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Nonparametric Empirical Bayes and Compound Decision Approaches to
Estimation of a High-Dimensional Vector of Normal Means

Abstract
We consider the classical problem of estimating a vector μ=(μ1, …, μn) based on independent observations
Yi∼N(μi, 1), i=1, …, n.

Suppose μi, i=1, …, n are independent realizations from a completely unknown G. We suggest an easily
computed estimator μ̂, such that the ratio of its risk E(μ̂−μ)2 with that of the Bayes procedure approaches 1.
A related compound decision result is also obtained.

Our asymptotics is of a triangular array; that is, we allow the distribution G to depend on n. Thus, our
theoretical asymptotic results are also meaningful in situations where the vector μ is sparse and the proportion
of zero coordinates approaches 1.

We demonstrate the performance of our estimator in simulations, emphasizing sparse setups. In “moderately-
sparse” situations, our procedure performs very well compared to known procedures tailored for sparse
setups. It also adapts well to nonsparse situations.
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NONPARAMETRIC EMPIRICAL BAYES AND COMPOUND
DECISION APPROACHES TO ESTIMATION OF A

HIGH-DIMENSIONAL VECTOR OF NORMAL MEANS

BY LAWRENCE D. BROWN1 AND EITAN GREENSHTEIN

University of Pennsylvania and Duke University

We consider the classical problem of estimating a vector μ = (μ1, . . . ,

μn) based on independent observations Yi ∼ N(μi,1), i = 1, . . . , n.
Suppose μi , i = 1, . . . , n are independent realizations from a completely

unknown G. We suggest an easily computed estimator μ̂, such that the ratio
of its risk E(μ̂−μ)2 with that of the Bayes procedure approaches 1. A related
compound decision result is also obtained.

Our asymptotics is of a triangular array; that is, we allow the distribu-
tion G to depend on n. Thus, our theoretical asymptotic results are also mean-
ingful in situations where the vector μ is sparse and the proportion of zero
coordinates approaches 1.

We demonstrate the performance of our estimator in simulations, empha-
sizing sparse setups. In “moderately-sparse” situations, our procedure per-
forms very well compared to known procedures tailored for sparse setups. It
also adapts well to nonsparse situations.

1. Introduction. Let Y = (Y1, . . . , Yn) be a random normal vector where
Yi ∼ N(μi,1), i = 1, . . . , n are independent. Consider the classical problem of
estimating the mean vector μ = (μ1, . . . ,μn) by a (nonrandomized) estimator
� = �(Y) under the squared-error loss Ln(μ,�) = ∑

i (�i − μi)
2. The corre-

sponding risk function is the expected squared error

R(μ,�) = Eμ(Ln(μ,�(Y ))).

Compound decision theory. A natural class of decision functions is the class
of simple symmetric estimators that was suggested by Robbins (1956). This is the
class of all estimators �∗ of the form

�∗(Y ) = (δ(Y1), . . . , δ(Yn))

for some function, δ. For such an estimator, we will occasionally write �∗(Y ) =
�∗(Y |δ) in order to show the dependence on δ.

Given μ = (μ1, . . . ,μn), let

δ∗μ = arg min
δ

R(μ,�∗(·|δ))
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1686 L. D. BROWN AND E. GREENSHTEIN

and, for notational convenience, let �∗μ = �(·|δ∗μ).
Consider an oracle that knows the value of the vector μ but must use a simple-

symmetric estimator. Such an oracle would use the estimator �∗μ. The goal of
compound decision theory is to achieve nearly the risk obtained by such an ora-
cle, but by using a “legitimate” estimator, one that may involve the entire vector
of observations Y but does not involve knowledge of the parameter vector μ. In
establishing specific results, it is important to be suitably precise about the (as-
ymptotic) sense in which this near-ness is measured. This will be discussed later,
after introducing the companion concept of empirical Bayes, for background on
both compound decision and empirical Bayes [see Robbins (1951, 1956, 1964),
Samuel (1965), Copas (1969) and Zhang (2003), among many other papers].

Empirical Bayes. Let G be a prior distribution on R. Let M = {Mi, i =
1, . . . , n} be an unobserved random sample from this distribution. Conditional on
the {Mi} observe Yi ∼ N(Mi,1), i = 1, . . . , n, independent. Here, the target pro-
cedure is the Bayes procedure, to be denoted �G. The goal is to find a procedure �

whose expected risk under G is suitably near that of �G as n → ∞, when G is
unknown. The notation here is intentionally similar to that used previously for
the compound decision problem, but note that the superscript is now a distribu-
tion G, whereas, in the compound decision situation, the superscript is a vector μ
or, equivalently, the set of coordinates of μ.

Relation of compound and empirical Bayes risks. The expected average risk
under G of a procedure � will be denoted by B(G,�). Note that

B(G,�) = EG

(
1

n
R(M,�)

)
,(1)

where we treat M as a random vector whose coordinates are a sample of size n

from G, as described above. (For convenience, the dependence on n is suppressed
in the notation.)

Here are some simple consequences of this relation. Let {�n} denote a sequence
of estimators in a sequence of problems with increasing dimension n. Suppose, for
example, that {�n} has the basic asymptotic compound Bayes property that, for
every μn = (μn

1, . . . ,μ
n
n), n = 1,2, . . . ,

1

n
R(μn,�n) − 1

n
R(μn,�∗μn

)
n→∞→ 0.(2)

Also, assume that 1
n
R(μ,�n) is uniformly bounded, as will typically be the

case under suitable assumptions [as in (35)]. It then follows from (1) that {�n} is
asymptotically empirical Bayes in the basic sense that

B(G,�G) = EG

(
1

n
R(M,�G)

)
≥ EG

1

n
(R(M,�∗M))

(3)

= EG

(
1

n
R(M,�n)

)
+ o(1) = B(G,�n) + o(1).
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Hence, under very mild conditions, asymptotic compound optimal in the sense
of (2), implies asymptotic empirical Bayes in the sense of (3).

