® was used.

Numerical analysis of (5.1). To compute the poles of <7 one must compute
the zeros of the expression in (5.2) which we shall call D(¢).

The zeros of D nearest the origin may be estimated by the roots of polynomials
obtained by truncating the power series of D. More exact results can be found
using tables of D,. In this way we found for the case « = 1, ¢ = 0, which was
our original case of interest, that r, ~ 1.31.

A zero of D, B, with large modulus may be estimated by the roots of the
asymptotic expansion of D using (5.14) and (4.9). More exact values of 3 were
computed by Newton’s method. Thus for small values of 8 — §,

(5.26) o) = 2B + (6~ B (57),

Setting D() = 0 and approximating the derivative by (D(§ + A) — D(B))/A
gives the iteration formula

(5.27) B =B+ DBA(DB) — DB + b)) .
In the calculations the increment A was set equal to 0.01, and the initial value
of B (in the case « = 0, ¢ = 0) for the nth zero in modulus, 3,, was taken as

(5.28) . = i¥(dmn + m/2)}

obtained as described above by setting the asymptotic expansion of D equal to
zero. It was found that about 10 iterations were required to reduce |D(B)| to
less than .0001 (the accuracy to which D(8) is known).

6. Graphing the limiting density /. In Fig 1, p = 1. See (3.7). The curve
with the local maximum represents f in the case p = 1, a = .8 r/l = 1.5. For
p=1.5<a< 1, fseems to always have a local maximum. The other curve
represents finthecasep = 1, = .5, r/l=3. Forp=1,0< a £ .5, fseems



804 B. F. LOGAN, C. L. MALLOWS, S. O. RICE AND L. A. SHEPP

to have no local maximum. Both of these assertions are unproved but are con-
jectured on the basis of numerical evidence.

InFig.2,p = 2, @ = .15,1 = 0, f{(x) is plotted on semi-log scalefor I < x < 2
to show the bumps near 2t and 3¢. The value 2.03 for f(2%) was actually com-
puted for x = 1.414000. It may differ somewhat from the true f(2¢) because of
the rapid change in f(x). The bump at 3} was not apparent for a = .30. It
seems consistent with the proposed explanation of this phenomenon given in
the introduction that the bumps would be more pronounced for smaller a,
which seems to be the case.

In Fig. 3, graphs of f are shown in the cases p = 2, a = .5, with r// having
each of the values 1, 1 4 2}, co. The value 1 + 2} was used because during
the computational stage of the work reported here we were using the more usual
[5]; (a, r) normalization of the stable distributions; the case r// = 1 4 2¢ cor-
responds to y = .25. Note that f is symmetric only for r/l = 1, but is always
symmetric in (—1, 1). Note also the bump of f near +2% most pronounced
in the r/l = oo case where there is even a local maximum near 1.41. Note
finally that f = 0 for x < 1 when r/l = oo because / = 0and @ < 1. See remark
below (5.12).

In Fig. 4, f..(x) = f(x, 0), that is, f,, is the density in the case p = 2, & = 1,
p = 0. The other curves, f, and f,, are the densities of Sy(2), Sy(2) in the case
a =1, p = 0. Note that f, and f, show bumps at x = +1, +2¢ but fw only
shows a bump at x = +1.

In Fig. 5, the three graphs of f correspond to the case p = 2, a = 1.5, with

1.6

1.4

1.2 1

1.0
f(x)

0.8

0.6

0.4

0.2

-0 -08 -06 =04 -0.2 1.0

x O~
(@]
N
o
N
o
[))
(@]
®

Fic. 1. Probability density f(x) for p=1, a=.8, r/l=15and p=1, a = .5, r/l =3.
For |x| > 1, f(x) is zero (see (3.7)).
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r/l having each of the values 1, 1 + 2% co. The symmetry in (—1, 1) is quite
clear. Note the bumps of f at +1 are now finite and disappear in the case
r/l = ©O. s

As « increases to 2, the bumps of fat +1 disappear and f tends to the normal
density (5.13). Forp =2, @ = 1.99and r/l =1, 1 ++ 2}, oo the graph of f is
indistinguishable from that of the normal density.

