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Admissibility as a Touchstone

Abstract
Consider the problem of estimating simultaneously the means 6; of independent normal random variables x;

with unit variance. Under the weighted quadratic loss L(6,a)=21,(6;—a;)? with positive weights it is well
known that:

(1) An estimator which is admissible under one set of weights is admissible under all weights.
(2) Estimating individual coordinates by proper Bayes estimators results in an admissible estimator.

(3) Estimating individual coordinates by admissible estimators may result in an inadmissible estimator, when
the number of coordinates is large enough. A dominating estimator must link observations in the sense that at
least one 0; is estimated using observations other than x;.

We consider an infinite model with a countable number of coordinates. In the infinite model admissibility
does depend on the weights used and by linking coordinates it is possible to dominate even estimators which
are proper Bayes for individual coordinates. Specifically, we show that when 0; are square summable, the

estimator 8;(x)=1 is admissible for A;=e’,c>1/2, but inadmissible for 1;=1/i1*,c>0. In the latter case, a

dominating estimator w=(ry,73,™) is of the form m;j(x)=1-¢;(x), where ¢; links all the observations xy,x2,~

Infinite models frequently arise in estimation problems for Gaussian processes. For example, in estimating the

drift function 6 of the Wiener process W under the loss L(6,a)=f[0(t)—a(t)]dt, the transformation x;={®;dW
with @; an appropriate complete orthonormal sequence gives rise to a model which is equivalent to an infinite

model with }; = 1/i2.
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ADMISSIBILITY AS A TOUCHSTONE

By Avi MANDELBAUM AND L. A. SHEPP

Stanford University, AT & T Bell Laboratories, Inc. and
Stanford University

Consider the problem of estimating simultaneously the means 6; of
independent normal random variables x; with unit variance. Under the
weighted quadratic loss L(f, a) = L,A;(6; — a;)* with positive weights it is
well known that:

(1) An estimator which is admissible under one set of weights is admissible
under all weights.

(2) Estimating individual coordinates by proper Bayes estimators results in
an admissible estimator.

(3) Estimating individual coordinates by admissible estimators may result in
an inadmissible estimator, when the number of coordinates is large
enough. A dominating estimator must link observations in the sense that
at least one 6; is estimated using observations other than x;.

We consider an infinite model with a countable number of coordinates. In
the infinite model admissibility does depend on the weights used and by
linking coordinates it is possible to dominate even estimators which are
proper Bayes for individual coordinates. Specifically, we show that when 6,
are square summable, the estimator §;(x) = 1 is admissible for A; = e~
¢ > 2, but inadmissible for A; = 1/i'*¢, ¢ > 0. In the latter case, a dominat-
ing estimator 7 = (m, m,,...) is of the form =;(x) = 1 — ¢g;(x), where ¢; links
all the observations x,, x,... .

Infinite models frequently arise in estimation problems for Gaussian
processes. For example, in estimating the drift function 6 of the Wiener
process W under the loss L(8, @) = [[0(t) — a(t)]? dt, the transformation
x; = [®, dW with ®; an appropriate complete orthonormal sequence gives
rise to a model which is equivalent to an infinite model with A; = 1/i2.

1. Introduction and summary of results.

1.1. Consider the problem of simultaneously estimating the coordinate means
0 = (6,,0,,...) of independent normal observations x,, x,, ..., all with variance
one. The concept of admissibility of an estimator allows one to delimit the class
of reasonable estimators: All inadmissible estimators are judged unreasonable on
the grounds that each can be outperformed uniformly by a dominating estima-
tor. One is left with the admissible estimators, from which a recommended one is
to be chosen. However, the admissibility—inadmissibility criterion leads to rather
unexpected consequences: While estimators that are clearly unreasonable in
most circumstances turn out to be admissible, estimators which are natural and
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widely used are inadmissible. More specifically, under the weighted square error
loss

(1.1) L(6,a) = XA(6; - a,)’, A,;>0,

the constant estimator §%(x) = (¢, ¢,...), ¢ constant, which does not even use
the observations, is admissible while the estimator §(x) = (x,, x,,...) is inad-
missible if the number of coordinates is three or more.

