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On the Lower Tail of Gaussian Seminorms

Abstract

Let E be an infinite-dimensional vector space carrying a Gaussian measure gy with mean 0 and a measurable
norm q. Let F(t):=u(q £ t). By a result of Borell, F is logarithmically concave. But we show that F' may have
infinitely many local maxima for norms g=supy|f,|/a, where f, are independent standard normal variables.
We also consider Hilbertian norms q=(Zbyf2,) 12 with b,>0,2b,<co. Then as t| 0 we can have F(t) |0 as
rapidly as desired, or as slowly as any function which is o(#,,) for all n. For b,=1/n2 and in a few closely related
cases, we find the exact asymptotic behavior of F at 0. For more general b, we find inequalities bounding F
between limits which are not too far apart.
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ON THE LOWER TAIL OF GAUSSIAN SEMINORMS

By J. HOFFMANN-JORGENSEN, L. A. SHEPP AND R. M. DUDLEY'

Aarhus Universitet, Bell Laboratories and Massachusetts Institute of
Technology

Let E be an infinite-dimensional vector space carrying a Gaussian
measure p with mean 0 and a measurable norm q. Let F(f) := u(q < 7). By a
result of Borell, F is logarithmically concave. But we show that F’ may have
infinitely many local maxima for norms g = sup,| f,|/a, where f, are indepen-
dent standard normal variables. We also consider Hilbertian norms
g = (b,f3)? with b, > 0, b, < oo. Then as ¢}0 we can have F(#)|0 as rapidly
as desired, or as slowly as any function which is o(¢”) for all n. For b, = 1/n?
and in a few closely related cases, we find the exact asymptotic behavior of F at
0. For more general b, we find inequalities bounding F between limits which
are not too far apart.

1. Introduction. Let n = (7;) be a sequence of independent Gaussian, mean 0,
variance 1, random variables in all of this paper. We shall then study the
distribution of

g(n) or q(n—a)
where ¢ : R® > R, = [0, ] is a seminorm and a €R®. In particular we shall

study the behavior of P(q(n) < ¢) as t - 0.
In Section 3 we study supremum norms, that is, seminorms of the following form:

(L1) 9(x) = sup,{x)/a,)  Vx=(x)ER

where (a,) is a given sequence of positive numbers.
In Section 4 and Section 5 we study Hilbertian norms, that is, a seminorm of the

following form:
1
(1.2) q(x) = {Ep. 2%k} Vx=(x) ER”

where (7,) is a given sequence of positive numbers.

The setting above actually covers the following general case: Let E be a locally
convex space and p a Gaussian Radon probability on E, with mean 0; that is, p is a
Radon probability on E, whose finite dimensional marginals all are Gaussian and
have mean 0. In particular if x’ € E’ (= the topological dual of E), then x’ has a
Gaussian distribution, when x’ is considered as a random variable on (E, B, p).
Hence we have E’ C L*(p), and so we may consider the L-closure of E’, which
we denote H’. Then H’ is a Hilbert space and its dual H may be identified with a
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subspace of E in the following manner:
H={x€Elp—>¢(x) is L*continuouson H'}
= {x € E[3K > 0: Kx', x)|* < K[ X', y)u(dy)Vx' € E’}

H is the reproducing kernel Hilbert space (RKHS) of p, and we define the
Hilbert norm, || - ||, in H by

llx]| = sup{[<x’, x)| : X" € E’, [g{x', yu(dy) < 1}.
From [5] we have that L*(u) and H are separable, and we can find biorthonormal

bases {f;} C E’ and {¢} C H for H’' and H, satisfying the following Karhunen-
Loéve expansion:

(13) fi, 6, - are independent Gaussian, mean 0, variance
1, random variables on the probability space (E, B, w).

(14) fre> =98

(1.5) x =232 (f,x)e for p—aa x€E”

(1.6) H={x € E[Z2{f, x)* < 0}

(1.7) x| = {S2f x*}:, x€H

So the study of a seminorm r : E — R reduces to the study of the seminorm
q(r) = r(Ette)
on R*® (we put ¢ = oo if the sum diverges).
Our original case is a special example taking E = R* and u equal to the infinite

“ product of N(0, 1). In this case we may take f;, to be the projection on the Jth
coordinate and ¢; to be the ith unit vector, and we have

H=1*={x € RIZL|x,|* < o},
1
lxll = {5 1lxa?} 2,

and the series in (1.5) converges for all x € R™.
If ¢ is a Borel measurable seminorm on R® we define (p is a given measure, and
H and || - || are defined as above)

llgll = sup{q(x)|x € H||x|| <1}.
Then we have (Kallianpur [8], Borell [3], Marcus and Shepp [9])
THEOREM 1.1. The two probabilities P(q(n) < o) and P(q(n) = 0) are 0 or 1,

and q(n) < oo a.s. implies ||q| < oo.
Moreover if g(n) < o a.s. then

lim, ..t ~*log P(q(n) > £) = —3llqll 7%
If ||q|| = O, then q(m) = constant a.s.



LOWER TAIL OF GAUSSIAN SEMINORMS 321

This theorem settles the behavior of the upper tail of the distribution function of
q. Notice that ¢ may be constant a.s. without being O a.s., e.g.

g(x) = lim sup,_, |x,|(2 log n)_%.
Then g(n) = 1 as., ¢ is a seminorm and ||g|| = 0. If
q(x) = lim sup,_, | x,|
then g is a seminorm with ||g|| = 0 and g(n) = oo as.

We shall mainly be concerned with seminorms of the form (1.1) or (1.2). These
seminorms satisfy the following:

(1.8) g(x) = sup,q(x}, -+ + ,x,,0,0,- - -) Vx,

in contrast to the examples above. Note that (1.8) implies

(1.9) gis lower semicontinuous on R*, and so in particular Borel measurable.
(1.10) g(xy: -+ 5x,,0,0,- ) <g(xp,***,%,,00,---) Ym > n.

