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The first uses the bounds from Brown and Gajek. The second method also uses the information inequality and
results in bounds which are always at least as good as those from the first method. The third method is the
hardest-linear-family method described by Donoho and Liu. These methods are applied in four examples, the
last of which relates to a frequently considered problem in nonparametric regression.
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INFORMATION INEQUALITY BOUNDS ON THE
MINIMAX RISK (WITH AN APPLICATION TO
NONPARAMETRIC REGRESSION)!

By LAWRENCE D. BROWN AND MARK G. Low

Cornell University and University of California, Berkeley

This paper compares three methods for producing lower bounds on the
minimax risk under quadratic loss. The first uses the bounds from Brown
and Gajek. The second method also uses the information inequality and
results in bounds which are always at least as good as those from the first
method. The third method is the hardest-linear-family method described by
Donoho and Liu. These methods are applied in four examples, the last of
which relates to a frequently considered problem in nonparametric regres-
sion.

0. Introduction. An earlier paper, Brown and Gajek (1990), describes
lower bounds derivable from the information inequality on the Bayes risk
under quadratic loss. There are two principle results of interest from that
paper. The first is Corollary BG2.3, which is actually due to Borovkov and
Sakhanienko (1980). [All references to numbered results in Brown and Gajek
(1990) will be preceded by the letters BG.] Theorem BG2.7 then improves on
that result at the cost of some algebraic complexity.

The supremum over all priors of the Bayes risk is a lower bound for the
minimax value. [See, e.g., Lehmann (1983), page 256.] In fact, under mild
conditions these two numbers are equal. [See, e.g., Le Cam (1986).] Thus the
supremum of the Bayes risk bound of Corollary BG2.3 or of Theorem BG2.7 is
also a lower bound for the minimax value. In some cases Corollary BG2.3
yields in this way a bound which is both easily obtained and easily expressed.

Either of these bounds can usually be considerably improved by a different
but simple numerical procedure also based on the information inequality. This
second procedure is also explained in the following examples. Comparison is
also made to a method described recently in Donoho and Liu (1989) for
problems involving Gaussian distributions, which extends ideas presented
earlier in Ibragimov and Hasminskii (1981, 1984).

1. The prototypical Gaussian example. Let X ~ N(6,1) with |6] < L,
L < ». Find the minimax value under ordinary squared error loss.

This is the prototypical Gaussian problem. It is the basis for Donoho and
Liu’s method. It has earlier been studied by Casella and Strawderman (1981),

 Received November 1988; revised February 1990.
1Research supported in part by NSF DMS-85-06847 and NSF DMS-88-09016.
AMS 1980 subject classifications. Primary 62F10; secondary 62F15, 62C99, 60E15.
Key words and phrases. Information inequality (Cramér-Rao inequality), minimax risk, den-
sity estimation, nonparametric regression, estimating a bounded normal mean.

329

[ ,4’2

ok

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Statistics. MIKOIRE ®

WWWw.jstor.org



330 L. D. BROWN AND M. G. LOW

Bickel (1981) and Marazzi (1985), among others. In particular, Casella and
Strawderman calculated the minimax value for some values of L < 2. Re-
cently, Kuks (1983), Donoho, Liu and MacGibbon (1990) and Feldman and
Brown (1989) give much more eomplete tables of the minimax value. Because
of the existence of these results, there really is no longer much need for
explicit but nonexact lower bounds on the minimax value. The problem does,
however, provide a good basis for presentation of the comparative methodolo-
gies; and because exact numerical results are known, it allows for an examina-
tion of the precision of the various bounds.

Bounds from Brown and Gajek (1990). The bound of Corollary BG2.3 is

(1.1) Bound(BG2.12) = ~ <B(g),

1+ [(g)/g
where B(g) denotes the Bayes risk for a prior density of g. It is thus
maximized by choosing the (differentiable) density g which minimizes [(g")?/g.
This is a well-known calculus-of-variations problem, whose solution is given by
the density g defined in (BG3.3). [See Huber (1964) and Bickel (1981).] Thus
from (BG3.4) the minimax value—call it M(L)—satisfies M(L) >
(1 + w2/L*»)~1. This bound can be improved by applying Theorem BG3.7 to
this same density, g. The resulting bound is the right side of (BG3.6). Of
course, B(g) itself is an even better bound, though finding it required much
more extensive numerical calculations. Thus the three columns of Table BG3.1
provide successively better bounds on M, each of which requires successively
more computations to evaluate.

