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A Reproducing Kernel Hilbert Space Approach to Functional Linear
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Abstract
We study in this paper a smoothness regularization method for functional linear regression and provide a
unified treatment for both the prediction and estimation problems. By developing a tool on simultaneous
diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence
and show that smoothness regularized estimators achieve the optimal rates of convergence for both prediction
and estimation under conditions weaker than those for the functional principal components based methods
developed in the literature. Despite the generality of the method of regularization, we show that the procedure
is easily implementable. Numerical results are obtained to illustrate the merits of the method and to
demonstrate the theoretical developments.
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A REPRODUCING KERNEL HILBERT SPACE APPROACH TO
FUNCTIONAL LINEAR REGRESSION

BY MING YUAN1 AND T. TONY CAI2

Georgia Institute of Technology and University of Pennsylvania

We study in this paper a smoothness regularization method for functional
linear regression and provide a unified treatment for both the prediction and
estimation problems. By developing a tool on simultaneous diagonalization
of two positive definite kernels, we obtain shaper results on the minimax rates
of convergence and show that smoothness regularized estimators achieve the
optimal rates of convergence for both prediction and estimation under condi-
tions weaker than those for the functional principal components based meth-
ods developed in the literature. Despite the generality of the method of reg-
ularization, we show that the procedure is easily implementable. Numerical
results are obtained to illustrate the merits of the method and to demonstrate
the theoretical developments.

1. Introduction. Consider the following functional linear regression model
where the response Y is related to a square integrable random function X(·)
through

Y = α0 +
∫

T
X(t)β0(t) dt + ε.(1)

Here α0 is the intercept, T is the domain of X(·), β0(·) is an unknown slope func-
tion and ε is a centered noise random variable. The domain T is assumed to be a
compact subset of an Euclidean space. Our goal is to estimate α0 and β0(·) as well
as to retrieve

η0(X) := α0 +
∫

T
X(t)β0(t) dt(2)

based on a set of training data (x1, y1), . . . , (xn, yn) consisting of n independent
copies of (X,Y ). We shall assume that the slope function β0 resides in a repro-
ducing kernel Hilbert space (RKHS) H, a subspace of the collection of square
integrable functions on T .
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In this paper, we investigate the method of regularization for estimating η0, as
well as α0 and β0. Let �n be a data fit functional that measures how well η fits the
data and J be a penalty functional that assesses the “plausibility” of η. The method
of regularization estimates η0 by

η̂nλ = arg min
η

[�n(η|data) + λJ (η)],(3)

where the minimization is taken over{
η : L2(T ) → R

∣∣η(X) = α +
∫

T
Xβ :α ∈ R, β ∈ H

}
,(4)

and λ ≥ 0 is a tuning parameter that balances the fidelity to the data and the plau-
sibility. Equivalently, the minimization can be taken over (α,β) instead of η to
obtain estimates for both the intercept and slope, denoted by α̂nλ and β̂nλ here-
after. The most common choice of the data fit functional is the squared error

�n(η) = 1

n

n∑
i=1

[yi − η(xi)]2.(5)

In general, �n is chosen such that it is convex in η and E�n(η) in uniquely mini-
mized by η0.

In the context of functional linear regression, the penalty functional can be con-
veniently defined through the slope function β as a squared norm or semi-norm
associated with H. The canonical example of H is the Sobolev spaces. Without
loss of generality, assume that T = [0,1], the Sobolev space of order m is then
defined as

W m
2 ([0,1]) = {

β : [0,1] → R|β,β(1), . . . , β(m−1) are absolutely

continuous and β(m) ∈ L2
}
.

There are many possible norms that can be equipped with W m
2 to make it a repro-

ducing kernel Hilbert space. For example, it can be endowed with the norm

‖β‖2
W m

2
=

m−1∑
q=0

(∫
β(q)

)2

+
∫ (

β(m))2
.(6)

The readers are referred to Adams (1975) for a thorough treatment of this subject.
In this case, a possible choice of the penalty functional is given by

J (β) =
∫ 1

0

[
β(m)(t)

]2
dt.(7)

Another setting of particular interest is T = [0,1]2 which naturally occurs when X

represents an image. A popular choice in this setting is the thin plate spline where
J is given by

J (β) =
∫ 1

0

∫ 1

0

[(
∂2β

∂x2
1

)2

+ 2
(

∂2β

∂x1 ∂x2

)2

+
(

∂2β

∂x2
2

)2]
dx1 dx2,(8)
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and (x1, x2) are the arguments of bivariate function β . Other examples of T in-
clude T = {1,2, . . . , p} for some positive integer p, and unit sphere in an Euclid-
ean space among others. The readers are referred to Wahba (1990) for common
choices of H and J in these as well as other contexts.