In Section 2, we will propose a particular, easily implemented form for �n. In
Section 3, we establish some more precise compound and empirical Bayes prop-
erties for this estimator. Although these properties are more demanding than (2)
and (3), the relation (1) remains an important part of the arguments that establish
them.

Relation of compound optimal and empirical Bayes procedures. The rela-
tion (1) describes a close connection between the compound Bayes and empirical
Bayes criteria. It is also true that the optimal procedures are closely connected.
The Bayes procedure �G(Y ) = (δG(Y1), . . . , δ

G(Yn)), for a specified prior G, is
of course given by Bayes formula

δG(Yj ) = E(Mj |Y) = E(Mj |Yj ) =
∫

uφ(u − Yj )G(du)∫
φ(u − Yj )G(du)

.(4)

Among its other features, the Bayes formula (4) reveals that the Bayes procedure
is a simple-symmetric estimator.

A simple derivation also yields the basic formula for �∗μ, through the corre-
sponding univariate function δ∗μ

δ∗μ(u) =
∑

i μiφ(μi − u)∑
i φ(μi − u)

.(5)

Given μ = (μ1, . . . ,μn), let F
μ
n denote the corresponding empirical CDF. Then

the formula for δ∗μ can be rewritten as

δ∗μ(u) = δF
μ
n (u).(6)

This formula provides a direct connection between the optimal estimators for the
two settings. This will be exploited in the construction, in Section 2, of an asymp-
totically optimal estimator.

Sparse estimation problems. The following discussion is intended to help mo-
tivate the asymptotic properties to be established in Section 3. It will also help
motivate the choice of settings serving as the basis for the numerical results re-
ported in Section 4.

Many recent statistical results have focused on the importance of treating situ-
ations involving “sparse” models [see, e.g., Donoho and Johnstone (1994), John-
stone and Silverman (2004) and Efron (2003)]. Many such problems involve issues
of testing hypotheses, but for others estimation is of secondary or even primary in-
terest. The basic asymptotic empirical Bayes property in (3) involves asymptotic
properties for a fixed prior G. Such a formulation is not sufficiently flexible to pro-
vide useful results in “sparse” settings. In Section 3, we investigate an asymptotic
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formulation that is appropriate for many sparse problems, as well as for the more
conventional settings involving asymptotics for fixed (but unknown) G.

“Sparsity” is not a precise statistical condition. However, the essence of many
“sparse” settings is captured by considering situations in which most of the un-
known coordinates μi take the value 0, and the remaining few take other value(s).

To be precise, in the following discussion of the compound Bayes setting, con-
sider a situation in which the possible values for the coordinates μi ≡ μn

i of μn

are either μi = 0 or μi = μ0 �= 0, i = 1, . . . , n. Here, we consider a sequence of
problems with increasing dimension n. For a given n, let p = p(n) denote the
proportion of nonzero values. The situation is sparse if p(n) → 0 as n → 0. (For
simplicity, assume that there is only one possible nonzero value, μ0, and that this
value does not change with n. Of course many other situations are possible that
should still be classed as sparse models.) Then,

1

n
R(μn,�∗μn

) = O(p(n)).(7)

Note that
1

n
R(μn,�

∗μn

)
p(n)→0→ 0.(8)

Hence, useful asymptotic results for sparse models must accommodate this fact.
The asymptotic statements in Section 3 are naturally scaled to accommodate

sparsity in this way because they examine the relative risk ratio, rather than the
ordinary difference between average risks, as in the basic statement (2). Thus, for
the given sequence, {�̂n} of procedures defined in Section 2, these results examine
the limiting value of

R(μn, �̂n) − R(μn,�∗μn))

R(μn,�∗μn
)

(9)

and establish quite general conditions under which this ratio converges to 0. (The
results of Section 3 include the preceding two point model as a very special case.)

Here is the empirical Bayes setting which corresponds to the special sparse com-
pound Bayes model described in the previous paragraphs. Consider an empirical
Bayes model, in which it is assumed that G = Gn, where

Gn({μ0}) = πi(n) = 1 − Gn({0}).(10)

Note that, as in (7),

B(Gn,�
Gn) = O(π(n)).

Similar to (9), the asymptotic results appropriate for sparse models will be phrased
in terms of the limiting value of the ratio difference

B(Gn, �̂n) − B(Gn,�
Gn)

B(Gn,�Gn)
.(11)
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The preceding discussion suggests that the degree of “sparsity” of a sequence
of compound or empirical Bayes models could be measured by the asymptotic
behavior of R(μn,�∗μn

) or B(Gn,�
Gn), respectively. For example, sequences of

models for which

lim inf
1

n
R(μn,�∗μn

) > 0(12)

[or lim infB(Gn,�
Gn) > 0] could be considered nonsparse. At the other extreme

are sequences for which

R(μn,�∗μn

) = O(1);(13)

those could be called extremely sparse. Sequences between those extremes can be
termed moderately-sparse. A typical example could be a sequence of problems for
which

R(μn,�∗μn

) = O(nα), 0 < α < 1.(14)

Note that, in this description of sparseness, the zero value does not play a special
role. It is the “complexity” of the sequence or the “difficulty to estimate it” that
defines its sparseness.