A better information-inequality bound. A much better bound on M is
available from the information inequality. That inequality implies that
(1.2) M > (1+b'(0))%+b2(6) V0,

where b is the bias function of any estimator. (Only estimators having
everywhere finite risk and hence everywhere differentiable bias functions need
be considered.) Let M, be the smallest constant for which there exists a
differentiable function 8 on (—L, L) satisfying

(13) M, > (1+B(6))* +B*(0).

Then, M, < M; thus M, is a lower bound for M. It is easy to show that (1.3)
has a solution if and only if there is a solution to

(1.3) M, = (1+B(6))* +B*(0).
[See Brown and Farrell (1990).] Equation (1.3") can be rewritten as
(1.4) B'(6) = (M, - B%(6))""* - 1.

The method thus requires finding the smallest M, such that (1.4) has a
solution on (—L, L). (1.4) can be solved by separating variables. See, for
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TaBLE 1
Bounds for the minimax value M(L) in Example 1

L Bound(BG3.4) Bound(1.5) M, M(L)
L]

0.5 0.02470 0.160 0.126 0.199

1 0.09198 0.401 0.300 0.450

2 0.2884 0.642 0.547 0.645

3 0.4770 0.722 0.688 0.751

5 0.7170 0.771 0.829 0.857
10 0.9102 0.794 0.937 0.945
20 0.9759 0.800 0.980

example, Kuks (1972). [A simple symmetry argument shows one need only see
whether there exists a solution to (1.4) on (0, L) with the initial condition
B(0) = 0.] It should be clear that this method provides the best possible bound
directly obtainable from the information inequality. See Table 1 for values
of M,.

The Ibragimov-Hasminskii constant. Donoho, Liu and MacGibbon (1990)
establish (numerically) the bound

(1.5) M > 1+ L2

with d = (1.247)~1. See also Feldman and Brown (1989). [The existence of the
constant d was first established by Ibragimov and Hasminskii (1981).] Table 1
contains (for easy comparison) the bound (1 + 72/L%*)~! from (BG3.4) as in
Table BG3.1, the bound (1.5) with d = (1.247)"%, the bound M, calculated as
above and the actual value of M(L) whenever available from Casella and
Strawderman (1981) or Feldman and Brown (1989) or Kuks (1983). The value
for L = 10 was supplied by R. C. Liu (private communication).

2. Estimation of the canonical binomial parameter. Let X be bino-
mial(n, p) and consider the problem of estimating the canonical exponential
family parameter 6 = In(p /(1 — p)) as in Example BG3.5. Maximization of the
bound (BG2.12) of Corollary BG2.3 requires finding the density g which
minimizes D = [(g'/I)?/g, where I(6) = ne® /(1 + e°)2. Solution of this calcu-
lus-of-variations problem entails setting g = w? and solving the Euler equa-
tion (w'/I) — Aw = 0, where A is a Lagrange multiplier. The solution yields
g = 6e? /(1 + )%, which is the prior density considered in Example BG3.5.
Thus the first three rows of Table BG3.2 provide successively better lower
bounds for M.

.The method of Brown and Farrell (1990) explained in (1.2)-(1.4) can also be
used here. This entails finding the smallest M, for which

(2.1) B'(6) = (M, - B%(6))1(8))"* - 1
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TaBLE 2
Values of the bound M, and of (BG2.16) from Table BG3.2

n= 1 3 5 10 25 100
M, = 0.211 0.400 0.505 0.646 0.800 0.934
(BG2.16) = 0.1314 0.3058 0.4186 0.5829 0.7707 0.9279

has a solution on (—, ). (Again, by symmetry it suffices to start with the
initial condition B(0) = 0. Then it is necessary to solve (2.1) numerically on
[0, ).) Values of M, are given in Table 2 along with (for comparison) the value
of the bound (BG2.16) from Table BG3.2. We do not know the values of M,
except when n = 1. When n = 1 then M = 0.221 (as compared to M, = 0.211)
corresponding to the procedure with 6(0) = —0.94, 6(1) = +0.94 which is
Bayes for a prior concentrated on approximately the three points 6 = 0, + 2.6.

3. A two-dimensional Gaussian example. The one-dimensional meth-
ods of this paper can yield useful minimax results in multidimensional prob-
lems. The basic principle is to consider one-dimensional subproblems as was
done, for example, in Farrell (1972). See also Brown and Farrell (1990).
Donoho and Liu (1989) have shown in Gaussian settings that it can be quite
efficient to consider only linear subproblems.