Other than the methods of regularization, a number of alternative estimators
have been introduced in recent years for the functional linear regression [James
(2002); Cardot, Ferraty and Sarda (2003); Ramsay and Silverman (2005); Yao,
Müller and Wang (2005); Ferraty and Vieu (2006); Cai and Hall (2006); Li and
Hsing (2007); Hall and Horowitz (2007); Crambes, Kneip and Sarda (2009); Jo-
hannes (2009)]. Most of the existing methods are based upon the functional prin-
cipal component analysis (FPCA). The success of these approaches hinges on the
availability of a good estimate of the functional principal components for X(·).
In contrast, the aforementioned smoothness regularized estimator avoids this task
and therefore circumvents assumptions on the spacing of the eigenvalues of the co-
variance operator for X(·) as well as Fourier coefficients of β0 with respect to the
eigenfunctions, which are required by the FPCA-based approaches. Furthermore,
as we shall see in the subsequent theoretical analysis, because the regularized es-
timator does not rely on estimating the functional principle components, stronger
results on the convergence rates can be obtained.

Despite the generality of the method of regularization, we show that the esti-
mators can be computed rather efficiently. We first derive a representer theorem
in Section 2 which demonstrates that although the minimization with respect to
η in (3) is taken over an infinite-dimensional space, the solution can actually be
found in a finite-dimensional subspace. This result makes our procedure easily
implementable and enables us to take advantage of the existing techniques and
algorithms for smoothing splines to compute η̂nλ, β̂nλ and α̂nλ.

We then consider in Section 3 the relationship between the eigen structures of
the covariance operator for X(·) and the reproducing kernel of the RKHS H. These
eigen structures play prominent roles in determining the difficulty of the prediction
and estimation problems in functional linear regression. We prove in Section 3 a
result on simultaneous diagonalization of the reproducing kernel of the RKHS
H and the covariance operator of X(·) which provides a powerful machinery for
studying the minimax rates of convergence.

Section 4 investigates the rates of convergence of the smoothness regularized
estimators. Both the minimax upper and lower bounds are established. The opti-
mal convergence rates are derived in terms of a class of intermediate norms which
provide a wide range of measures for the estimation accuracy. In particular, this
approach gives a unified treatment for both the prediction of η0(X) and the esti-
mation of β0. The results show that the smoothness regularized estimators achieve
the optimal rate of convergence for both prediction and estimation under condi-
tions weaker than those for the functional principal components based methods
developed in the literature.
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The representer theorem makes the regularized estimators easy to implement.
Several efficient algorithms are available in the literature that can be used for the
numerical implementation of our procedure. Section 5 presents numerical studies
to illustrate the merits of the method as well as demonstrate the theoretical devel-
opments. All proofs are relegated to Section 6.

2. Representer theorem. The smoothness regularized estimators η̂nλ and β̂nλ

are defined as the solution to a minimization problem over an infinite-dimensional
space. Before studying the properties of the estimators, we first show that the min-
imization is indeed well defined and easily computable thanks to a version of the
so-called representer theorem.

Let the penalty functional J be a squared semi-norm on H such that the null
space

H0 := {β ∈ H :J (β) = 0}(9)

is a finite-dimensional linear subspace of H with orthonormal basis {ξ1, . . . , ξN }
where N := dim(H0). Denote by H1 its orthogonal complement in H such that
H = H0 ⊕ H1. Similarly, for any function f ∈ H, there exists a unique decompo-
sition f = f0 + f1 such that f0 ∈ H0 and f1 ∈ H1. Note H1 forms a reproducing
kernel Hilbert space with the inner product of H restricted to H1. Let K(·, ·) be
the corresponding reproducing kernel of H1 such that J (f1) = ‖f1‖2

K = ‖f1‖2
H for

any f1 ∈ H1. Hereafter we use the subscript K to emphasize the correspondence
between the inner product and its reproducing kernel.