In Section 2, we construct an estimator that is approximately compound optimal
and empirical Bayes. The construction formula is simple and easily implemented.
This estimator performs very well for nonsparse and moderately sparse settings,
such as those in (14). It can also be satisfactorily used for extremely sparse set-
tings, but it is implicit in the theory in Section 3 and explicit in the simulations
in Section 4 that its performance is not quite optimal in some extremely sparse
settings.

Permutation invariant procedures. A natural class of procedures, which is
larger than the class of simple symmetric ones, is the class of permutation invariant
procedures. This is the class of all procedures � that satisfy

�(Y1, . . . , Yn) = (μ̂1, . . . , μ̂n) ⇔ �
(
Yπ(1), . . . , Yπ(n)

) = (
μ̂π(1), . . . , μ̂π(n)

)
for every permutation π .

In a recent paper by Greenshtein and Ritov (2008), a “strong equivalence” be-
tween the class of permutation invariant procedures and the class of simple sym-
metric procedures is shown. This equivalence implies that some of the optimality
results we obtain, comparing the performance of our procedure with that of the
optimal simple symmetric procedure for a given μ, are valid also with respect to
the comparison with the (superior) optimal permutation invariant procedure.

2. Bayes, empirical Bayes and compound decision. Let Y ∼ N(M,1)

where M ∼ G, G ∈ G. We want to emulate the Bayes procedure δG ≡ δG
1 , based
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on a sample Y1, . . . , Yn, Yi ∼ N(Mi,1), i = 1, . . . , n, where Mi ∼ G and the Yi

are independent conditional on M1, . . . ,Mn, i = 1, . . . , n. In general, G may de-
pend on n, but, in order to simplify the notation and presentation, we consider a
fixed G throughout this section. The generalization for a triangular array is easily
accomplished.

Consider our problem for a general variance σ 2; that is, suppose Yi ∼
N(Mi,σ

2), Mi ∼ G, i = 1, . . . , n. Let g∗
G,σ 2 be the mixture density

g∗
G,σ 2(y) =

∫ 1

σ
φ

(
y − μ

σ

)
dG(μ).(15)

Then, from Brown (1971), (1.2.2), we have that the Bayes procedure denoted δG
σ 2 ,

satisfies

δG
σ 2(y) = y + σ 2

g∗′
G,σ 2(y)

g∗
G,σ 2(y)

.(16)

Here, g∗′
G,σ 2(y) is the derivative of g∗

G,σ 2(y).

The estimator that we suggest for δG
1 is of the form

δ̂ = y + ĝ∗′
h (y)

ĝ∗
h(y)

,(17)

where ĝ∗′
h (y) and ĝ∗

h(y) are appropriate kernel estimators for the density g∗
G,1(y)

and its derivative g∗′
G,1(y). The subscript h is the bandwidth for the estimator. We

will use a normal kernel. This choice is convenient from several perspectives, but
does not seem to be essential. See Remark 2 later in this section. An alternative to
kernel density estimators could be a direct estimation of G. An approach involving
MLE estimation of G was recently suggested by Wenhua and Zhang (2007). Its
performance in simulations is excellent and it has appealing theoretical properties.
However, it is computationally intensive.

Let h > 0 be a bandwidth constant. Typically, h will depend on n, and
limn→∞ h = 0. Then, define the kernel estimator

ĝ∗
h(y) = 1

nh

∑
φ

(
y − Yi

h

)
.(18)

Its derivative has the form

ĝ∗′
h (y) = 1

nh

∑ Yi − y

h2 × φ

(
y − Yi

h

)
.(19)

Let

v = 1 + h2.

The following simple lemma establishes that ĝ∗
h and ĝ∗′

h are unbiased estimates
of g∗

G,v and g∗′
G,v . It also further interprets their form.

Let GY
n denote the empirical distribution determined by Y1, . . . , Yn.
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LEMMA 1. Let h > 0 and v = 1 + h2, and suppose Yi ∼ N(Mi,1), where
Mi ∼ G are independent. Then,

ĝ∗
h(y) = g∗

GY
n ,v−1(y), ĝ∗′

h (y) = g∗′
GY

n ,v−1(y),(20)

Eg∗
GY

n ,v−1(y) = g∗
G,v(y), Eg∗′

GY
n ,v−1(y) = g∗′

G,v(y).(21)

PROOF. We write

ĝ∗
h(y) =

∫ 1

h
φ

(
y − t

h

)
dGY

n (dt) = g∗
GY

n ,h2(y),

since h−1φ(x/h) is the normal density with variance h2. Let �σ 2 denote the nor-
mal distribution with variance σ 2. Under the conditions of the lemma, E(GY

n ) =
G ∗ �1.

Hence, E(ĝ∗
h(y)) = g∗

G∗�1,h
2(y) = g∗

G,1+h2(y), since (G ∗ �1) ∗ �h2 = G ∗
�1+h2 .

The arguments for the derivatives follow by differentiation or by an independent
argument analogous to the above. This completes the proof. �

Hence, the basic formula (17) may be rewritten as

δ̂1+h2(y) = δ̂v(y) = y +
g∗′

GY
n ,h2(y)

g∗
GY

n ,h2(y)
.(22)

As a final step in the motivation of our estimator, note that

δG
1+h2(y) = δG

v (y)
h→0→ δG

1 (y).(23)

By Lemma 1 and (23), we expect that, for large n and v = 1 + h2 ≈ 1, we have

g∗′
GY

n ,v−1(y)

g∗
GY

n ,v−1(y)
≈ g∗′

G,v(y)

g∗
G,v(y)

≈ g∗′
G,1(y)

g∗
G,1(y)

.(24)

Similarly, we have

δG
1 (y) = y + (

δG
1 (y) − y

) ≈ y +
([

y + g∗′
G,v(y)

g∗
G,v(y)

]
− y

)

≈ y + 1

v − 1

([
y + (v − 1)

g∗′
GY

n ,v−1(y)

g∗
GY

n ,v−1(y)

]
− y

)
(25)

= y + 1

v − 1

(
δ
GY

n

v−1(y) − y
) = δ̂v(y).