The inadmissibility of 8(x) = x was first discovered by Stein [13] for the case
A; = 1 and further extended to a larger class of loss functions by Brown [4]. The
class of estimators that dominate 8(x) = x is very wide (some are described in
Berger [1]). However, all share a common feature: Coordinates must be linked
in the sense that the estimation of at least one 6, involves observations other
than x,.

1.2. Stein’s result has inspired a great deal of research, as demonstrated by
the large amount of work devoted to the subject. A recent textbook survey of the
literature can be found in Lehmann [8]. Most research efforts have been devoted
to the phenomenon that estimators, which at first glance seem good, are actually
improvable. We are dealing, roughly speaking, with the dual phenomenon in
which estimators that are clearly unreasonable turn out to be unimprovable. An
example of such estimators are the constant estimators . A less trivial example,
due to Brown, is described in Makani [9].

1.3. Stein [13] supported his inadmissibility proof by a heuristic argument
which applies when the number of coordinates is large. We take the notion of a
large number of coordir:ates to the extreme, and consider a countable number:
An infinite sequence x = (x;, X,,...) is observed and the sequence of means
6 =(0,,0,,...) is estimated under the loss (1.1). For brevity, the model with a
countable number of coordinates will be called the infinite model, to distinguish
it from the usual multivariate model which we call the finite model.

Assume that the coordinate mean vector 8 = (6,, 0,,...) is square summable
(0 € ¢?). Denote the risk function of an estimator 8(x) = (8,(x), 8y(x),...)
associated with the loss (1.1) by

(1.2) R(8,8) =E, Y A[6(x) - 6%, 8eer,

i=1
where E, expresses the fact that x; ~ N(0;,1). Let 1 stand for the estimator

8%(x) = (1,1,...). For 1 to have finite risk, we must and shall restrict attention
to summable weights:

YA, < .

The situation where only a finite number, say N, of coordinates is of interest
can be captured by assuming that A; = 0 for i > N. In view of the fact that, in
the finite model 1 is trivially admissible, the following result (proved in Section
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3) may not be too surprising:

1.3.A. If the weights A; decrease to 0 sufficiently fast, the estimator 1 is
admissible.

However, our next result has no analogue in the finite model. We prove in
Section 2:

1.3.B. If the weights A; decrease to 0 sufficiently slowly, the estimator 1 is
inadmissible. An estimator = that dominates it over £2 is of the form

(1.3) m(x) =1 — e(1 — x,)e %=,

where ¢ is positive, chosen small enough, and ¢,(x) are positive quadratic forms
in x.

Some remarks are now in order.

1.4. In the finite model, the estimator 1 is trivially admissible because it has
zero risk at the point § = 1. However, in the infinite model, § = 1 has been
excluded from the parameter space since 1 is not square summable. The square
summability of coordinates is a natural restriction for modeling purposes. In-
deed, suppose that ' and 62 are such that their difference ' — 62 is not square
summable. Then the distributions of the sequence x under ' and 62 have
essentially disjoint support (Shepp [11]). So, in principle at least, 8 and 62 are
distinguishable almost surely. Restricting attention to parameters in #2 is an
idealization of the following situation. Suppose that the parameter space is
centered around a known vector §°; parameters 6 for which § — 6° is not square
summable are considered outliers and can be detected with certainty. Then,
considering £2 amounts to choosing #° = 0 for convenience.

1.5. The estimator # given in (1.3) links coordinates in the strongest sense:
Each 6, is estimated using all the coordinates of x = (x, x5,...). Indeed, any
estimator § = (8, d,,...) which dominates 1 must link infinitely many coordi-
nates of x in at least one §;. This is a consequence of the fact that if § dominates
1 and if 8(x) = f(xy,..., x;) for some j and k < oo, then f(x,...,x,) =1 as.
To see that, let e)¥ = 1 or 0 according to i < Nor i > N. Since § dominates 1, we
have for all N > k

(14) MEo[f(xs+ 1,y mp + 1) — 1P < R(8,eM) < RLeM) = 3 A,

i=N+1

Letting N — oo in (1.4), we conclude that f(x,,...,x,) =1as.

1.6. In the finite model, an estimator that is admissible under square error
loss with respect to one set of positive weights is admissible with respect to all
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possible weights (Bhattacharya [3] and Shinozaki [12]). The results 1.3.A and
1.3.B demonstrate that this fact does not carry over to the infinite model.