In what follows, we shall assume that K is continuous and square integrable.
Note that K is also a nonnegative definite operator on L2. With slight abuse of
notation, write

(Kf )(·) =
∫

T
K(·, s)f (s) ds.(10)

It is known [see, e.g., Cucker and Smale (2001)] that Kf ∈ H1 for any f ∈ L2.
Furthermore, for any f ∈ H1∫

T
f (t)β(t) dt = 〈Kf,β〉H.(11)

This observation allows us to prove the following result which is important to both
numerical implementation of the procedure and our theoretical analysis.

THEOREM 1. Assume that �n depends on η only through η(x1), η(x2), . . . ,

η(xn); then there exist d = (d1, . . . , dN)′ ∈ R
N and c = (c1, . . . , cn)

′ ∈ R
n such

that

β̂nλ(t) =
N∑

k=1

dkξk(t) +
n∑

i=1

ci(Kxi)(t).(12)
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Theorem 1 is a generalization of the well-known representer lemma for smooth-
ing splines (Wahba, 1990). It demonstrates that although the minimization with re-
spect to η is taken over an infinite-dimensional space, the solution can actually be
found in a finite-dimensional subspace, and it suffices to evaluate the coefficients
c and d in (12). Its proof follows a similar argument as that of Theorem 1.3.1 in
Wahba (1990) where �n is assumed to be squared error, and is therefore omitted
here for brevity.

Consider, for example, the squared error loss. The regularized estimator is given
by

(α̂nλ, β̂nλ) = arg min
α∈R,β∈H

{
1

n

n∑
i=1

[
yi −

(
α +

∫
T

xi(t)β(t) dt

)]2

+ λJ (β)

}
.(13)

It is not hard to see that

α̂nλ = ȳ −
∫

T
x̄(t)β̂nλ(t) dt,(14)

where x̄(t) = 1
n

∑n
i=1 xi(t) and ȳ = 1

n

∑n
i=1 yi are the sample average of x and y,

respectively. Consequently, (13) yields

β̂nλ = arg min
β∈H

{
1

n

n∑
i=1

[
(yi − ȳ) −

∫
T

(
xi(t) − x̄(t)

)
β(t) dt

]2

+ λJ (β)

}
.(15)

For the purpose of illustration, assume that H = W 2
2 and J (β) = ∫

(β ′′)2. Then
H0 is the linear space spanned by ξ1(t) = 1 and ξ2(t) = t . A popular reproducing
kernel associated with H1 is

K(s, t) = 1

(2!)2 B2(s)B2(t) − 1

4!B4(|s − t |),(16)

where Bm(·) is the mth Bernoulli polynomial. The readers are referred to Wahba
(1990) for further details. Following Theorem 1, it suffices to consider β of the
following form:

β(t) = d1 + d2t +
n∑

i=1

ci

∫
T
[xi(s) − x̄(s)]K(t, s) ds(17)

for some d ∈ R
2 and c ∈ R

n. Correspondingly,∫
T
[X(t) − x̄(t)]β(t) dt

= d1

∫
T
[X(t) − x̄(t)]dt + d2

∫
T
[X(t) − x̄(t)]t dt

+
n∑

i=1

ci

∫
T

∫
T
[xi(s) − x̄(s)]K(t, s)[X(t) − x̄(t)]ds dt.
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Note also that for β given in (17)

J (β) = c′
c,(18)

where 
 = (
ij ) is a n × n matrix with


ij =
∫

T

∫
T
[xi(s) − x̄(s)]K(t, s)[xj (t) − x̄(t)]ds dt.(19)

Denote by T = (Tij ) an n × 2 matrix whose (i, j) entry is

Tij =
∫

[xi(t) − x̄(t)]tj−1 dt(20)

for j = 1, 2. Set y = (y1, . . . , yn)
′. Then

�n(η) + λJ (β) = 1

n
‖y − (T d + 
c)‖2

�2
+ λc′
c,(21)

which is quadratic in c and d, and the explicit form of the solution can be easily
obtained for such a problem. This computational problem is similar to that behind
the smoothing splines. Write W = 
 + nλI ; then the minimizer of (21) is given
by

d = (T ′W−1T )−1T ′W−1y,

c = W−1[I − T (T ′W−1T )−1T ′W−1]y.