Here, δ
GY

n

v−1 is as defined above (16).
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REMARK 1. All the equations obtained so far for the empirical Bayes setup
have a parallel derivation and presentation in the compound decision setup
for a given μ = (μ1, . . . ,μn), where F

μ
n , the empirical distribution of μ =

(μ1, . . . ,μn), plays the role of G, as in (6). For example, (15) has the form
1
n

∑
i

1
σ
φ(

y−μi)
σ

), and the analog of δG
σ 2 is denoted δ

∗μ

σ 2 , etc.

EXAMPLE 1. It is of some interest to examine how the preceding formulas
compare in the standard case where the true prior is Gaussian, say G ∼ N(0, γ 2).
In that case, GY

n ⇒ N(0,1 + γ 2) in distribution. The actual Bayes procedure is

δG
1 (Y ) =

(
1 − 1

1 + γ 2

)
Y,

while, by (25) for a fixed v, δ̂v(Y ) converges as n → ∞ to(
1 − 1

v + γ 2

)
Y.

This may be seen when substituting δ
N(0,1+γ 2)
v−1 (y) = (1 − v−1

v+γ 2 )y, for δ
GY

n

v−1(y)

in (25).
Thus, when letting v ≡ vn approach 1 (equivalently when letting the band-

width h = √
v − 1 approach 0) as n approaches infinity, we may see that δ̂v(y)

approaches δG
1 (y).

REMARK 2 (On the choice of a kernel). One could choose other kernels
and obtain corresponding different estimators. See, for example, the papers of
Zhang (1997, 2005). In those papers, Zhang introduces an estimator for δG, using
Fourier methods and corresponding kernels, to estimate the above g∗′

G,1 and g∗
G,1.

Zhang’s papers are very relevant, and there are similarities between our approach
and his earlier development.

We now point to some advantages of our kernel. One advantage is the interpre-
tation of δ̂v as an approximation for δG

v . Here, δG
v (u) is the Bayes decision function

for the setup where U ∼ N(M,v) and M ∼ G (see, e.g., Example 1, with the in-
terpretation of the obtained rules, in terms of the approximation GY

n of G). This
interpretation is very helpful in the proof of Theorem 1. We are not sure to what
extent a normal kernel is essential to obtain the good performance of our estimator,
but it certainly simplifies various arguments. In addition, kernels with heavy tails
would typically introduce a significant bias when estimating g∗

G,1 and its derivative
in the tail.

3. Optimality in compound decision under sparsity. In this section, we
study asymptotics which are appropriate for both nonsparse and sparse compound
decision problems. The traditional asymptotics for empirical Bayes and compound
decision, consider the difference in average risks between the target (or optimal)
procedure and a suggested estimator. In the sparse setting, both of these quanti-
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ties approach zero. So the traditional asymptotic criteria are not informative, and a
more delicate study is needed.

Our main result, Theorem 1, covers the compound decision framework. It has
an analogous empirical Bayes formulation which is obtained as a corollary.

The formal setup is of a triangular array, where, at stage n, the parameter space,
denoted 
n, is of dimension n. We use the notation μn = (μn

1, . . . ,μ
n
n) ∈ 
n.

For every ε > 0, we assume

|μn
j | < Cn = o(nε), n = 1,2, . . . ,∞, j = 1, . . . , n.(26)

Such configurations include the interesting cases where μn
j = O(

√
log(n)).

Those are interesting configurations in which the statistical task of discriminating
between signal and noise is neither too easy nor too hard.

As before, we observe a vector (Y n
1 , . . . , Y n

n ), where Yn
j , are independently dis-

tributed N(μn
j ,1). Consider the loss for estimating μn by μ̂n,

L(μn, μ̂n
) =

n∑
j=1

(μ̂n
j − μn

j )
2,(27)

here μ̂n = (μ̂n
1, . . . , μ̂

n
n).

In this section, we will introduce the following slight modification for δ̂v(u),
and will consider a truncated estimator which at stage n is of the form

δ̂t
v(u) = sign(δ̂v(u)) × min(Cn, |δ̂v(u)|).(28)

Note that we chose to truncate δ̂v so that |δ̂v| < Cn. An alternate trunca-
tion can be used that may be more desirable in practice. This involves trunca-
tion of δ̂v(y) − y, rather than δ̂v . In this case, the truncation level can be cho-
sen independent of Cn. We write δ̂v(y) = y + (δ̂v(y) − y) ≡ y + R. Let R̃ =
sign(R)min(|R|,√3 log(n)). The alternate truncated estimator is

y + R̃.(29)

This estimator also satisfies the conclusion of Theorem 1 and our other results.
Minor modifications of the proofs are needed. Let �̂t

v(Y ) = �∗(Y |δ̂t
v) denote the

simple symmetric estimator of μn. Recall v = 1 + h2. We now state our main
result.

THEOREM 1. Consider a triangular array with 
n, as above, and sequences
μn ∈ 
n as in (26). Let v ≡ vn → 1, v > 1, be any sequence satisfying:

(i) 1
v−1 = o(nε′

) for every ε′ > 0.