1.7. In addition to being a limit of the finite model, the infinite model arises
in inference problems for Gaussian processes. Via a Karhunen-Loéve type
expansion, inference problems for Gaussian processes are reduced to inference
problems for the infinite model. This approach is well illustrated by Grenander
[6] where both testing and estimation problems are treated. In particular, the
approach is useful in reducing admissibility questions for estimators of the
means of general Gaussian distributions to admissibility questions for sequences
of means in the infinite model. Berger and Wolpert [2] considered James—Stein
estimators for mean functions of Gaussian processes along these lines. In [10],
linear estimators for the mean of a Gaussian distribution on a Hilbert space were
characterized under a very special loss function. The model in [10] reduces to an
infinite model with weights A; = 1 which is treated there in details. With weights
A; = 1 the estimator 1 is trivially inadmissible, having a risk that is identically
infinite. Also the characterization of admissible linear estimators in both the
finite and infinite models are similar. The present paper is a first attempt to
extend the class of loss functions beyond the simplest loss function considered in
[10]. Only here, the striking differences between the finite and infinite models
become apparent.

For a recent textbook treatment of the general Gaussian model and its
specialization to the Brownian motion, the reader is referred to Chapter 8 in
Farrell [5]. Since we know of no reference in which the reduction to an infinite
model sufficiently emphasizes the role of the loss function chosen, we have
included an appendix that addresses this issue. The relation of the infinite model
to the important Brownian motion model is described there as well. It is worth
mentioning that the Gaussian model described in the Appendix includes essen-
tially all Gaussian processes of practical importance, not only the Brownian
motion. Further examples are described in [2] and [6].

1.8. We restrict the parameter space to ¢, and show that 1 can be inadmissi-
ble. The point 1 is not in the parameter space. However, for summable weights, 1
is in the closure of the parameter space with respect to the norm that defines the
loss function. With respect to norms with weights that decrease to 0 sufficiently
slowly, the point 1 is so “far” from the parameter space that it is inadmissible.
This is somewhat analogous to the finite dimensional situation where 1 is
inadmissible if 4 is restricted to |§ — 1| > § > 0 (the convex combination ax +
(1 — a) + 1 dominates 1 for a positive small enough).

1.9. The paper is structured as follows. The inadmissibility of 1 under
weights \; = 1/i'*, ¢ > 0, is proved in Section 2. The admissibility of 1 under
weights A, = e~ %, a > 1, is proved in Section 3. Section 4 includes concluding
remarks and some intriguing open questions. The paper ends with an Appendix
whose role was described above.
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2. Inadmissibility of 1 under polynomially decreasing weights.
2.1. We now prove that if the weights in (1.2) are given by

(2.1) A= %, where ¢ > 0,

then the estimator 1 is inadmissible. An estimator w(x) = (m(x), my(x),...)
which dominates 1 at all § € ¢2 is of the form

(2.2a) m(x) =1—¢(1l —x;)e ), ix1,
where q(-) is the positive quadratic form
*® 1 1 o2
(2.2b) q(x)=ijT;(xl - ta;)’ +821 5%
= j=

and x* [the argument of g in (2.22)] is just x with the ith coordinate made zero,
ie, x:=0 and x;=x; for j+# i. The positive constants 0 <a < 8 <1 and
v 8 € W111 be chosen small enough so that

R(8,7) < R(6,1), V8ec?

or, equivalently,

(2.3) E, Y A (m(x) - 6) < YA -6)°, vees
i=1 i=1

2.2. The quadratic form in (2.2b) converges a.s. under all 8 € ¢2. Indeed,
Eyq(x*) < Eyq(x) for all i and

*® 1 x® 1
qu(x)=yz j2+a]+8.z j1_+§1<°°'

Thus, g(x) < oo a.s. if § = 0. But “almost sure” statements under § = 0 are
“almost sure” statements under 6 € ¢% (Shepp [11]), implying that g(x) < o
a.s. under all § € ¢2. In particular, 7 differs from 1 in all coordinates.