In [2] Borell introduces the class of 0-convex measures. A Radon probability u on
the locally convex space E is 0-convex if p satisfies

(L.11) " meM + (1-2)B) > w(4)'w(B)' "

for all 0 < A < 1 and all Borel sets 4 and B. Here p, denotes the inner measure
generated by p. Borell proves in [2] that p is O-convex if and only if all finite
dimensional marginals are 0-convex and in [3] he proves that a probability p on R”
is O-convex, if and only if pu is concentrated on some affine subspace L of R" with
d
n,

where A, is Lebesgue measure on L. In particular,

B AL and log( ) concave

(1.12) any Gaussian measure is 0-convex.

Using this one easily establishes a conjecture of Marcus and Shepp (see [9], page
435) on the number of jumps of the distribution of g (see also Cirel'son [6]).
Suppose that ¢ : R® — R, is a Borel measurable seminorm with g(n) < oo a.s.
and put

F(t)=P(g(n) <1) 120,
C(q) = inf{t > O|F(¢) > 0}.
Then from (1.11) (with 4 = {g(x) < t}, B = {q(x) < s}) we find that
(1.13) log F(f)  isconcave: R, >R_ =[-o00,0].
Now.a concave function is absolutely continuous on the interior of the set where it
is finite. So we have

THEOREM 1.2. If q(n) < oo as., then F admits right and left derivatives every-
where except possibly at t = C(q).
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Moreover F'(t) exists except possibly at countably many points t where F' has a
Jjump downwards. Moreover F"(t) exists Lebesgue-a.e. and

F(t)=p+ [(F'(s)ds for t> C(q)
=0 for t<C(q)

where p = P(q(n) = C(q)).
Hence, apart from a possible jump at C(g), F is absolutely continuous. If

C(g) > 0, then we shall see in Example 3.2 that p = P(q() = C(q)) may take any
value in [0, 1].

If C(q) =0, then by Theorem 1.1 the jump p is either O or 1, the latter case
occurs if and only if ¢ = 0 a.s.

Finally let B,(a, r) denote the closed g-ball with center at a and radius r:

By(a,r) = {x € R®|q(x — a) <r}.
2. The measure of a translated ball. Let ¢ be a Borel measurable seminorm:
R* - R,, then we put 7, x = (x;,- - -, x,,0,0,- - - ) and
9,(x) = q(m,x)  Vx ER®,
gr(x) = sup{|=)_,xy,| : q,(¥) < 1} Vx € R®.

Note that gF(x) is everywhere finite if and only if g,(x) = O implies 7,x = 0.
Obviously we have

2.1 27| < @(x)gr(y)  if gu(x) < o0
., (with the usual convention: 0 - co = 0). Note that if g satisfies (1.8) then by (1.10)
we have

(22) g.(x)1q(x)  Vx.

THEOREM 2.1. Let q be a Borel measurable seminorm on R*® with q(n) < oo a.s.
Then we have

(2.1.1) P(g(n —a) <t) < P(q(n) <t) Vt>0Va€eR™
Moreover if q satisfies (1.8) and a € 12, then

(2.12)  exp(—3llal®)F(r) < F(t, a) < exp(—3|m,al> + tg}(a)) F(?)
foralln > 1andall t > 0. Here || - || is the usual norm on 1* and
F(1) = P(g(n) <1),  F(t,a) = P(q(n.— a) <1).

REMARK. (2.1.1) and (2.1.2) show that F(f) and F(¢, a) are of the same order of
magnitude as ¢t — 0 for a € /2. If ¢,(x) = 0 implies 7,x = 0 then we have

F(t,a) ~exp(—1|la|?)F(t) as t—0

for a € 12
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PrOOF. (2.1.1): Let a € R* and ¢ > 0 be given, then we put K = B,(0, ) and
a = F(t, a). Then K is convex closed and symmetric and

F(t,a) = W(K+ a) = a
where p is the probability law of n on R®. Let
M= {x ER®|u(K + x) > a}.

Then M is symmetric, by symmetry of K and p, and M is convex by (1.11).
Moreover a € M hence 0 =3a + 3(—a) € M. That is

F(t) = W(K) > a=wK+ a) = F(t,a)
and (2.1.1) is proved.

(2.1.2): Let u be the probability law of n, that is y is the infinite product of
N(0, 1) and let p, be the probability law of n — a, that is p shifted by a. If a € 12,
then p, is absolutely continuous with respect to p and

B (dx) = e~ 21alP =<0 @y (fx)
where {x, a) = Z,x;a;, whenever the sum converges, which it does p-a.s.if a € / 2,
Hence

Liar—<¢x. a
F(t,a) = p,(q < 1) = [(gane 21~ p(dx)

and since p and ¢ are symmetric, the Cauchy-Schwarz inequality gives:

[NTE

1
F()=mg<1)< {f{q<t)e_<x’a>ﬂ'(dx)}z{f{q<t)e<x’a>l"(dx)}
= [(gene” & u(dx).
So we have F(t, a) > e~ 219"F(y).

Let a € /% and let n > 1 be given and fixed. Then we put b = 7m,a and
¢ = a — b, and we find

F(t,a) = [(q<,}e‘%"allz—<X»a>,L(dx)
= e—%nbnzf{qme—a, By =< > =31l y( dx)

and since g,(x) < g(x) we have (cf. (2.1))

[Kx, b = | Zix;a < g,(x)gx(a) < tg;(a)
for x € {q < t}. Hence we find

F(t, a) < exp(—$[1BIP + 1g(a)) (g<nye™ 210"~ O p(dx)

= exp(—311b]1* + 1g}(a)) F(1, c)

< exp(— 31| + 1g3(a)) F(1)
since F(¢, ¢) < F(¢) by (2.1.1).
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COROLLARY 2.2. Let g be a Borel measurable seminorm with q(n) < o a.s. If
F = {x € R®|q(x) < oo} is g-separable, that is, if
Ve >0,3(x) C F sothat F C Uj=qu(xj, €),
then C(q) = 0, that is, F(¥) > 0 Vet > 0.