(ii) log(n) = o( 1
v−1).

Assume that, for some ε > 0 and n0,

R(μn,�μn

) > nε ∀n > n0.(30)
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Then,

lim sup
R(μn, �̂t

v)

R(μn,�∗μn
)

= 1.(31)

REMARK 3. Theorem 1 states that, in situations which are not too advanta-
geous for the oracle so that its risk is of an order larger than nε for some ε > 0, we
may asymptotically do as well as that oracle by letting v approach 1 in the right
way. Doing as well as the oracle means that the ratio of the risks approaches 1. Note
that some condition resembling (30) is needed; if, for example, μn = (0, . . . ,0),
n = 1,2, . . . , then the corresponding risk of the oracle is identically 0, and we can
obviously not achieve such a risk by our estimator.

Although the asymptotics in this section are motivated mainly by sparse setups,
the result in Theorem 1 is valid for any sequence μn satisfying (26) and (30).
Obtaining an estimator that performs well and adapts well to a broad range of
“sparseness”/“denseness,” is the main achievement in this paper. The simple, easily
interpretable form of our estimator is an additional useful feature.

REMARK 4. There is an alternate form for the conclusion (31) that avoids the
necessity for an explicit assumption like (30). A minor additional argument shows
that in the statement of the theorem one can omit (30) and replace the conclu-
sion (31) by the conclusion

lim sup
R(μn, �̂t

v)

R(μn,�∗μn
) + An

≤ 1(32)

for all sequences {An} such that An > nε′
for some ε′ > 0.

REMARK 5 (On the choice of the bandwidth). The asymptotic result of the
theorem requires that hn → 0, but at a fairly slow rate. This slow rate is needed
in order to obtain the general conclusion in (31), assuming any value of ε in (30).
However, when (30), holds for large values of ε (e.g., nonsparse case with ε = 1),
then smaller values of hn might be desirable and will have some theoretical advan-
tage. Our theoretical results suggest that h2

n should converge to zero “just faster”
than 1/ log(n); we recommend h2

n = 1/ log(n) as a “practical default choice.” This
choice was studied in our simulations and also in Brown (2008) and Greenshtein
and Park (2007), where real data sets are explored.

One could improve by selecting different values of bandwidths for different
points y in an adaptive manner. Obviously, smaller bandwidth are desirable in
the “main body” of the distribution and bigger ones on the tail. Also, one could
use different bandwidth when estimating the density and its derivative at a point
(typically larger bandwidth for estimating the derivative). Such an approach (and
possible improvement) would introduce computational complexity to our simply
computed estimator. We do not pursue this approach in the present manuscript.
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From now on, we will occasionally drop the superscripts t in δ̂t
v , and n on μn.

Recall the notation δ
∗μ
v for the optimal simple symmetric function given μ, when

Yi ∼ N(μi, v). Thus, δ∗μ ≡ δ
∗μ
1 .

Write ∑(
δ̂v(Yi) − μi

)2 = ∑(
δ̂v(Yi) − δ∗μ

v (Yi) + δ∗μ
v (Yi) − μi

)2
.

Theorem 1 will follow when we prove the following two lemmas and apply
Cauchy–Schwarz.

LEMMA 2. For v ≡ vn > 1, such that log(n) = o( 1
v−1), and μn ∈ 
n as

in (26),

lim
Eμn

∑
(δ

∗μ
1 (Y n

i ) − μn
i )

2

Eμn
∑

(δ
∗μ
v (Y n

i ) − μn
i )

2
= 1.(33)

PROOF. See Appendix. �

LEMMA 3. Let ε > 0 (arbitrarily small). Suppose that v ≡ vn > 1, satisfy
1

v−1 = o(nε′
) for every ε′ > 0, and μn ∈ 
n as in (26). Then,

Eμn

∑
i

(
δ∗μ
v (Y n

i ) − δ̂t
v(Y

n
i )

)2 = o(nε).(34)

PROOF. See Appendix. �

A result analogous to Theorem 1 for the empirical Bayes setup is obtained
as a corollary. Consider a triangular array where at stage n, we observe Yn

i ∼
N(Mn

i ,1), Mn
i ∼ Gn, i = 1, . . . , n, Mn

i are independent and Yn
i are independent

conditional on Mn
i , i = 1, . . . , n; Gn are unknown. Assume that Gn have a support

on (−Cn,Cn), where

Cn = o(nε′
)(35)

for every ε′ > 0. Let δ
Gn

1 be the sequence of Bayes procedures. In the follow-
ing corollary, the expectation is taken with respect to the joint distribution of
(Mn

1 , Y n
1 ), . . . , (Mn

n ,Y n
n ).

COROLLARY 1. Let ε > 0 (arbitrarily small). For any sequence v = vn > 1,
such that:

(i) 1
v−1 = o(nε′

) for every ε′ > 0,

(ii) log(n) = o( 1
v−1),

lim sup
E

∑
i (δ̂

t
v(Y

n
i ) − Mn

i )2

E
∑

(δ
Gn

1 (Y n
i ) − Mn

i )2 + nε
≤ 1.(36)
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PROOF. The corollary is obtained by conditioning on every possible realiza-
tion Mn = (Mn

1 , . . . ,Mn
n) and applying Theorem 1 coupled with Remark 4 on

each realization treating the conditional setup as a compound decision problem.
The proof follows, since, by definition, for every Mn (treated as a fixed vector),∑

i EMn
i
(δ∗Mn

(Yi) − Mn
i )2 ≤ ∑

i EMn
i
(δ

Gn

1 (Yi) − Mn
i )2. �

REMARK 6. Assuming the more restrictive condition Cn = √
K log(n), for

some K , a careful adaptation of our proof will yield the conclusion of Theorem 1
under the weaker assumption that R(μn,�μn

) is a suitable power of log(n).