This example and the next one present two multidimensional Gaussian
examples which can be treated by these methods. It appears that in examples
of this type the Donoho and Liu hardest-linear-family methodology usually
gives better numerical results than the information-inequality methodology.
However, in the two examples presented here the opposite is true, if only
barely.

The advantage in the present method is that it allows consideration of
one-dimensional subfamilies which are not linear. Indeed, it can be considered
as a step along the path to consideration of two-dimensional (parallelogram)
families. This intuitive idea is clarified by the following examples.

The hardest-linear-family method. Let X be a two-dimensional normal
variable with mean 6 = (6,, 6,) and covariance I. Assume @ lies in the convex,
balanced set

@ = {(01,02): |91 - 02I < 1}.

The problem is to estimate 6; under squared error loss. Donoho and Liu
propose considering linear subsets of @, of the form

0, = {(01,6,) €0: 0, =ab}.

The minimum variance unbiased estimator of 6, is normally distributed with
variance 02 = (a® + 1)~ L. It is also a sufficient statistic. Hence the minimax
value for estimating 6, in the family 0, is

M, = oM(L(a)),
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where M(L) is given in Table 1 and

sup{6,: 6 € ©_)° 1+a?
Lz(a) = o2 = (]_—a)z'

[The bound (1.5) easily yields
sup M, > (1.247) "'o2(1 + L %(a)) "

= (1.247) (1 - 2a + 2a%) ' > 0.5346,

with equality at a = 1/2, L%(a)=5.] The tables of Donoho, Liu and
MacGibbon (1990) yield M = sup M, = 0.549 = M, for a = 0.70.

The information-inequality method. Information-inequality methods are
not restricted to linear families. Consequently, an intuitively natural family is

@,=0,U{(6,,6,):0,>(1—a) ", 0,=6, — 1;0r
0, < —(1—a) ', 0,=0,+1}

composed of three connecting line segments. For this family 1(8,) = (a® + 1)
for |6,| < (1 — @)~! and I(9,) = 2 for |6,] > (1 — @)~ '. The minimax bound is
the least value M, for which a solution b(-) exists on (—, ) to

(3.1) B'(6) = [(M, — B2(6))1(8)]"* - 1.

Note that a solution to (3.1) exists on (1 — a)™',«) if and only if M, —
B%(1 — a)™1) > 1/2 since 1(9,) = 2 on this semi-infinite interval. From this
fact, plus symmetry, it can be seen that a solution to (3.1) exists if and only if
the solution to

(32)  B(8) = [(M, - B%8))(a®+1]"* -1, B(0) =0,

satisfies B2(1 — a)™1) < M, — 1/2. 1t is relatively easy to numerically check
whether this is so. For the choice @ = 1/2 (in fact, for any «, 0.4 < a < 0.51)
this least value of M, is 0.599.

Summary. In summary, the information-inequality method yields the
statement, M > 0.598. The hardest-linear-family method yields only the state-
ment, M > 0.549.

Postscript. David Donoho has pointed out that the set O is a semi-infinite
rectangle, and that Donoho, Liu and MacGibbon (1990) contains relevant
results for minimax problems with parameters restricted to lie in a rectangle.
For the case at hand these results show that the precise minimax value is

(3.3) M=1IM(1/V2)+3=10.663....

Comparison of this value with the bounds 0.598 and 0.549, above, indicates
the efficacy of these one-dimensional methods in this two-parameter problem.
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4. Nonparametric regression. Consider a nonparametric regression
problem with equally spaced predictor variables, y;, on (—1/2,1/2). Thus
observe X; ~ N(f(y;),1), indep., y, = =1/2+i/(n+1),i=1,...,n.

Assume f'(0) exists and

(4.1) | f(x) = £(0) - f(0)x| < Bx*/2

so that f7(0), if it exists, satisfies |f"(0)| < B. It is desired to estimate 6 = f(0)
under squared error loss.

Of interest are asymptotic results, as n — «, about M, = the minimax risk
for this problem. [This problem and the corresponding density estimation
problem have been considered by many authors. See, for example, Rosenblatt
(1956), Parzen (1962), Farrell (1972), Stone (1980), Sacks and Ylvisaker
(1981), Sacks and Strawderman (1982) and Low (1989).]

The hardest-linear-family method. It is convenient, first, to review the
hardest-linear-family analysis as applied to this problem. Let

g,(t) = (sgn p)(lol — B?/2)" .

Consider linear families of the form

0, - { F: fy) = %g,,(y), 6l < p}.