Proor. If C(g) > 0, then by (2.1.1) we have
P(n € B(x,e)) =0 Vx€R® Ve<((g).

But then separability of F implies P(n € F) = 0, which contradicts g(n) < o a.s.
ExaMmpLE 2.3. Let g be defined by
9(x) = {Z}2197x'}
where 20 < o0. Then g(n) < oo a.s. and
ar(x) = (Z-172).

Taking a, = o, e, (e, is the nth unit vector) gives

[SIE

[N

la,ll = lIm,a,ll = 0, g3(a,) = o]

So we have
(2.3) exp(—10,2)F(t) < F(t,a,) < exp(— (3 — t)o,,'z)F(t).
In particular we have
(2.4) se (—log F(t,a,)) ' <o VO<t<1i.

Note that if 0 < ¢ < (3)2, then the balls B,(a,, ), n=1,2,- - - are mutually
disjoint and so
(2.5) S F(ta)<ow VO<t<(} )%

which is much weaker than (2.4).

3. Sup-norms. We shall now consider seminorms of the form (1.1), so let
a, > 0for alln > 1, and let

(3.1) 9(x) = sup,x,|/a,.
Let @ be the standard normal distribution function on R, and put
R() = 2(1 — &(1)) = (—) [2e=14dx.
Then we have the following elementary inequallty'
(32) (2) (1 + )~ 'e 3" < R(H) < 4( ) 1+ ¥i>0

and if F(£) = P(q(n) < t), then
(3.3) F(t) =112,(1 = R(ta))).
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Hence F(#) > 0 if and only if 2?2 ,R(2a;)) < oo, that is if and only if

exp( - %tza,f)

00.
1 + ta, <

25
Now we note that this sum converges for all ¢ > ¢, if and only if
2 exp(—1a) < 0 Vi,

So if we define

(34) Co(a) = inf{t > 0|2 exp(—31%a?) < 0},
then Cy(a) = C(g), in other words:
(3:5) Co(a) = inf{t > 0| F(¢) > 0};

and from (3.2) and (3.3) we deduce:

exp(— 1 1%a?) }

2\2
(3.6) F(r) < exp{ - (7”-) 2”=1_—1Tt¢7—
Now suppose that a, > a >0 Vn > 1, then by use of the inequality:
1—x>exp(§f—log(1—y)) VO<x<y<l1

we find (put x = R(ta,) and y = R(ta)):

L 4 exp( — 1 1%?)
(3.7) F(1) > CXP{ -¢(t)2n=1w
where ¢ is given by

1

(38) we) = — ( %)ZR(ta)” log(1 — R(ta)).
It is easily checked that

3.9) Y(t) ~ (%) log% as t—0.

So the estimates in (3.6) and (3.7) are fairly close together. Summarizing these
observations we have proved:

THEOREM 3.1.  Let q be given by (3.1), and let C, be given by (3.4). Then we have

(3.1.1) q(n) < a.s. ifandonly if Cy(a) < .
(3.1.2) Cola) = inf{#| F(£) > 0}.
(3.13) Ff) < exp[— (%); o lexPl(:atta 7) }
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Ifa, > a > 0 and { is given by (3.8), then Y(t) ~ — (%)% logt as t - 0, and

exp( - %tza,,) }

4
(3.1.4) F(t) > exp{ —¢(1)Z-, 3T+ a0

where F is the distribution function of q(7).

ExampLE 3.2. Leta > 0 and B > 0; then we consider the sequence a, = a, =
B and

(3.10) a, = (28%(log n + aloglogn))®  n>3.
Then we have
>2_sexp(— 18%a?) = 2‘,’,°=3n‘(’3’)2(log n)_”‘(B’)z.
So we have Cy(a) = 1/B. Put y = 1/, then
(logn)? < 1 + ya, < (3 + 2a?)(logn)?  Vn >3;

hence we find

- exp(— 1a%y?)

=1 1+ vya

n

<e i+ 3% ,n (log n)_“_%

>e i+ (3+ 2a2)7'S%_in(log n)_“_%.
If

s(a) = 22_sn"(log n)_"_%
“then (3.1.3) and (3.1.4) give

k exp(— ms(a)) < F(y) < Kexp(—M(3 + 2a%)“s(a))

where k, m, K and M are positive finite constants not depending on a. So if a < .
then F(y) = 0, and if « > 1, then F(y) > 0.

If a3, then s(a) > o0 so F(y) -0, and if a > o0 then s(a) >0 so F(y) - 1.
Hence F can have a jump of any size p € [0, 1[ at any point y € ]0, oo[.

However, from (3.3) it follows that F(f) < 1 for all > 0. So F cannot have a
jump of size 1, when g is a sup-norm. Also since ¢ is a norm (i.e., g(x) = 0 implies
x =0), C(q) > 0, so F cannot have a jump at 0.

Now let

gn(x) = max1<j<1v{|xj|/aj}
with a, defined by (3.10). If 0 < b, <y < b, then
F(bl) - F(bz) > F(Y)

and since gy — ¢ and b, and b, are continuity points of F we can achieve the
following lemma by taking a sufficiently large:
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LEMMA 3.3. Let 0 < b, < b, and & > 0, then there exist a,, - - - , ay > 0 so that
Fy(b)) — Fy(b) > 1 — ¢,
where F)y, is the distribution function of
max, ¢ ;v {Inl/a;}.