2.3. We now start proving (2.3). The first step is to expand squares, divide by
e > 0, and use the independence of x; and x* and the identities

E(1-x)=1-6, E,(1-x)=1+1-86)>,
to get an equivalent inequality
24) eXN[1+ (1 - 6,7 Epe29) < 2X N1 - 6)*Epe 9™, Vel
i i

Clearly, (2.4) holds for some ¢ > 0 if and only if

28 (1 — 6,)° Ege ™99
(2.5) inf (= 6) E, — > 0.
es? Z}‘ill + (1 _ 0i)2] Eoe—2q(x')
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2.4. The hope that (2.5) holds is based on the heuristic that the numerator is
small only when 6, = 1 for many i’s. But then e ~9(=Y) must be small and e~29¢")
even smaller. Th1$ heuristic is even more founded if we replace in (2.5) the
expectations E,[ -] by the expectants evaluated at §. We now prove two lemmas
that justify such a step.

LEMMA 1. Let @ be an n X n symmeltric positive definite matrix. Denote the
quadratic form associated with @ by Q(x) = x'Qx. Then

EyQ(x) = trace(Q)
and

E,e-9®)/2
4 < e~ 1-9R0)/2

-Q0/2 L T
(2.6) e < R <

for all € > trace(Q)/[1 + trace(Q)] and all § € R™.

Proor. By the multidimensional Gauss formula
Eje™%9/? = Eje= 9 %exp{16°[(I + Q) — I|6}.

Let {»,,..., »,} be the positive eigenvalues of Q.
For ¢ > max,;»,/(1 + »;)

1-e)Q=<I-[I+Q]'<Q
since
(1-ey<1-(1+) " <, forali.

Finally trace(®) > max,(»;) and the fraction x/(1 + x) is increasing in x,
hence (2.6). O

REMARK. We shall apply (2.6) to infinite matrices or, more precisely, to
continuous positive quadratic forms @ on ¢2. As long as Eye9*)/2 is strictly
positive, (2.6) generalizes without difficulties.

2.5. Before stating Lemma 2, let us introduce some convenient notation:
1 R 1
(2.73.) A(0)= ZF(01+ +01) , 0(0) Z]1+B 2
J

(2.7b) Ai(0) = A(8),  o,(6) = o(87);
(2.7¢) q(8) = vA(9) + 80(8),  qi(6) = q(6°).

The ¢ in (2.7c) is the quadratic form in (2.2b). Clearly, o(8) and o,(8) are
continuous positive quadratic forms on ¢2. The inequality

(0, + -+ +6)" <j(62 + -+ +67)
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implies that the rest of the positive quadratic forms in (2.7) are continuous as
well.

Now fix @, Band ¢, 0 <& < 3.

LEMMA 2. There exists a positive B = B(¥, 8) such that for all v, 8 suffi-
ciently small, all 0 € ¢? and all i

(2.8) Be 9%) < Eye~9+) < Be~ (=92,
Note. The dependence on v, § in (2.8) is through B and gq.
Proor. First note that for v, § small enough

(2.9) Ee ) > 1 — Eggi(x) > 1 — Egq(x) > 0,

since
1 1
Ewgq(x) =vYX 2 + 08X 755+
i J jJ
Applying Lemma 1 to @ = 2q;, we get that for all i

E,e%(®
(2.10) e~%u® < 2

< sz—) < e—(l—e)q,»(0)’ = /2’
e 1]
0

whenever
2trace(q;)
E> ————————.
1 + 2trace(q;)

Since trace(q;) = Eyq,(x) < E,q(x) = trace(q), for

2trace(q)
E=2 —————,

1+ 2trace(q)’ -

the inequalities (2.10) hold simultaneously for all i. Finally, given a, 8, ¢ > 0,
choose v, 8 small enough to satisfy both (2.9) and (2.11), and conclude (2.8) from
(2.10). O

(2.11)

2.6. We now apply (2.8) to both g(x%) and 2¢(x?). Substituting the result
into (2.5) yields a stronger inequality

in -
fes? Zi}‘i[l +(1- gi)2]e—2<1—e)q(0‘)

stronger in the sense that (2.12) implies (2.5) [which, in turn, implies (2.2)]. Now,
note that e~ 9?9 > ¢=%1-949(%) 5o we can ignore the smaller (1 — §;)% 21~ 9"
terms in the denominator of (2.12) [for positive numbers, if a/b > { then

(2.12)

> 0,
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a/(b+c)=>¢/1 +¢) for all ¢ < a] and only show that

(2.13) | inf 2 >0
' best 3 )e" 2990 '