4. Simulations. This section will demonstrate the performance of our method
in a range of settings. As explained, the value of v should decrease as n increases
and should be chosen bigger than 1 but close to 1. We used v = 1.15 in simulations
with n = 1000, v = 1.1 when n = 10,000 and v = 1.05 when n = 100,000. No
attempt was made to optimize v. Note our default recommendation choice, v = 1+
(1/ log(n)) equals 1.144 and 1.108 for n = 1000 and n = 10,000, correspondingly,
roughly according to our choice. For n = 100,000, we chose v = 1.05 rather than
1.086 in order to keep a gap of 0.05. However, small changes (say, take v = 1.15
rather than v = 1.1) did not have much of an effect.

In Table 1 of Johnstone and Silverman (2004) [cited bellow as J–S (2004)], the
performances of eighteen estimation methods were compared in various setups
and configurations. Those methods include soft and hard universal thresholds and
others. The performance was compared in terms of the expected squared risk. In all
the configurations, the dimension of the vector μ is n = 1000 [i.e., Yi ∼ N(μi,1),
i = 1, . . . ,1000]. In four configurations, there are k = 5 nonzero signals and these
nonzero signals all take the value u1 = 3, or all are u1 = 4, u1 = 5 or u1 = 7,
respectively. A similar study was done when there are k = 50 nonzero signals, and
k = 500 nonzero signals; the values of the nonzero signals are as before.

In the second line of the following Table 1, we show the performance of the
best among the eighteen methods in each case (i.e, the performance of the method
with minimal simulated risk for the specific configuration). The first line shows
the performance of our δ̃v with v = 1.15. The performance and empirical risk

TABLE 1
Risk of δ̃1.25 compared to that of the best procedure in J–S (2004);
n = 1000 (average of 50 simulations rounded to the nearest integer)

k 5 50 500

u1 3 4 5 7 3 4 5 7 3 4 5 7
δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
Minimum 34 32 17 7 201 156 95 52 829 730 609 505
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of our procedure is based on averaging of the results of 50 simulations in each
configuration. One can see that the empirical risk of our procedure is lower than
the minimum of all the others in the nonsparse case and in the moderately sparse
case. Our procedure adapts particularly well in the nonsparse case. Our method
does not do that well in the extremely sparse case; it is worse than the various
empirical Bayes procedures suggested in Johnstone and Silverman’s paper, but it
is within the range of the other methods. All entries, in this table and those to
follow, are rounded to the nearest integer.

Note that, when the risk of the oracle is very small, our Theorem 1 does not
imply that we are doing well with respect to the oracle in terms of risk ratios.

Here, δ̃v denotes the following minor adaptation of δ̂v :

δ̃v = y + v
ĝ∗′

Gn,v−1(y)

ĝ∗
Gn,v−1(y)

.

The difference, relative to δ̂v , is the multiplication by v of the ratio. As v → 1 the
difference between the two estimators is negligible. The procedure δ̃v seems more
suitable in approximating, δ

∗μ
v and is as appealing as δ̂v .

In the following Table 2, we report on the behavior of our procedure based on 50
simulations in each of the following three configurations. The dimension is n =
10,000 and there are k = 100, k = 300 and k = 500 nonzero signals. The nonzero
signals are selected, by simulation uniformly between −3 and 3, independently in
each simulation.

We compare the performance of our procedure with a hard threshold Strong
Oracle, whose loss per sample i:

min
C

∑
i

(Yi − μi)
2I (|Yi | > C) + (0 − μi)

2I (|Yi | < C).

Thus the Strong Oracle applies the best hard threshold per realization. The entries
in Table 2 are based on the average of 50 simulations.

We see that the Strong Oracle, dominates our procedure in the very sparse case
where k = 100. Our procedure dominates in the less sparse cases.

In the following Table 3, we report on the behavior of our procedure, based
on 50 simulations in each of the following configurations. The dimension is

TABLE 2
Risk of δ̃1.1 compared with that of a Strong Oracle; n = 10,000

δ̃1.1 SO

k = 100 306 295
k = 300 748 866
k = 500 1134 1430
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TABLE 3
Risk of δ̃1.05 compared

with that of a Strong Oracle; n = 100,000

δ̃1.05 SO

k = 500 2410 3335
k = 1000 3810 5576
k = 5000 10,400 16,994

n = 100,000 with k nonzero signals, and each has the value 4. The simulations
are performed for k = 500, k = 1000 and k = 5000. The comparison is again with
a Strong Oracle. In our procedure we let v = 1.05. Note that our procedure dom-
inates the SO in each case. Our procedure thus appears more advantageous as the
dimension increases and there are more observations available to estimate δ∗μ.