THEOREM 34. Let {b;} be any strictly decreasing sequence of positive numbers.
Then there exist sequences {a;} and {m;} so that

(34.1) by <m <b V>l
(34.2) F(b) — F(m) > 2(b, —m) Vj>1,
(3.4.3) Fim) <m —b,, Vj>1

where F is the distribution function of
q(n) = sup,{|n,|/a,}.
In particular F has a mode in each of the intervals: e bibj=23,---, in
spite of the log-concavity of F.
Proor. Let % denote the set of distribution functions of random variables of
the form
Q = max,;cn{Inl/a;)}
with N > 1 and q,, - - -, ay positive. Then any infinite product of distributions

from ¥ is the distribution function of g(n) for some sup-norm g of the form (3.1).
The distribution F will be an infinite product

F(x) = T2 F(%)
where F; € ¥. The F; and m; are defined inductively by:

(i) F(b) = F(m) > 45 - m)ILZIF(6)™" V) > 1
(if) F(b) — E(m) >p;  Vj>1
(iii) E(b) = B(m) > 1= (m; — b)) Vj>1
where (p;) is any fixed sequence with 0 <p; < 1 and

Iip =5

First m, is chosen so that m, € |b,, b,[ and 4(b, — m,) < 1, then we choose
F, € % by Lemma 3.3, such that

Fy(by) — Fy(m,) > max{4(b, — my), py, 1 — (m; — b, )}.
Then (i)—(iii) are satisfied for j ="1.
If Fi,---,F, and m;,---,m, are constructed, then we choose m,,, €
16,42 b, 41, so that

n

4byyy — myyy) < -1 F(by41)
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(note that F(f) >0 V¢ >0 VF € 9). Then by Lemma 3.3 we can choose
F,,, € %, so that (i)—(iii) holds for j = n + 1.

n

Now we note that (i)—(iii) imply
(iv) Hri'=j+1F;'(bj) > IIi_ 0 Fi(b) > T2, p =3 Vn>j+1,
v) F(m) < 1= (E(b) — F(m)) <m — b;.,.
Now we put

F(x) = I[}2,\F; (X) G,(x) = Ij- F{(x)
Then by (i) and (iv) we have for Jj <
G,(b) — G,(m) > (G~(b~) — G(m))IT;_, 4 Fi(by)

2(G(b) — G(m))
>3 G,_1(5)(F(b) — F(m))
2(b; — m).

So we see that F satisfies (3.4.2), and since F <
satisfies (3.4.3).

Since F(b;) > 0 it follows from Theorem 1.2 that F is absolutely continuous on
16, o[, where b = lim,_, b,. Now (3.4.2) implies that F’(x) > 2 for some x €
Im;, b[ and (3.4.3) implies that F'(x) < 1 for some x € ]b;,y, m[. That is, F has at
least one mode in each of the intervals ]b )iv1s by for j > 2.

Vv

vV

F, it follows from (v) that F

THEOREM 3.5. Let f: R, — R, be increasing, then there exist positive numbers
{a;}, so that

O<F()<f(t) VO<tx<l1
where F is the distribution function of
Q = SuPn“"’nVan}'
Proor. Let {p,} be defined by
=f(3)  P.=fQN/A27M)  for n>1

and let ¥ be defined as in the proof of Theorem 3.4, then we can find F, € F so
that

F27"Y) = F,27") > max{1 - 27, 1 - p,).

Let F = II;°F,, then F is the distribution of some Q = g(n); where g is a sup-norm.
Moreover if 27! <t < 27"(n > 0), then

F(1) < FQ7") < IT_oFQ27") < wFaﬂ)
I_o(1 = (F@7*Y) = FQ7))) < W_op,
=@ < A
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and
F(1) > F(2‘"“) > G EQ " DI, B (277

M2F Q27" DI 401 = 27/) >0

j=0
and the theorem is proved.
4. Hilbertian norms. We shall in this section study Hilbertian norms, that is,

norms of the form (1.2). Before proceeding we shall assume that 7, is given by
7, = 7(n), where 7 : [1, o[ > R satisfies

4.1 7  isdecreasing, () >0 Vi>1
(4.2) () <t77  Vi>1
(4.3) [er(f)* dt < oo.

And we shall consider the norm

(4.9) q(x) = {2;,‘0_17(")2)63}% Vx = (x,) € R,

Note that 372 < oo by (4.1) and (4.3), so Q = ¢(n) is finite a.s. Now let E, and F"
be the two marginals:

E(1) = P(S}(j)’n} < )
F(1) = P(E3,7()'n? < 7).

If B,(7) denotes the euclidean ball of radius ¢ centered at the origin, then we
have

(4.5) F,(0) = @n) "o 7()) ™' exp( — 1 20-17()) ~2x?) dx
. 1
(4.6) F(s)F"((— s)2) < F(t) <F,(t) Y0<s<t{,
since Q2 = Q2 + R? where
an = 2;=17(j)2nj2, R = 2n+l"r(j)2"?j2
and Q, and R, are independent.

THEOREM 4.1. Let q be the seminorm given by (4.4), where T satisfies (4.1)—(4.3).
Let '

(4.1.1) () =t"71()""  for ¢ > L

If F is the distribution function of Q = q(m), then there exists A, > 0, so that
(412)  F(1) < A, exp{/i log p(y) & + log p(x) + (x — 1)log ¢t}

for all x > 1 and all t € [0, 1].