2.7. We now fix a number n > 0 throughout the rest of the proof. Separate
the sum in the denominator of (2.13) to two sums: One sum is over all i with
|6; — 1] = n and the other is over the rest. The i’s for which |6, — 1| > 7 satlsfy
(1 — 6,)% 99 > y2e~21-99¢) Again, one may ignore the smaller terms in the
denominator of (2.13) to reduce it to

2 6%
1L _1=nh;e 7
(2.14) inf — =1 > 0.

es? Zw |<1'}\1(2—2(1 €)q(8")

REMARK. It is assumed that there are some i’s for which |6, — 1| <. If
there are none, the infimum in (2.13) is greater than 5? and we are done.

Multiplying numerator and denominator by e2!~99(, using the notation in
(2.7) and omitting the arguments § and 6° for notational convenience, (2.14)
reads

2y Y(A—A4)+8(o—0)+(7—1)A
(2 15) inf 1 % _ll>"}\ .e PICETI LIS
. )
ber? Zlo 1|<n}\leY(A A,)+8(0 %)

where § = 2(1 — €)y, 8§ = 2(1 — ¢€)8. Since ¢ < 1 is used, ¥ > y and § > 8. The
idea now is to choose a new parameter { < ¥ — y so that, up to {A, the exponent
in the numerator of (2.15) will be nonnegative, namely,

(2.16) y(A—A)+8(0c—0)+(F—v—-¢A=0.
Note that
1 2
(217) 0 —0;= i1+30i
and
(2.18) A - Ai = Ai0i2 + 23,01,
where
© 1 1 .
A= Z 2+a’ B; = Z 2+a(01 ' +0j‘)
j=iJ j=iJ

By the Cauchy-Schwarz inequality

il 1 1 , .
(219) 'Bi2 = { Z [j(2+a)/2][j(2+a)/2 (0{ T +0;)]} < AiAi'
Jj=i
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Hence,
int (y(A - 4,) + (s — o) + (7= v = $)4)

1
gt (02 (3 - )4, + 02005 | + 028G + (- v - 08

~_§,2Bi2
(v pa - — B
(7—§)Ai+6i1—+,g
s _ )24,
(2.20) >2|(f-v-%) - S A;.

1
(-0 +055

The expression in (2.16) is nonnegative if (2.20) is. To show the latter, observe
that if a > B,

A 00 1 dx 1 i 1+8 1 c ; . 9
, —_— < < > 2.
i = fi_lxm ST Eio1) Tta s arE UEE

Consequently,

(F-¢)e (7 - £)*A,

>
j—8)e+8 T 17
(F-9) (¥ =84+ 8-

F-v-8€=

if we choose

¥y 1-e
2.21 8> = c= c.
@21) F-v Ti-e

To summarize, we first choose a >8>0 and 0 < e < ;. Then we choose
¥, 8 > 0 small enough so that (2.8) holds for 2y and 28. If necessary, we make y
even smaller so that (2.21) holds. Then (2.16) holds, and (2.15) reduces to

z:|0,-—1|2'q}\i

A
Noidtorsam € >0
13

2.22 : inf
(22 ot Ly, —1j<n

2.8. The last step involves bounding above the exponents in the denominator
of (2.22) by a term of the order of ;{A. The idea is that either A — A; or 0 — o;
are large only when 6, is large, which is excluded since |6, — 1| < n. We shall use
the following:

LEMMA 3. Let @ be a symmetric positive semidefinite matrix Q. Then

(229 Q(x) - b(») = - @y~ ),
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where Q(x) = x'Qx is the quadratic form associated with @, and b is any
number between 0 and 1.

PRrRoOF. Just use the identity

Qx) - 4Q(3) + Tz @y ) = T

Q(x — by) > 0. O

Obviously, (2.23) extends to continuous positive quadratic forms on ¢2, such
as A defined in (2.7b). We can now prove:

LEMMA 4. There exists a constant ¢ such that
(2.24) J(A-A) +8(c—0)<itA+ec
uniformly over all i for which |0, — 1| <.

Proor. By (2.17), (2.18) and (2.19), when [6; — 1| < n we have
F(A—4;) +8(o — o) <c; + cy/A;.
By (2.23) with b = §,
A= 30, = A(8) — BA(6%) > —A(6 - 6) = —034,,
implying that, when |6, — 1| <1, A; < 2A + c3 or (ms Vx + \/_;),
‘/A_i <cy+ csx/K.
Thus
$(A—A,) + 80 —0;) <cg+ c/A.