APPENDIX

PROOF OF LEMMA 2. Let rv,n be the risk corresponding to δ
∗μ
v (u) when ap-

plied on an independent sample Un
i ∼ N(μi, v), and let r1,n be the risk of δ

∗μ
1 (y)

when applied on an independent sample Yn
i ∼ N(μi,1), i = 1, . . . , n. Then,

Eμn

∑(
δ∗μ
v (Un

i ) − μn
i

)2 = rv,n,(37)

Eμn

∑(
δ∗μ(Y n

i ) − μn
i

)2 = r1,n.(38)

We will omit the superscript n in the following.
Obviously, rv,n > r1,n, since the experiment Yi, i = 1, . . . , n dominates the ex-

periment Ui, i = 1, . . . , n in terms of comparison of experiments. We will first
show that for v = 1 + (1/dn) where log(n) = o(dn),

r1,n/rv,n → 1.(39)

Let φ(u,μi; s2), denote the normal density with variance s2 and mean μi . For
every ε′ > 0, we have

rv,n = ∑
i

Eμi

(
δ∗μ
v (Ui) − μi

)2 ≤ ∑
i

Eμi

(
δ
∗μ
1 (Ui) − μi

)2

= ∑
i

∫ (
δ
∗μ
1 (u) − μi

)2
φ(u,μi;v) du

= ∑
i

∫ (
δ
∗μ
1 (u) − μi

)2
φ(u,μi;1)

φ(u,μi;v)

φ(u,μi;1)
du(40)

= (
1 + o(1)

) × ∑
i

Eμi

(
δ
∗μ
1 (Yi) − μi

)2 + o(nε′
)(41)

= (
1 + o(1)

) × r1,n + o(nε′
).(42)
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Equation (41) is implied as follows. When dn/ log(n) → ∞, then, for each sum-
mand i in (40), the ratio of the densities approaches 1 uniformly on the range where
|u − μi | < √

K log(n) for any K . It is also easy to check for each summand, that,
for large enough K , the integral over |u−μi | > √

K log(n) can be made of the or-
der o(n(ε′−1)) for any ε′. This may be seen since |δ∗μ| and |μi | are bounded by Cn,
while by choosing K large enough n × (2Cn)

2 × P(|Yi − μi | >
√

K log(n)) can
be made of order o(nε′

).
By (30), letting ε′ < ε, (42) implies lim sup rv,n/r1,n ≤ 1. This completes the

proof of (39), since, as mentioned, r1,n ≤ rv,n.
Similarly to the above, we write

∑
i

Eμi

(
δ∗μ
v (Yi) − μi

)2 = ∑
i

∫ (
δ∗μ
v (t) − μi

)2
φ(t,μi;1) dt

(43)

= ∑
i

∫ (
δ∗μ
v (t) − μi

)2 φ(t,μi,1)

φ(t,μi;v)
φ(t,μi;v) dt.

An argument similar to the above (yet easier) implies that for dn/ log(n) → ∞
we have

rv,n

Eμ
∑

(δ
∗μ
v (Yi) − μi)2

→ 1.(44)

Lemma 2 now follows from (39) and (44).
Note that Lemma 2 would follow along the same lines if we assume in (30)

the weaker condition R(μn,�μn
) = O(1) (i.e., under our notion of an extremely

sparse setup). �

PROOF OF LEMMA 3. In order to motivate the expression in (46), bellow, we
begin by comparing the performance of δ

∗μ
v and δ̂v when applied on a set of new

independent observations Ỹ n
i ∼ N(μn

i ,1), i = 1, . . . , n, which are also indepen-
dent of the set Yn

i , i = 1, . . . , n, that was used to obtain the estimate δ̂v . We will
omit the superscript n in the following. Thus, we first show that

Eμ

∑
i

(
δ∗μ
v (Ỹi) − δ̂v(Ỹi)

)2 = o(nε)(45)

for every ε > 0.
Observe that

Eμ

∑
i

(
δ∗μ
v (Ỹi) − δ̂v(Ỹi)

)2 = E
∑
i

∫
[δ∗μ

v (y) − δ̂v(y)]2φ(y − μi) dy

(46)
= n

∫ ∞
−∞

E
[(

δ∗μ
v (y) − δ̂v(y)

)2]
g∗

G,1(y) dy.

Here, g∗
G,1(y) = 1

n

∑
i φ(y − μi) denotes the mixture density in the compound

decision setup, where G corresponds to the empirical distribution of (μ1, . . . ,μn)
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(see Remark 1, Section 2). In fact, G ≡ G
μ
n , but the dependence of G on n and μ

is suppressed in the notation.
The outline of the proof, that (46) is of order o(nε) for every ε > 0, is as follows.

Let 0 < ε′ < ε. Let R consist of all point y that satisfy:

(i) −C′
n < y < C′

n, where C′
n = (log(n) + Cn)

and,
(ii) g∗

G,1(y) > nε′−1 for some 0 < ε′ < ε.

We then show that, uniformly for y0 ∈ R,

E
[(

δ∗μ
v (y0) − δ̂v(y0)

)]2 = o

(
nε′

ng∗
G,1(y0)

)
.(47)

Once (47) has been verified, the proof of (45) can be completed, since

n

∫ ∞
−∞

E
[(

δ∗μ
v (y) − δ̂v(y)

)2]
g∗

G,1(y) dy

= n

∫
Rc∩[−C′

n,C′
n]

E
[(

δ∗μ
v (y) − δ̂v(y)

)]2
g∗

G,1(y) dy

+ n

∫
y /∈[−C′

n,C′
n]

[(
δ∗μ
v (y) − δ̂v(y)

)]2
g∗

G,1(y) dy

(48)
+ n

∫
R

E
[(

δ∗μ
v (y) − δ̂v(y)

)]2
g∗

G,1(y) dy

= o(nε) +
(
n

∫
R

o(nε′
)

ng∗
G,1(y)

g∗
G,1(y) dy

)

(49)
= o(nε) + o(C′

nn
ε′
) = o(nε).

In the above, we use the exponential tail of the normal distribution, the trunca-
tion, and the upper bound Cn for the elements of μn.