3. Simultaneous diagonalization. Before studying the asymptotic properties
of the regularized estimators η̂nλ and β̂nλ, we first investigate the relationship be-
tween the eigen structures of the covariance operator for X(·) and the reproducing
kernel of the functional space H. As observed in earlier studies [e.g., Cai and Hall
(2006); Hall and Horowitz (2007)], eigen structures play prominent roles in deter-
mining the nature of the estimation problem in functional linear regression.

Recall that K is the reproducing kernel of H1. Because K is continuous and
square integrable, it follows from Mercer’s theorem [Riesz and Sz-Nagy (1955)]
that K admits the following spectral decomposition:

K(s, t) =
∞∑

k=1

ρkψk(s)ψk(t).(22)

Here ρ1 ≥ ρ2 ≥ · · · are the eigenvalues of K , and {ψ1,ψ2, . . .} are the correspond-
ing eigenfunctions, that is,

Kψk = ρkψk, k = 1,2, . . . .(23)

Moreover,

〈ψi,ψj 〉L2 = δij and 〈ψi,ψj 〉K = δij /ρj ,(24)

where δij is the Kronecker’s delta.
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Consider, for example, the univariate Sobolev space W m
2 ([0,1]) with norm (6)

and penalty (7). Observe that

H1 =
{
f ∈ H :

∫
f (k) = 0, k = 0,1, . . . ,m − 1

}
.(25)

It is known that [see, e.g., Wahba (1990)]

K(s, t) = 1

(m!)2 Bm(s)Bm(t) + (−1)m−1

(2m)! B2m(|s − t |).(26)

Recall that Bm is the mth Bernoulli polynomial. It is known [see, e.g., Micchelli
and Wahba (1981)] that in this case, ρk � k−2m, where for two positive sequences
ak and bk , ak � bk means that ak/bk is bounded away from 0 and ∞ as k → ∞.

Denote by C the covariance operator for X, that is,

C(s, t) = E{[X(s) − E(X(s))][X(t) − E(X(t))]}.(27)

There is a duality between reproducing kernel Hilbert spaces and covariance op-
erators [Stein (1999)]. Similarly to the reproducing kernel K , assuming that the
covariance operator C is continuous and square integrable, we also have the fol-
lowing spectral decomposition

C(s, t) =
∞∑

k=1

μkφk(s)φk(t),(28)

where μ1 ≥ μ2 ≥ · · · are the eigenvalues and {φ1, φ2, . . .} are the eigenfunctions
such that

Cφk :=
∫

T
C(·, t)φk(t) dt = μkφk, k = 1,2, . . . .(29)

The decay rate of the eigenvalues {μk :k ≥ 1} can be determined by the smooth-
ness of the covariance operator C. More specifically, when C satisfies the so-
called Sacks–Ylvisaker conditions of order s where s is a nonnegative integer
[Sacks and Ylvisaker (1966, 1968, 1970)], then μk � k−2(s+1). The readers are
referred to the original papers by Sacks and Ylvisaker or a more recent paper
by Ritter, Wasilkowski and Woźniakwski (1995) for detailed discussions of the
Sacks–Ylvisaker conditions. The conditions are also stated in the Appendix for
completeness. Roughly speaking, a covariance operator C is said to satisfy the
Sacks–Ylvisaker conditions of order 0 if it is twice differentiable when s �= t

but not differentiable when s = t . A covariance operator C satisfies the Sacks–
Ylvisaker conditions of order r for an integer r > 0 if ∂2rC(s, t)/(∂sr ∂tr ) sat-
isfies the Sacks–Ylvisaker conditions of order 0. In this paper, we say a co-
variance operator C satisfies the Sacks–Ylvisaker conditions if C satisfies the
Sacks–Ylvisaker conditions of order r for some r ≥ 0. Various examples of co-
variance functions are known to satisfy Sacks–Ylvisaker conditions. For exam-
ple, the Ornstein–Uhlenbeck covariance function C(s, t) = exp(−|s − t |) satisfies
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the Sacks–Ylvisaker conditions of order 0. Ritter, Wasilkowski and Woźniakowski
(1995) recently showed that covariance functions satisfying the Sacks–Ylvisaker
conditions are also intimately related to Sobolev spaces, a fact that is useful for the
purpose of simultaneously diagonalizing K and C as we shall see later.