To conclude (2.24), just note that the function (in x) 3{x — c;/x is bounded
below for x > 0. O

2.9. In view of Lemma 4, (2.22) reduces to

r A,
. 10,—1=79"%i
inf ————e%/2>0
b Lig—1<qh

or, even simpler,
(2.25) . inf 202 Y\, >0.
s 16: =117

Let n be the first i such that |6, — 1| > 1. Note that n < oo since 8 € ¢°. Then

n-1 1 2

AO) > ¥ (8 + - +6)
j=1J
n—1

X

- JA(1 =)’
j2+a

\%

A-'Y =

a
Py
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For large n, the sum £721/j* behaves like n' ~*, so (2.25) will follow from
(2.26) inf()\nec"l—“) >0, fore>0.

Finally, note that e ™" grows faster than any polynomial. In particular, for the
weights {A;} in (2.1),

lim A,e " = co.

n— oo
Thus, (2.26) holds for polynomially decreasing weights and the proof of (2.3) is
now complete.

3. Admissibility of 1 under exponentially decreasing weights.

3.1. We now show that if the weights are given by
(3.1) A;=e %, wherea > 1,

then the estimator 1 is admissible. The proof uses Blyth’s method in a way
similar to the proof of Theorem 3 in [10]. Let G be a finite measure on #2. The
following notation will be used: 8¢ is the Bayes estimator with respect to G;
R(G, d) is the risk function R(8, §) of an estimator & integrated against G. The
admissibility of 1 will follow if we exhibit a sequence G™ of finite measures on ¢2
such that:

3.1.A. The Bayes risk R(G", 8°") is finite, for n = 1,2,... .
3.1.B. The G™ measure of the point set {0} is greater than 1, for n = 1,2,... .

3.1.C. The nonnegative sequence A, = R(G",1) — R(G™", 8°") converges to
0,as n - oo.

3.2. Define G" on ¢2 by
n o0
G™(df) = I,,)(db) + cnl_III{l}(dai) . l—[+11(0)(d0i),
i= i=n

where Iy, I(;, denote probability measures (on the appropriate spaces) which
assign unit mass to the points 0, 1, respectively, and the sequence of constants
{c,} will be chosen to satisfy 3.1.A-C. Note that G*({0}) = 1 and G*(¢?) =
1 + c,. After standard calculations (as in [10], page 1460) we get that the Bayes
estimator §¢" is

. 1
8iG=1—?, i<n,
=0, izn+1,
where

n n
)1+ o] £ 2]

i=1
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and
1
A,=E, nZ)\ +(1+c,) Z A,
8 i=n+1

For 3.1.A—C to hold, it suffices to choose {c,} so that

o0

3.2.A. lime, Y A;=0,
n=0 j=p+1
s n
3.2.B. lun cexp| Y x;— —|=o00 as,
i=1 2
where x,, x,,... are iid N(0,1). Now choose
(3.2) c,=e’, wherel <b<a.

By the strong law of large numbers, lim,, , (1/n)X/x; = 0 a.s., hence

1 1
[Zx —+b n] [ Zx+(b——)}—>oo, asn - .
i=1 i=1

We conclude that {c,} as in (3.2) can be chosen to satisfy 3.2.A-B for {A;} asin
(3.1), implying the admissibility of 1. ,

4. Concluding remarks and open questions.

4.1. We have considered apparently one of the simplest estimators in the
countable model. The analysis turned out to be rather delicate. The outcomes
clearly indicate that the infinite model is very different from the finite one and
much more work is needed to better understand these differences. In particular,
it is interesting to know if results for the infinite model would lead to useful
asymptotic results for the finite model. To this end, more interesting estimators
than 1 must be considered. An important such estimator (important on its own
merit) is the linear estimator 8(x) = ax for 0 < a < 1. As with the estimator 1,
individual coordinates of ax are proper Bayes estimators. The same procedure
used in Section 3 can be used to prove that ax is admissible if the weights
decrease to 0 sufficiently fast. However, the inadmissibility of ax for slowly
decreasing weights is still an unresolved problem.