ReMARK. In applications of (4.1.2) one should try to minimize the right-hand
side in x for ¢ fixed. That is, take x > 1 to be a suitable solution to

log ¢(x) + ¢'(x)/e(x) + log ¢t = 0.
Ignoring the middle term one reasonable choice is @(x) = 1/t or x = ¢~ '(1/).
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ProOF. Let ¥V, be the volume of the n-dimensional unit ball. Then by Stirling’s
formula we have

(4.7) V, = T(A)'T(1 +4n) " = a,2m)i"n =30+ Den/2%g=0/n
where a;, = 7-2=0.56and 0 < < 1. Hence by (4.5) and (4.6) we have

(4.8) F(t) < a, exp{ =2 log 7(j) — 3(n + D)log n +3n + nlog t}
for all n > 1 and all ¢ > 0. Since f = — log 7 is increasing we have
(4.9) () + [1f(y) dy < Z1f(j) < fin) + [1(¥) .
So we have for the exponent in (4.8):
—3nlog 7(j) —2(n + Dlogn +3n + nlogt
< —fMog1(y) dy — log 7(n) —3/tlogy dv +3 —3logn + nlogt
= ["log @(y) dy — log 7(n) —ilogn + nlogt +3.

Now we note that ¢(y) > 1 for y > 1 by (4.3). So if n <x <n + 1 we have
x < 2n and we find

[Tlog o(y) dy < [ilog o(y) &y,
—log 7(n) —4log n < —log 7(x) — 1log x + 1log 2 = log ¢(x) + 3log 2,
nlogt < (x—1Dlogt for 0<t< 1
Inserting this in (4.8) gives
F(1) < 4, exp{[{log () dy + log p(x) + (x — 1)log ¢}
where

(4.10) A, = a,(2¢)7 = Qe/7)? = 1.32.

THEOREM 4.2. Let q be the seminorm given by (4.4), where 7 satisfies (4.1)—(4.3).
Suppose in addition that t satisfies
(4.2.1) log 7(x)  is convex
(42.2) o(x) = x‘%'r(x)_1 increasesto +o on [l,0].
If F is the distribution of Q = q(n), then for some constant A, we have
(423) F(1) < Ayx~37(x) 2 H=D  if x> 1  and (x) <1
where H is defined by

19'(1)
(4.2.4) H(x) = [{——=adt or x > 1.
( ) f 1 (P( t) f

REMARK. Again in applications of (4.2.3) we have to choose an appropiate x.

One possible choice is ¢(x) = 1/¢ or x = ¢~ '(1/¢).
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PrOOF. When f = — log 7 is increasing and concave one may improve (4.9) to
(4.11)

Lf(n + 1) = ) + fQ) + [1f(y) dy < Z3f0) <3(fD) +3/(m) + (1) &
by estimating the integral over [j — 1, j] by the area of two trapezoids:
SFO) + fG = 1) < o f) & <3(A0) = £() + ()
and noting that since f’ is decreasing we have
120 G) > 3P (x) dx = fn + 1) = f(2).
Using this we can estimate the exponent in (4.8) by
—-3_log 7(j) —3(n + )logn +3n + nlog ¢
< fHlog 7(y) dv — 3 {log 7(n) + log 7(1) + fflogy dy + logn — 1} + nlog ¢
= Jilog ¢(y) dy — zlog(nr(n)) + nlogt + 3 — 3log 7(1).
By partial integration we find

JH1og 9(5) & = n log 9(n) — log (1) — /1L

= n log ¢(n) + log (1) — H(n)
since (1) = 7(1)~ . So we have
(4.12) F(t) < ay exp{ — H(n) + n log(tgp(n)) — og(nr(n))}
where ‘
ay = a, exp{3 + log 7(1)} < (e/vr)_;

since log 7(1) < 0. Now suppose that n < x < n + 1(n > 1). Then H(n) > H(x—1)
since H is increasing by (4.2.2) and if ¢(x) < 1/¢, then

log(1p(n)) < log(tg(x)) < 0
and finally since n > 1x

log n + log 7(n) > log x + log 7(x) + log(n/x)
> log(x7(x)) — log 2.
Inserting this in (4.12) gives
F(t) < Ayx~77(x) te~HG=D
where A ’
(4.13) A, = a2 < (2e/7)? = 1.32,
proving the theorem.

THEOREM 4.3. Let q be given by (4.4) where  satisfies (4.1)—(4.3), and let
(43.1) W(x) = fer(e)*dt for x> 1.
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If F is the distribution of Q = q(n), then for some B, > 0 we have
(4.3.2)

2
R > {1 - ;—E%}exp{m% ?() & = logx + (x + Dlogs =5 }

forall x > 1 and all 0 < s <t < 1. Here ¢ is defined as above in (4.1.1).
Proor. From (4.5) and (4.7) we deduce the following lower bound of F,:

2
(4.14) Fy(1) > b, CXP{ —Zflog 7(j) —3(n + Dlogn +3n + nlogt — Py z z }
T\n

since we have

N\—2
32 1() i <

forall x € B,(?).
7(n

Here b, = 7~ 1¢~ /5,
Since log 7(1) < 0 we find from (4.9)
—Snog r(n) —i(n + 1)logn +1n + nlogt —1r(n) ™2
> —[Mog r(y) dv —ifMogy dy + 1 —Llogn + nlogt —1£’r(n)~2
= [tlog p(y) dy —zlog n —3771(n) > + 5+ nlogt.
> [flog p(y) dy — Hog x — 1r(x) ™% + 4 — 3log 2 + (x + 1)log ¢

forn—1<x<nn>2and0 <t < 1. So we have
(4.15) F,(1) > b, exp{ f{log ¢(y) dy — Llog x —11(x)* + (x + I)log ¢}

forn>2,0<t<1landn—1<x <n, where b, = bl(e/Z)%.
Let R? = S2, m*r(j)*. Then by Chebyshev’s inequality we have
F'(u)=1— P(R?>u*) > 1~ u"’ER}
= 1= u 222,10 > 1 - u™(2r(0) &y
=1 - u"3Y(x)

whenever n — 1 < x < n, n > 2. So by (4.6) and (4.15) we have

2
F(r) > B.{l - ,;P(_x)sz }exp{f’flog ¢(y) &y —1log x + (x + 1log s — 272)6)2 }

for 0 <s <t < 1and x > 1, where B, and b, are given by the equation
(4.16) B, = b, = (27) %5 = 0.56.
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THEOREM 4.4. Let q be given by (4.4) where 7 satisfies (4.1)~(4.3) and (4.2.1)-
(4.2.2). Let @, Y and H be given as above:

o(x) = x_%'r(x)_l for x > 1

Y(x) = [y’ dy for x> 1

H(x) = [} t(p((t)) d for x>1

If F is the distribution of Q = q(n), then for some B, > 0, we have

2

27(x)?