Note that the two sets of eigenfunctions {ψ1,ψ2, . . .} and {φ1, φ2, . . .} may dif-
fer from each other. The two kernels K and C can, however, be simultaneously
diagonalized. To avoid ambiguity, we shall assume in what follows that Cf �= 0
for any f ∈ H0 and f �= 0. When using the squared error loss, this is also a neces-
sary condition to ensure that E�n(η) is uniquely minimized even if β is known to
come from the finite-dimensional space H0. Under this assumption, we can define
a norm ‖ · ‖R in H by

‖f ‖2
R = 〈Cf,f 〉L2 + J (f ) =

∫
T ×T

f (s)C(s, t)f (t) ds dt + J (f ).(30)

Note that ‖ · ‖R is a norm because ‖f ‖2
R defined above is a quadratic form and is

zero if and only if f = 0.
The following proposition shows that when this condition holds, ‖ · ‖R is well

defined on H and equivalent to its original norm, ‖ · ‖H, in that there exist con-
stants 0 < c1 < c2 < ∞ such that c1‖f ‖R ≤ ‖f ‖H ≤ c2‖f ‖R for all f ∈ H. In
particular, ‖f ‖R < ∞ if and only if ‖f ‖H < ∞.

PROPOSITION 2. If Cf �= 0 for any f ∈ H0 and f �= 0, then ‖ · ‖R and ‖ · ‖H
are equivalent.

Let R be the reproducing kernel associated with ‖ · ‖R . Recall that R can also
be viewed as a positive operator. Denote by {(ρ′

k,ψ
′
k) :k ≥ 1} the eigenvalues and

eigenfunctions of R. Then R is a linear map from L2 to L2 such that

Rψ ′
k =

∫
T

R(·, t)ψ ′
k(t) dt = ρ′

kψ
′
k, k = 1,2, . . . .(31)

The square root of the positive definite operator can therefore be given as the linear
map from L2 to L2 such that

R1/2ψ ′
k = (ρ′

k)
1/2ψ ′

k, k = 1,2, . . . .(32)

Let ν1 ≥ ν2 ≥ · · · be the eigenvalues of the bounded linear operator R1/2CR1/2 and
{ζk :k = 1,2, . . .} be the corresponding orthogonal eigenfunctions in L2. Write
ωk = ν

−1/2
k R1/2ζk , k = 1,2, . . . . Also let 〈·, ·〉R be the inner product associated

with ‖ · ‖R , that is, for any f,g ∈ H,

〈f,g〉R = 1
4(‖f + g‖2

R − ‖f − g‖2
R).(33)

It is not hard to see that

〈ωj ,ωk〉R = ν
−1/2
j ν

−1/2
k 〈R1/2ζj ,R

1/2ζk〉R = ν−1
k 〈ζj , ζk〉L2 = ν−1

k δjk,(34)
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and

〈C1/2ωj ,C
1/2ωk〉L2 = ν

−1/2
j ν

−1/2
k 〈C1/2R1/2ζj ,C

1/2R1/2ζk〉L2

= ν
−1/2
j ν

−1/2
k 〈R1/2CR1/2ζj , ζk〉L2

= δjk.

The following theorem shows that quadratic forms ‖f ‖2
R = 〈f,f 〉R and 〈Cf,f 〉L2

can be simultaneously diagonalized on the basis of {ωk : k ≥ 1}.

THEOREM 3. For any f ∈ H,

f =
∞∑

k=1

fkωk,(35)

in the absolute sense where fk = νk〈f,ωk〉R . Furthermore, if γk = (ν−1
k − 1)−1,

then

〈f,f 〉R =
∞∑

k=1

(1 + γ −1
k )f 2

k and 〈Cf,f 〉L2 =
∞∑

k=1

f 2
k .(36)

Consequently,

J (f ) = 〈f,f 〉R − 〈Cf,f 〉L2 =
∞∑

k=1

γ −1
k f 2

k .(37)

Note that {(γk,ωk) :k ≥ 1} can be determined jointly by {(ρk,ψk) :k ≥ 1} and
{(μk,φk) :k ≥ 1}. However, in general, neither γk nor ωk can be given in explicit
form of {(ρk,ψk) :k ≥ 1} and {(μk,φk) :k ≥ 1}. One notable exception is the case
when the operators C and K are commutable. In particular, the setting ψk = φk ,
k = 1,2, . . . , is commonly adopted when studying FPCA-based approaches [see,
e.g., Cai and Hall (2006); Hall and Horowitz (2007)].