Summarizing the case p = 2 qualitatively we see: as a increases from 0 to 1
there are noticeable finite bumps in f'near x = + 3% (disappearing before a = .3);
there are bumps near x = +2! (disappearing about a = .5); there is an infinite
singularity at x = +1 (thinning out as a 1 1 but remaining at « = 1). In the
above we have assumed r > 0 and / > 0; in the cases r = 0 or / = 0, f is one-
sided (if r = 0, f(x) = 0 for x > —1). As « increases beyond one, the bumps
at x = +1, now finite, disappear between a = 1.5 and a = 1.99. f evolves
into the normal curve.

B t(/2)=2.03
1.0 |-
"
0.4
f(/3)=0.118
f(x)
p=2
a=0.15
= L=0
0.02 ' ! ' '
1.0 1.2 1.4 1.6 1.8 2.0

X

FiG. 2. Probability density f(x) for p =2, « = 0.15, and / = 0. Note the
bumps at x =2% and 3%, When a <1 and /=0, f(x)=0 for x <1 and
f(x) ~ z=3(x — 1)¢-1sin za as x — 1 from above (see (5.9)).
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- p=2
1.2~ a=0.5
r/l=1,1+./2,00

0.8
fix) |-
06

0.4

0.2 -

0]
-2.5

F1G. 3. Probability density f(x) for p=2, « =0.5, and r/l=1, 1 4 2%, co. Note the
symmetry for |x| < 1. The behavior of f(x) near x =1 is given by (5.9) and (5.11). As
X — oo, f(x) approaches the Gaussian tail (5.8) with r; = 1.65, 1.18,0.77, for r/l = 1, 1 + 2%,
oo respectively. As in Fig. 2, f(x) =0if x < 1 and r/l = co.

I 1 T [
0.6 |- Ci+CoteeetC
f (x), x =——2 .

(C3+C3+++++C8)

172

1

0.5~ FOR n=23 AND oo,p(c)=—7—1r1 >

0.4

fn(x)
o3

0.2 |-

fa(x)

ot~

0 1 1 | |
o] 0.2 0.4 0.6 0.8 1.0 1.2

X

Fic. 4. Probability density fa(x) of Su(2), n=2,3,00 and a=1. When a=1, X;
becomes a Cauchy random variable ((4.32) to (4.41)) and fu(x) = f(x, 0. Asx—1,
Sfo(x) = —z—2log |1 — x?| 4+ 0.226 - - + o(1) and as x — oo, fw(x) asymptotically ap-
proaches the Gaussian tail (5.8) with @ = l and 7, = 1.31 ...
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p=2
a-1.5 fx
r/2 =1,1+/2,©

-1+ 0.35

— 0.20

—+ 0.15

/ J—o -+ 0.0
/7

-T-0.05

I | 1 |
-2,5-20 -1.5-1,0 =05 O 05 1O 15 2.0 25

Fic. 5. Probability density f(x) for p =2, a« = 1.5 and ¢/l the same as in
Fig. 3. Again note the symmetry for |x| < 1. If @ exceeds 1, f(x) is continuous
at x = +1 (see discussion below (5.18)). As x— oo, f(x) approaches the
Gaussian tail (5.8).

7. The poles of &Z. We begin the proof Lemma A of Section 5 with the case
0 < @ < 1. Suppose that t = —ir is a zero of (5.2) with ¢ = 0, so that
(7.1) rD (r) + D (—7) = 0.
We may use (4.5) and (4.6) to obtain an integral representation of D, for
0 < @ < 1. Doing this, (7.1) becomes
(7.2) fo ev¥y=a-ir(err — 1) 4 (e~ — 1)]du = 0.
We note that the left side is a convex function of = which is negative at ¢ = 0.