4.2. Our results illustrate the sensitivity of the infinite model to the weights
being used. A mathematically intriguing question is still open.

We have shown that with weights A, = e~ %, a > 1, the estimator 1 is
admissible. We have not been able to determine what holds when 0 < a < 3.
Arguments for both admissibility and inadmissibility can be given. However, we
are still not sure what the true answer is.

4.3. Y. Vardi has asked whether it is possible to dominate 1 by an estimator
which takes values in #2. N-ore generally, the question whether the #2-valued
estimators constitute a complete class remains open.
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44. It is clear from our proofs that only the tail behavior of the sequence of
weights is relevant. Thus, 1.3.B still holds for A; with A; - i'*¢ converging to a
positive number as i increases to infinity. Similarly, 1.3.A holds if A;e‘?, a > 1,
converges to a positive number.

5. Appendix. Decision theoretic models for Gaussian distributions on a
Hilbert space.

5.1. Let H be a separable Hilbert space with inner product (-, -) and norm
| - |- Denote by N(8, C) the Gaussian measure on the Borel sets of H with mean 6
and covariance operator C. The operator C: H — H must be linear compact
operator which is positive semidefinite, self-adjoint and trace class. The support
of the measure N(0,C) is all H if and only if C is idjective [7]. Assuming C is
injective, the subspace ® = C'/2(H), as a range of the strictly positive operator
C'2, is dense in H. Moreover, the measure N(8, C) is equivalent to N(0, C) if
and only if 8 € 0. One can equip ® with a Hilbert space structure via the inner
product

(8,m) = (C~/%0,C~?y), 6,m€®O.

Denote the corresponding norm in ® by ||0|| = |C~'/%0|, § € ©. The subspace ©
can alternatively be described as

(5.1) 0= {x €H: ¥ —1—.(x, e)’ < oo},

12 13

where {e;} is the orthonormal basis of H consisting of eigenvalues of C and {y;}
are the corresponding positive eigenvalues. Note that

trace(C) = Y v; < 0,
i
since C is trace class. Thus, the faster y; converge to 0 the smaller O is.

5.2. Consider the problem of estimating the mean 6 (C known) from a single
observation x € H under two possible loss functions

Ly(6,a)=|0—-al>, 6€0©,acH,
and

Lg(6,a)=0—-a||?, 6€0,aco.
The work in [10] focuses on the loss Lg while L is mentioned there only briefly.
The estimation models under both losses are statistically isomorphic to an

infinite model, namely estimating the mean sequence (0, 0,,...) € ¢% from an
observation (x;, x,,...) under a loss

L(6,a)= in(ai - ai)z,

where x; are independent normal random variables with variance one and 9, is
the mean of x;, i = 1,2,... . We shall demonstrate below that the model with Lg
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gives rise to an infinite model with A; =1, while Ly reduces to A; =y, the
eigenvalues of C.

There is a seemingly minor difference between the two infinite models,
namely, the tail behavior of the associated weights. This difference is, however, a
reflection of a deep qualitative difference between the original models which is
well illustrated by the important special case of the Brownian motion.

5.3. Let H = L?[0,1] be the space of functions on [0,1] which are square
integrable with respect to the Lebesgue measure. The standard Wiener measure
on L? = L?[0,1] is the Gaussian measure with mean 0 and covariance C given by

Cx(t) = [(s At)x(s)ds, O0=<t<l,xel?
0 .

The Wiener measure with mean § € L? is a translate of the standard Wiener
measure by 6. The parameter space ® turns out to consist of absolutely
continuous functions 6 on [0, 1] with #(0) = 0 and square integrable derivatives
0’. The inner products from subsection 5.1 are

(x.9)= [=(O)Ae)dt, =z ye L

and
1
8,7y = f00’(t)n’(t) da, 0,m€8,
while
1
(5.2) Ly(0,a) = fo [6(2) — a(2)]* de
and
1 2
(5.3) Lo(8,a) = jo [67(¢) — a’(¢)]? dt.
The eigenfunctions of C with their corresponding eigenvalues are given by
(5.4) e,(t) = y/—2—sin[(i - %)wt], Y, = [(z - %)77‘] -2

for i = 1,2,.... To appreciate how different is the model that uses (5.2) from
that with (5.3), note that the “natural” estimator §(x) = x is not even permissi-
ble under (5.3) because an observation from the Wiener measure (equivalently, a
sample path of the Brownian motion) is almost surely nowhere differentiable.