Note that f(0) = § when f=(6/p)g, € 0,. The minimum variance unbiased
estimator of ¢ for the family 0, is

8,(x) =c, 2 r(¥:)x;
with
n 9 -1 p 9 -1 15m
Cp,n=p(i§1fp(yi)) ~;(fgp(t)dt) =W.

This has variance

(42) o2n =2 £ f2(2) ~ %@;/72—
The normalized length of this family is

o 4 po/t
%n VB B/

since max{|0|: 6 € ®p} = p. Hence the minimax risk for this family is

15 \*° B®
(4.4) M,,= Upz,nM(L,,,n) ~ ( 16v2 ) nA/SL2/

(4.3) L,,=

M(L,),
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where (4.2) and (4.3) have been used to write the right side of (4.4) in terms of
L. 1t follows that

475\ o 4/5
(4.5) M* = liminf 2 \m | s 15 sup L=2/5M (L)
' nowo |\ B80T | 16vV2 '

Now, sup L~2/°M(L) occurs near that value of L which maximizes L~2/5/
(1 + L™2) since locally M(L) is approximately proportional to (1 + L=2)71,
That value of L is L = 2; hence

(4.6) sup L-2/5M(L) > 2-2/5M(2) = 0.4889,
with 0.4889 being very near sup L~ 2/M(L). From+(4.5) and (4.6),
(4.7) M* > 0.352

[Table 2 of Donoho and Liu (1989) gives the bound 2~2/°L~2/°M(L) > 0.370.
(The factor 22/° results from the fact that their table gives values for
sup(2L)?7~2M(L) with, here, ¢ = 4/5.) This also yields (4.6) and (4.7).]

One obvious one-parameter subfamily to which to apply the information
inequality is

(4.8) ® = {f: f=g,(t): 6] < B/8}.
For this family the information function is
(4.9) I(0) = #{i: By?/2 < 6} ~ 2n(2l61/B)"*.

Hence the information inequality implies the existence of a function B such
that

(4.10) M, > (1+B'(60)°1,7'(6) + B*(6).
Now, let { = (n?/B)'/50 and y({) = (n?/B)'/58((B/n?)1/%9). Let n — = and
M* = liminf(n*/°M, /B?/%), as above. Then (4.10) yields
1
F3 ' 2 2
M* > (1+v'(£)) N (£).

Consequently, a lower bound for M* is the smallest value m* for which the
equation

(4.11) Y(£) = ((m* = y*(£))V8L)* - 1

has a solution on (—x, ). It is enough to investigate solubility of (4.11) on
(0, ) subject to y(0) = 0. This yields only the bound

(4.12) M* > 0.340
as opposed to the slightly better bound in (4.7).
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There is, however, a way to improve (4.12). Motivated by (4.3) and an
analogy with the example of Section 3, choose / > 0 and define

V5 (B/2)1\" (VB \¥°
p,=|——F7—— =|— 0.848414/5
4\/77 n

and

] B
0" = {f: f= S 8Pn3 6] <p, or f=gyp, <10l < g}.

n

0" is composed of the linear family ©,, having asymptotic normalized
half-length L = [, plus the part of the nonlinear family ®’ corresponding to
larger |6|. The information function is now asymptotic to

n \4/5

1.38941%/5 — R 0l <p,,
1(6) = («E) o1 <o
1.(9), 16l > p,,

since 1,(6) = (0 )L for 6] <p,, where o- n is defined by (4.2). Thus as in
(4.11) a lower bound for M * is the smallest va.lue m* for which

(4.13) Y(0) = ((m* — v2(0))i(¢))"* -

has a solution, where
(0 {1.3894l2/5, I£] < 0.848414/%,
l =

V8¢, IZ] > 0.848414/5.
Values of [ in (approximately) the range (1.4, 1.6) yield
(4.14) M* > 0.361.

[The value [ = 2, motivated by (4.6), yields only M* > 0.359.]

Summary. In this example compare (4.14) and (4.7) to see that the two
methods yield comparable bounds for M*, with the information-inequality
method yielding a bound about 2-1/2% better than the hardest-linear-family
method.

The above problem is ‘“Holderian with exponent ¢ = 4/5” as defined in
Donoho and Liu (1989). This evidence and further results in Brown and
Farrell (1990) and Low (1989) indicate that the former method should perform
better than the latter for g > 4/5 (approximately).

It is plausible that the best rectangle method implicit in Donoho, Liu and
MacGibbon (1990) (see also the postscript to the preceding section) could be
used to improve on the above bounds. This conjecture remains to be investi-
gated.

Acknowledgment. We wish to thank David Donoho for sending us
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