(44.1) F(2) > Bzx_";'r(x)_%{l - 4}( ) }exp{ H(x +1) -

whenever x > 1 and 1/p(x) <s <t < L.

Proor. Using (4.11) we have for the exponent in (4.14):

—Sog 7(j) —i(n + Dlogn +in + nlogt — 1 ir(n)~?
> —[tlog 7(y) dy —3log 7(n + 1) + 3log 7(2) — 3 [{logy dy
+1—1tlogn+nlogt—3tr r(n)~?
= "log ¢(y) dv — Llog(nr(n + 1)) + nlogt — L1e%r(n) ™ + 1 + 3log 7(2)
= — H(n) + nlog(tp(n)) — 1log(nr(n + 1)) — %tz'r(n)_2 +a
where we have used the equality:
[Hlog ¢(y) dv = — H(n) + n log g(n) + log 7(1)

and where a =3 + jlog 7(2) + log 7(1).
Ifn—1<x<nn>2and¢(x) > 1/, then

— H(n) > —H(x + 1),
log(tp(n)) > log(tp(x)) > O,
—log(nr(n + 1)) = —ilog x + 3log(x/n) —zlog 7(n + 1)

> —log(x7(x)) —3log 2,

so we find as before

1 X . ’
RO > By e 1 - }"{ H(”')‘zfix)z}

where

(4.17) B, = b;r(1)”'(3 ef(z))%
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EXAMPLE 4.5. If 7(x) = x ~*%(a > 1), then we have
(4.5.1) F(t) < AP0~ %exp( — (o - %)t‘z")

(4.5.2) F(f) > Bt*C~%exp(—a(l + p)°t~2%)
where p = (2a — 1)”! and 4 and B are positive constants.
In this case the functions ¢, ¢ and H take the form:

o(x) = x=%,  y(x) =px!"2  H(x) = (a—§)x - D).

Then @( %) = ¢!, so putting x = ¢~ in (4.2.3) gives (4.5.1).
Putting x = s~ % in (4.4.1) gives

2
(4.18) F(r) > st”(“"‘){l - tij—sz- }exp(—as‘z")

for 0 < s <t < 1. Now we take
l—%tzp%
()

ps? _ 12— (p+ 1)s? _ 1%*(1 + p)
12— 5? 2 — 5? 20 + t*

Then we have

> 517

1 -

s7% = (p + 1)°(1 — 1) P2
< (p + 1)P(1 +5120p20% ) 1 =%
=(+ 1)t~ +  constant
where we in the last inequality used: ‘
(1=41%)" =1+ 1%t =P~ < 1 + Le20p2e+!
where 2 < 1 — 2¢% < ¢ < 1. Inserting all this in (4.18) gives (4.5.2).

EXAMPLE 4.6. Let 7(x) = x "2(1 + log x)~'; then we have
(4.6.1) F(f) < A exp(—te'™'7Y),
(4.6.2) F(t) > B exp(— 3+ 3t2)e’_2+‘)

where A and B are positive constants.
In this case we have

o(x) =1+ log x,

Y(x) = (1 + log x) 7,
dt

H(x) = ffmo—gj,
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and since
d t log ¢ 1
dt1+1logt (1 +logs? 1 +logt vi>0,
d t

d _ logs—2 S 1
dt logt — 1 (log t — 1)?

3
1+ logt Vi e
we have

X
H(x) > 1+ logx
3 X e’ 3
H(x)<H(e)+-1—OE;:—T—7 Vx > e°.

Let us choose x = e'/~! in (4.2.3); then we find

x‘%'r(x)_% = exp(—1/ (4t) + 3 —1log ),
X — 1 -1
— > — 1 = ot 'l 4
H(x—-1) ¥ Tog x 1=te t—1,
and since ¢ < 1/(47) + 3log ¢ for ¢ sufficiently small (4.6.1) follows.

Let us then choose x = e!/* — 1 in (4.4.1); then it is easily checked that
@(x) > s~!, and we have

x~Er(x) T = (e — 1) ig(x)T > eV @),
Y(x) = p(x)"" <,

H(x +1) < K+ se/*/ (1 = s)
1s2r(x) "2 < Ls%r(x + 1) 72 =1(1 + 5)%'/°.
Then we choose s = #2/(1 + t?), and we find

1ooy-4 1+ ¢

x"27(x) 22> expl — 5

(x) p( x )
: 2 2

—st—5 t S t_“ r< 1
2 —s? 2 —s? 1+r4+2 3 ’
— H(x + 1) > —K— t2et‘2+l’
—1s%(x)72 > LA+ ) e T = — (4Lt 4 2)e L
And since

- 1+ 7
—dlogt + it H 4+

-2
< tzel +1

for ¢ sufficiently small, (4.6.2) follows by inserting the inequalities above in (4.4.1).