PROPOSITION 4. Assume that ψk = φk , k = 1,2, . . . , then γk = ρkμk and
ωk = μ

−1/2
k ψk .

In general, when ψk and φk differ, such a relationship no longer holds. The fol-
lowing theorem reveals that similar asymptotic behavior of γk can still be expected
in many practical settings.

THEOREM 5. Consider the one-dimensional case when T = [0,1]. If H is
the Sobolev space W m

2 ([0,1]) endowed with norm (6), and C satisfies the Sacks–
Ylvisaker conditions, then γk � μkρk .
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Theorem 5 shows that under fairly general conditions γk � μkρk . In this case,
there is little difference between the general situation and the special case when
K and C share a common set of eigenfunctions when working with the system
{(γk,ωk), k = 1,2, . . .}. This observation is crucial for our theoretical development
in the next section.

4. Convergence rates. We now turn to the asymptotic properties of the
smoothness regularized estimators. To fix ideas, in what follows, we shall focus
on the squared error loss. Recall that in this case

(α̂nλ, β̂nλ) = arg min
α∈R,β∈H

{
1

n

n∑
i=1

[
yi −

(
α +

∫
T

xi(t)β(t) dt

)]2

+ λJ (β)

}
.(38)

As shown before, the slope function can be equivalently defined as

β̂nλ = arg min
β∈H

{
1

n

n∑
i=1

[
(yi − ȳ) −

∫
T

(
xi(t) − x̄(t)

)
β(t) dt

]2

+ λJ (β)

}
,(39)

and once β̂nλ is computed, α̂nλ is given by

α̂nλ = ȳ −
∫

T
x̄(t)β̂nλ(t) dt.(40)

In light of this fact, we shall focus our attention on β̂nλ in the following discussion
for brevity. We shall also assume that the eigenvalues of the reproducing kernel
K satisfies ρk � k−2r for some r > 1/2. Let F (s,M,K) be the collection of the
distributions F of the process X that satisfy the following conditions:

(a) The eigenvalues μk of its covariance operator C(·, ·) satisfy μk � k−2s for
some s > 1/2.

(b) For any function f ∈ L2(T ),

E

(∫
T

f (t)[X(t) − E(X)(t)]dt

)4

(41)

≤ M

[
E

(∫
T

f (t)[X(t) − E(X)(t)]dt

)2]2

.

(c) When simultaneously diagonalizing K and C, γk � ρkμk , where νk = (1 +
γ −1
k )−1 is the kth largest eigenvalue of R1/2CR1/2 where R is the reproducing

kernel associated with ‖ · ‖R defined by (30).

The first condition specifies the smoothness of the sample path of X(·). The
second condition concerns the fourth moment of a linear functional of X(·). This
condition is satisfied with M = 3 for a Gaussian process because

∫
f (t)X(t) dt is

normally distributed. In the light of Theorem 5, the last condition is satisfied by
any covariance function that satisfies the Sacks–Ylvisaker conditions if H is taken
to be W m

2 with norm (6). It is also trivially satisfied if the eigenfunctions of the
covariance operator C coincide with those of K .
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4.1. Optimal rates of convergence. We are now ready to state our main re-
sults on the optimal rates of convergence, which are given in terms of a class of
intermediate norms between ‖f ‖K and(∫ ∫

f (s)C(s, t)f (t) ds dt

)1/2

,(42)

which enables a unified treatment of both the prediction and estimation problems.
For 0 ≤ a ≤ 1 define the norm ‖ · ‖a by

‖f ‖2
a =

∞∑
k=1

(1 + γ −a
k )f 2

k ,(43)

where fk = νk〈f,ωk〉R as shown in Theorem 3. Clearly ‖f ‖0 reduces to 〈Cf,f 〉L2

whereas ‖f ‖1 = ‖f ‖R . The convergence rate results given below are valid for all
0 ≤ a ≤ 1. They cover a range of interesting cases including the prediction error
and estimation error.

The following result gives the optimal rate of convergence for the regularized
estimator β̂nλ with an appropriately chosen tuning parameter λ under the loss ‖·‖a .