Thus (7.2) and also (7.1) has one and only one zero for = > 0.
For 1 < a < 2, (7.1) becomes after a two-fold use of (4.6) and (4.5).

(7.3) (o [r(e™ 2 — 1 — zu) + l(e=™ 2 — 1 + tu)Ju=*'du =0

and the existence and uniqueness of z, follows from convexity in the same way
as before.

For a = 1, Z(~—ir) = oo if and only if
(7.4) (1/r)e*? — 5 e dv = p/(2n)t
from (4.35). The left side of (7.4) strictly decreases from co to —oco in 0 <
7 < oo and so Lemma A also holds for & = 1.

To prove Lemma B, we first determine the approximate location of the poles
t of large modulus in the region {—=/2 < arg r < —r/4}, so that

(7.5) t = pe [it, 0<0<nr/4, p large.
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Using (5.14) and (4.9) we see that as p — oo,

(7.6) rD (—it) + ID (i) ~ C((if)})*e®(1 — b((ir)?)~2e"1e~""/2)

where C is given by (5.10) and '

(7.7) b = #r2z)}/CT(1 — a) .

In terms of p and ¢, the right side of (7.6) is zero if and only if for some integer n,
(7.8) $0?sin 260 — (2a + 1) logp + log 6| =0

and

(7.9) 1p?cos 20 + (2a + 1) + argb = 2an.

Denote by p,, 0, a solution of (7.8) and (7.9) for a given large value of n. It
follows easily that

(1.10) on ~ (4mn — 2(arg b))*
(7.11) 0, ~ 1 (2a 4 1) log 4zn
2 4zn

Choosing p = p,* between the p,’s say
(7.12) 0, = (4nn — 2(arg b) + 2r)t

should cause the contour C, of Lemma B to fall in the valley between the poles
of & near ¢, and t,,;, where

(7.13) t, = p,eafit, n=1,2,...
We verify from (5.14) and (4.9) that for t = p,*e[i*, 0 < 0 < n/4,

(7.14) |<Z(#)| < (const.) - pi~agte?sinat 060,
(7.15) |Z2(1)| £ (const.)p™?, 0>40,.
Thus with

(7.16) C G ={pxe )it 0 0 < nf4)

we have, writing p,* = p for simplicity,
1802 euztz/zg(t) dtl <op Sg/.; e_;uz,,zsinzog(pe-w/ﬁ) do
(7.17) < (const.) - |:p2—2a §on €021 df

4L o empirersin da] .
)

The last term clearly tends to zero as p = p,* — oo for any y, and if y > 1 so
does the first term. If y < 1, we have

(7.18) p*2% (0n €210 df — _p__i? (ee*0nti—vh — 1> .

1—y



SELF-NORMALIZED SUMS 809

From (7.11) and (7.12) since p = p,*,

(7.19) 00, = (0,*)0, ~ }2e + 1) logn
we see that (7.18) tends to zero if and only if
(7.20) ¥ > Qa4 1)t

proving Lemma B.

Lemma B and (5.4) show that (5.1) converges conditionally whenever (7.20)
holds and the integral (4.21) converges conditionally. The latter converges for
all y > 0 except y = 1. Thus the statement after (5.1) about conditional con-
vergence of (5.1) is proved.

We next show that (5.1) converges absolutely for

(7.21) > 13/Qa + D]t

We note that the poles ¢, can be written in the form (7.13) where p, and 6,
satisfy (7.10) and (7.11). Thus the modulus of the term of (5.1) containing ¢,
is, to within a constant multiple,

(7.22) exp[—4)%p,’ sin 20]n, ~ (const.) . pha-viaa)

The power of n on the right of (7.22) must be less than minus one for absolute
convergence, which is the case if and only if (7.21) holds. This proves the
assertion about absolute convergence of (5.1) and provides an alternate proof
of the finiteness of f{y)aty = 1for 1 < a < 2.

The proof of Lemma B and the convergence of (5.1) in the case a = 1 is
completely similar and is omitted.
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