336 J. HOFFMANN-JORGENSEN, L. A. SHEPP AND R. M. DUDLEY

ExampPLE 4.7. Let 7(x) = x‘%e"‘; then we have

_1 2
(4.7.1) F(¢) <At73 logl 4exp -0 1 ,
t 2\ 8%

_1 )
(4.72) F(1) > Bt‘“°32(log%) 4exp(—%(log%) ),

where 4 and B are positive constants.
In this case we have:
p(x)=e*,  H(x)=3(x+1(x - 1),
—2 —2x
Wx)= [ i—dr < S

Choosing x = log(1/¢) in (4.2.3) gives
_1
X_%q-(x)_% = (log—i-) 4t_%,
1\2
—H(x—-1)=—3x(x-2) = —%(10g7) — log ¢.

Now (4.7.1) follows by use of (4.2.3).
Choosing x = log(1/s) and s =3¢ gives

1
ry

x‘%'r(x)_% = (log% + log 2)_22%1‘% > kt‘il(log%)
1 2
—H(x+1)=—1x(x+2)= —%(log; + log 2) + log ¢
1 1y, 2
=—3 log7 —3(log 2)° + (1 + log 2)log ¢

—1s%(x) 7 = —Lste® = — %log% —3log 2

—2x 2
o) e s

P—s 2(¢2 — 5?) - 2(22 — 5?)
Now (4.7.2) follows from (4.4.1).
ExampLE 4.8. Let f: R, — R, be increasing and with lim, , f(#) = 0. Then
there exists a function 7 : [1, o[- R satisfying (4.1)-(4.3) and such that
(4.8.1) F(r) < f(t) VYo<t<l1/e

where F is the distribution of Q = {E*n’r(j)’}
Let p(¢) = [1/(e?)] (here [x] denote the integer part of x) and let n, = 1 and for
p> L

Al W

n, =1 +[—210gf(?(7’1+—1)) —2log(e(p + 1)) .
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We assume that 0 < f(¢) < 1 for 0 < ¢ < 1, f(¢)/¢ increases and lim,_, f(¢)/t = 0,
which is possible by substituting f by #f(¢). Let 7(1) = 1, and
7(¢) =p"np_% for n,_, <t <n,

Then n, <n,,, for allp > 0 and n, — oo, since f(x)/ x increases and tends to 0 as
x — 0; (4.1)—(4.3) are easily checked, and

o(t) = t‘%p(np)% for n,_, <t<n,

So
J_log g(t)dt = (n, — np_l)log(p(np)%) —%(np(log n,—1)—n,_(logn, , — 1))

< (1, = n,)log(p(n,)?) = (1, — m, )(log(n)* ~ 1)

= (1, = n,_)(log p +3),
and

[irlog (1)dt < (n, — 1)(log p +3).
Inserting this in the exponent of (4.1.2) with x = n, we get
F(r) < Alexp(np(logp +1+logt) —1—log t).
Taking p = p(¢) gives p < (et)” !, so
logp +31+logt < —3

and (1/e(p + 1)) < ¢ gives

31, < log f(1) + log ¢

- SO

F(1) < e~ 24, /(1) < f(0)
since e ™24, = (2/7)? < 1 (cf. (4.10)).
ExampLE 4.9. Let g:]0, 1]—> R, be an increasing function with g(1) < 1 and
g(H)=0(t") a t->0 Vn>1l
Then there exists a function 7 : [1, o[> R, satisfying (4.1)-(4, 3), and such that
(4.9.1) F(t) >g() Vte[0,1]
where F is the distribution of @ = (S{nr(j)?}7.
There exist constants 4, > 0, so that
g(t) <A4,"*3  VY0O<t<1,Vn>1
Hence if B, = log 4, we have
‘ log g() < B, + (n+3)logt V¢t E[0,1]Vn > 1.
Let 73 = 1 and put
=e B Tn+1)77 Vn> L

a,
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Then we define 77 inductively by
2= min{a,,, 272, 27 g 2_173_1}
for n > 1, and we put
r(t)=1, for n<t<n+1 and n>0.
Then 7 satisfies (4.1)-(4.3), and we have
Y(n) = [er(eydt = 32,17 < 52,2707 =27
Let n > 1 and 4y(n) < 1> < 4y(n — 1), then we shall apply (4.3.2) with x = n
and s =17. The exponent in (4.3.2) gives (s> <y(n — 1) < 272_)
["log 9(y)dy —Llog n + (n + )log s — 3571,
> —llogn+ (n+ Dlogz— (n+ Dlog2 — 1
=(B,_,+ (n+3)logt) —2logt— B,_; —3logn — log 2+l — ]
log g(#) — log #* + log a,,_; + 5 log 2
log g(¢) + 2 log 2
since 2 < 4y(n — 1) < 872_, < 8a,_,. The factor in (4.3.2) gives
2
since Y(n) < s%. Now since B, = 0, 56 > ; we have
F(1) > B,(8/3)g(t) > g(2)
fort €[0,1]and t < 2(4/(0))%. However y(0) > 72 = 1, so (4.9.1) holds.

5. Exact distributions. We shall now give some cases where the distribution of
Q can be given in an exact form for certain Hilbertian norms g. Note that (3.3)
gives the exact distribution for sup-norms. Let g and Q be given by

(5.1) 0(x) = (3,10 + x3)/ @V}

(52) 0% = q(n)* = Z2i(ny—1 + m3)/ (2N).