We elaborate now on the derivation of (47). The (nontruncated) version of our
estimator equals

δ̂v(y) = y + ĝ∗′
h (y)

ĝ∗
h(y)

,(50)

where ĝ∗
h and ĝ∗′

h are kernel density estimators, based on Y1, . . . , Yn, of g∗
G,1 and

g∗′
G,1 with bandwidth h = √

v − 1 ≡ √
1/dn.

Recall that

δ∗μ
v (y) = y + v

g∗′
G,v(y)

g∗
G,v(y)

.(51)
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We now write the right-hand side of (50) as

δ̂v(y) = y + g∗′
G,v(y) + R1

g∗
G,v(y) + R2

.(52)

Here, the random variables R1 and R2 are implicitly defined, by comparing nu-
merators and denominators of (52) and (50), respectively.

Note that, by Lemma 1,

E(Ri) = 0, i = 1,2,(53)

E[δ∗μ
v (y0) − δ̂v(y0)]2

= O

(
E

(
R1

g∗
G,v(y0) + R2

)2

+ E

(
g∗′

G,v(y0)R2

(g∗
G,v(y0))2 + g∗

G,v(y0)R2

)2)

(54)

= O

(
E

(
R1

g∗
G,v(y0) + R2

)2

+ E

(
CnR2

g∗
G,v(y0) + R2

)2)

= O

(
E

(
R1

g∗
G,1(y0) + R2

)2

+ E

(
CnR2

g∗
G,1(y0) + R2

)2)
.

For the last equality, we use the fact that g∗
G,1(y)/g∗

G,v(y) is bounded when v > 1;
for the previous one, we use the fact that g∗′

G,v(y0)/g
∗
G,v(y0) = O(Cn), uniformly

for y0 ∈ R.

The assertion E[(δ∗μ
v (y0)− δ̂v(y0))]2 = o(nε′ )

ng∗
G,1(y0)

, will be implied by computing

the variances of Ri, i = 1,2, and by controlling the moderate deviation of R2, as
in what follows.

The variances of R1 and R2 equal to the variances of the corresponding kernel
density estimators in (50), of the density and its derivative. It may be checked,
from (18) and (19), that

var(Ri) = O

(
(Cndn)

2g∗
G,1(y0)

n

)
= o(nε̃)g∗

G,1(y0)

n
(55)

for every 0 < ε̃ < ε′.
Applying Bernstein’s inequality [see, e.g., van der Vaart and Wellner (1996),

page 103] we obtain

P
(
R2 < −0.5g∗

G,1(y0)
)
< 1/4C2

n.(56)

Since [δ̂v(y0) − δ∗μ(y0)]2 < 4C2
n by truncation, (47) follows when incorporating

the above computed values of the second moments of Ri , i = 1,2 into the numer-
ator of (54) and controlling its denominator by (56).

It remains to show how to modify the proof of (45) in order to conclude
Eμ

∑
(δ

∗μ
v (Yi) − δ̂v(Yi))

2 = o(nε) for every ε > 0. We briefly explain it in the
following.
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Let δ̂
(i)
v be our estimator for δ∗μ based on Yj , j = 1, . . . , n, j �= i. We now write

Eμ

∑(
δ∗μ
v (Yi) − δ̂v(Yi)

)2

(57)
= Eμ

∑
i

(
δ∗μ
v (Yi) − δ̂(i)

v (Yi) + δ̂(i)
v (Yi) − δ̂v(Yi)

)2
.

We now show that

Eμ

∑
i

(
δ̂v(Yi) − δ̂(i)

v (Yi)
)2 = o(nε)(58)

for every ε > 0. This follows by arguments similar to the ones presented in the first
part of our lemma. Specifically, first note that

Eμ

∑
i

(
δ̂v(Yi) − δ̂(i)

v (Yi)
)2

= Eμ

∑
i

(
δ̂v(Yi) − δ̂(i)

v (Yi)
)2 × I (Yi ∈ R) + o(nε)(59)

= o(nε) + Eμ

∑ o(nε′
)

nĝ∗(Yi)
.

Now, taking a dense enough grid in the region R [note the derivative of g∗
G,1 in

that region is bounded by O(Cn)], and applying Bernstein’s inequality coupled
with Bonferroni, yields

Pμ

(
sup
y∈R

ĝ∗(y)

g∗(y)
<

1

2

)
= o

(
1

nC2
n

)
.(60)

By (59) and (60) and the truncation, we obtain

Eμ

∑ o(nε′
)

nĝ∗(Yi)
= o(nε) +

∫
R

2 × o(nε′
)

g∗(y)
g∗(y) dy = o(nε).(61)

The above involves interchanging summation and integration.
We then note that

Eμ

∑
i

(
δ∗μ
v (Yi) − δ̂(i)

v (Yi)
)2

= Eμ

∑
i

∫ (
δ∗μ
v (y) − δ̂(i)

v (y)
)2

φ(y − μi) dy

(62)
= Eμ

∑
i

∫ (
δ∗μ
v (y) − δ̂v(y) + δ̂v(y) − δ̂(i)

v (y)
)2

φ(y − μi) dy

= o(nε′
)

for every ε > 0.



EMPIRICAL BAYES, COMPOUND DECISION 1703

Obtaining the last equality involves evaluating

Eμ

∑
i

∫
E

(
δ∗μ
v (y) − δ̂v(y)

)2
φ(y − μi) dy

as in (46), and ∫ ∑
i

E
(
δ̂v(y) − δ̂(i)

v (y)
)2

φ(y − μi) dy

similarly to (58). This completes the proof. �
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