5.4. We now reduce the model with loss L, to an infinite model with weights
A; = 1 using the concept of a white noise. Let V be a subspace of H. A white
noise over V is a collection of mean 0 random variables {W,, h € V} such that

EWhWk= (h, k)’ h,ke V,

and every finite subcollection has a multivariate normal distribution. In particu-
lar, each W, is normal with mean O and variance |A|%. Also, the mapping
h > W, is an isometry from H into the space of square integrable random
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variables over the probability space on which the white noise is defined. When V
is dense in H, one can construct a unique white noise over H from a white noise
over V by extending the isometry A~ - W, from V to all H. The special white
noise that will be used here is the white noise over H, defined over the dense
subspace © by

Wy(x) = (x,C"?h), he€®,x€h.
Here W, is thought of as a random variable on the probability space (H, Borel
sets, N(0, C)). We write symbolically (C~'/%x, k) for the random variable W,
€ H.
" sz let {v;} be an arbitrary orthonormal basis of H. Define a measurable
mapping 2: H —» R*, the space of sequences equipped with the Kolmogorov
o-field, by :
Dx = (x,,%9,...), x€H,
where
x;=(cV%x,v), i=12,....
Define an isometry D from H onto £2 by
Do = (6,,0,,...), 00,
where
;= (cV%,0,), i=12,....

Under N(6, C), the sequence (x;, X5, . .. ) consists of independent normal random
variables with variance one and a corresponding sequence of means (6,, 6,,...).
The loss function Lg can be expressed as

(5.5) Le(6,a) = L.(6;~ a))’,

where (a,, a,,...) equals Da. Finally, there is a one to one correspondence
between estimators (,(xy, x5, .. ),05(%1, Xg,...),...) given by

8(x) = Z8i(9x)01/2v,-,

where
(5.6) | 8,(2x) = (C™%(x), v;).

The relation (5.5) extends in an obvious manner to a relation between risk
functions of estimators. Moreover, 8 is admissible under Lg if and only if
(8,, 8,,...) is admissible in the infinite model with weights A; = 1, completing
the description of the statistical isomorphism. Note that the basis {v;} is
arbitrary and every basis leads to the same infinite model. The situation is not as
simple under L.

5.5. We now reduce the model with loss Ly to an infinite model with weights
A, = v;. Here we choose the specific orthonormal basis {e;} consisting of the
eigenvectors of C. The statistical isomorphism is completely described by the
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relations
0, = —}—(O,ei), x;= i(x,e~), i=12,...,
A o
Lg(8,a) = ZYi(ai - ai)z,

and t

8(x) = Z\/Y_iai(xl’xZ"")ei’
where t
(5.7) 8,(x;, x5,...) = —V%(S(x), e;).

Note that, by (5.1), 6(x) takes values in © if and only if (6, 6,, ...) takes values
in #2. While (5.6) does not make sense if 8 takes values outside ©, (5.7) is well
defined for all 8§: H — H.

5.6. The orthonormal basis (5.4) will now be used to illustrate the process
described above on the Brownian motion model under both losses (5.2) and (5.3).
The coordinates in the infinite model are

(5.8) o= [ ‘o,()0°(t)dt,  x,;= A ',(t) dx(2),

where ®,(t) = ‘/y_, e/(t) and the second integral in (5.8) is the usual Wiener
integral. Moreover,

(@.(2), ¥;(2)) =< y,.e,.,\[yje,) = (e;,e;), foralli, ;.

It follows that {®,} is an orthonormal basis of L% Thus, via the transformations
(5.8), the problem of estimating the mean function of the Wiener process under
the loss (5.2) reduces to the infinite model with weights A; that exhibit the tail
behaviour of 1/i2. On the other hand, the loss (5.3) gives rise to A; = 1.

5.7. A discussion the first author had with Iain Johnstone led to question
whether the estimator 1 is admissible under the loss (5.2). The answer is still
unknown, but the question led eventually to the present paper. Note that the
estimator for the mean of the Wiener measure that corresponds to the estimator
1 in the infinite model is the constant estimator

8(x), = Z\/Zei(t) = Z(T%);Sin[(i - é)ﬂ't], 0<t<l1.
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