Let Q2 denote the nth partial sum in (5.2). Since (n3,_, + m3)/(2A)) is exponen-
tially distributed with parameter A;, we have (see, e.g., [7], page 40)

>
>

(5.3) P(Q, <x)=1-3"_47e™™ Vx>0
if A\, # AVi #, and where A" is defined by '
( A =Tl o1 — }‘j/)\k)_l for j=1---,n
Now let
Ak

(5.4) Aj = Hk#j(l — }\j/)\k)_l = Hk#jm
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and assume that () satisfies:

(5:5) 0<A <A< e e,
(5:6) SN < oo,
(5.7 SPl4le™ <0 Vx>0,

Then we have forj < n
147" = 147, (1 = N/N) < 4.
So by (5.3), (5.7) and the dominated convergence theorem we deduce:
(5.8) P(Q<x)=1-324e Vx>0
And if we assume, in addition to (5.5)—(5.7), that we have
(5.9) SR A4le ™ <0 Vx>0,
then the density, f, of Q is given by
(5.10) f(1) = 2132 N Ae™"

So under (5.5)—(5.7) the formulae (5.8) gives the distribution of Q defined by
(5.2), and under (5.9) the density of Q is given by (5.10). Note that sign 4, =
(— 1Y, so the series in (5.8) and (5.10) are alternating.

In order to use (5.8) and (5.10) we should be able to find 4;. One way is the
following: suppose that we have given a product formula

o(x) = IEo (1 = ¥(x) /M)
where @ and y are differentiable. Let x; be a solution to Y(x;) = A;; then ¢(x;) =0
and for x # x;

(1= O/A) = - qo(x)—qo(x,){¢(x>—¢<x,)}-'
k) X)) = \j .

X = X X =X

Letting x — Xx; gives

- ¥'(x)
5.1 1 . = . -_ . 1 = — —_‘/ .
( ) Aj Hkséj(l Aj/Ak) >\,(Pl(xj)
The series (5.8) and (5.10) will in general be divergent or at least slowly
convergent at x = 0. But the Poisson summation formulae

(5.12) Sz _acos(miian) = 25g_ (L E2T)

(f is an even density, f its Fourier transform) may in certain cases be used to
transform the sums (5.8) and (5.10) into sums which are rapidly convergent for
small x (see, e.g., [7], page 630 for the validity of (5.12)).

From the product formula (see [1], page 255)

SINTX _ o 22
p— Ie_ (1 — x%72),
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we find by (5.11):
M1 = /7)™ = 2(=1) 7"

So if A, = j* we have

(513)  P(Q<x)=1-Z 21" = Bn_ (~1Ye ™,
If we put f = the normal den51ty in (5.12) we get
2
(5.14)  Z2_cos(ny)e ¥ = (2”) SEex ( (L;_zki))
x

Puttingy = # and x = 07 gives

277 o, (2k + 1)’a?
Ik v
The term for k = 0 is clearly dominant for small ¢, so we have

2;‘10=—-oo - l)ne_tln2 =

THEOREM 5.1. Let
Q= {2;?—-1(’7%1—1 + "'I%,)/ (2j2)}5'

Then we have

: 22
(5.1.1) P(Q<1)= 2%2;°=0exp(— Q’i}t:l”—) Vi >0,
277 7°
(5.1.2) P(Q < )~—t—exp v as t—0.

From (5.11) and the product formulae (see [1], page 255):
cos(3mx) = TI_ (1 — x%/ 2k — 1)),

we find
i
T

Meg(1— (2 — 1/ @k — 1)) = 2(=1y"'@2 = )"

So if A, = (2j — 1), then the density of Q is given by (cf. (5.10)):
fr) = —2 7Y = D(=1Y " exp(— (2 — 1)*7?)

= —2;';_«,(2/' = D(=1y"exp(= (2 — 1)’7).
Differentiating (5.14) with respect to y gives

2 o sin(ny)e‘%)‘z"2 (27) = . 5
2x

2
y+ fkvrexp(_ (y + 2km)

)
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so puttingy = #/2 and x = 127 gives

) =Hz2_nsin(inm)e=
- Tj [ S (4k + l)exp(— £4k_12712)_27f_2)
— 2= 1(4k — l)exp(— ﬁ%lz)z"z)}

T sw (o oo 2+ D
= 30+ (- Yerp( - L),

For small ¢ the term for j = 0 dominates the others. So we have

f(¥) ~7tr—jexp(— (-Z—t)z) as t—0.

Hence F(#) = [{ f(s)ds, and satisfies

3 2
F(¢) ~f6:—;exp(— (4—2) )ds as t—0

by ’Hospital’s rule; but

fg’s’—fexp(— (4_7;)2)49 - 4(1 - q)(;:—;’z))

- q»( f) ~ (m-ls%)(zw)‘%exp(— -"—22)

and as ¢}0,

16¢
that is,
F(t) ~8im=3/? ( ”2)
t) ~8tm” "/expl ———= )-
(1) ~ 8m e
And we have proved:

THEOREM 5.2. Let
W Moty |
Q=\2n— —5 | .
22/ —-1)
and let f denote the density of Q. Then we have

1 . 2
(5:2.1) f(r) = 7;—222}';0(21‘ + (- l)jexp( - (2,_;;12)_12)

2

(5.2.2) P(Q<it)~ 8tﬂ'3/2exp( - #) as t—0.
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THEOREM 5.3. Let
1
Q= (=2 )

Then we have

(3.1 P(Q <) <7'(2m)i(1 + el(t))exp(_fﬁ),
(5:3.2) P(Q < 1) > 4tn%/223(1 + sz(t))exp(— gtiz)

where g(t) —, o0 for j = 1, 2.

PrOOF. Let Q, and Q, be the random variables defined in Theorem 5.1 and
Theorem 5.2 respectively. Then

0,/2:< Q0 <210,

SO

P(Q < 1) < P(Q, < 231),

P(Q < 1) > P(Q, > 1/2),
and the theorem follows from (5.1.2) and (5.2.2).

Added in proof. We thank David Siegmund for calling our attention to a paper
of T. W. Anderson and D. A. Darling (4nn. Math. Statist. 23 191-212), where they
give an exact series for the distribution of Q from Theorem 5.3, from which the
exact behavior at ¢+ = 0 can be read off (Anderson and Darling, page 202).
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