THEOREM 6. Assume that E(εi) = 0 and Var(εi) ≤ M2. Suppose the eigen-
values ρk of the reproducing kernel K of the RKHS H satisfy ρk � k−2r for some
r > 1/2. Then the regularized estimator β̂nλ with

λ � n−2(r+s)/(2(r+s)+1)(44)

satisfies

lim
D→∞ lim

n→∞ sup
F∈F (s,M,K),β0∈H

P
(‖β̂nλ − β0‖2

a > Dn−2(1−a)(r+s)/(2(r+s)+1))
(45)

= 0.

Note that the rate of the optimal choice of λ does not depend on a. Theorem 6
shows that the optimal rate of convergence for the regularized estimator β̂nλ is
n−2(1−a)(r+s)/(2(r+s)+1). The following lower bound result demonstrates that this
rate of convergence is indeed optimal among all estimators, and consequently the
upper bound in equation (45) cannot be improved. Denote by B the collection of
all measurable functions of the observations (X1, Y1), . . . , (Xn,Yn).

THEOREM 7. Under the assumptions of Theorem 6, there exists a constant
d > 0 such that

lim
n→∞

inf
β̃∈B

sup
F∈F (s,M,K),β0∈H

P
(‖β̃ −β0‖2

a > dn−2(1−a)(r+s)/(2(r+s)+1)) > 0.(46)

Consequently, the regularized estimator β̂nλ with λ � n−2(r+s)/(2(r+s)+1) is rate
optimal.
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The results, given in terms of ‖ · ‖a , provide a wide range of measures of the
quality of an estimate for β0. Observe that

‖β̃ − β0‖2
0 = EX∗

(∫
β̃(t)X∗(t) dt −

∫
β0(t)X

∗(t) dt

)2

,(47)

where X∗ is an independent copy of X, and the expectation on the right-hand side
is taken over X∗. The right-hand side is often referred to as the prediction error
in regression. It measures the mean squared prediction error for a random future
observation on X. From Theorems 6 and 7, we have the following corollary.

COROLLARY 8. Under the assumptions of Theorem 6, the mean squared op-
timal prediction error of a slope function estimator over F ∈ F (s,M,K) and

β0 ∈ H is of the order n
− 2(r+s)

2(r+s)+1 and it can be achieved by the regularized esti-
mator β̂nλ with λ satisfying (44).

The result shows that the faster the eigenvalues of the covariance operator C for
X(·) decay, the smaller the prediction error.

When ψk = φk , the prediction error of a slope function estimator β̃ can also
be understood as the squared prediction error for a fixed predictor x∗(·) such
that |〈x∗, φk〉L2 | � k−s following the discussed from the last section. A similar
prediction problem has also been considered by Cai and Hall (2006) for FPCA-
based approaches. In particular, they established a similar minimax lower bound
and showed that the lower bound can be achieved by the FPCA-based approach,
but with additional assumptions that μk − μk+1 ≥ C−1

0 k−2s−1, and 2r > 4s + 3.
Our results here indicate that both restrictions are unnecessary for establishing the
minimax rate for the prediction error. Moreover, in contrast to the FPCA-based
approach, the regularized estimator β̂nλ can achieve the optimal rate without the
extra requirements.

To illustrate the generality of our results, we consider an example where T =
[0,1], H = W m

2 ([0,1]) and the stochastic process X(·) is a Wiener process. It is
not hard to see that the covariance operator of X, C(s, t) = min{s, t}, satisfies the
Sacks–Ylvisaker conditions of order 0 and therefore μk � k−2. By Corollary 8,
the minimax rate of the prediction error in estimating β0 is n−(2m+2)/(r2m+3). Note
that the condition 2r > 4s + 3 required by Cai and Hall (2006) does not hold here
for m ≤ 7/2.

4.2. The special case of φk = ψk . It is of interest to further look into the case
when the operators C and K share a common set of eigenfunctions. As discussed
in the last section, we have in this case φk = ψk and γk � k−2(r+s) for all k ≥ 1.
In this context, Theorems 6 and 7 provide bounds for more general prediction
problems. Consider estimating

∫
x∗β0 where x∗ satisfies |〈x∗, φk〉L2 | � k−s+q for
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some 0 < q < s − 1/2. Note that q < s − 1/2 is needed to ensure that x∗ is square
integrable. The squared prediction error(∫

β̃(t)x∗(t) dt −
∫

β0(t)x
∗(t) dt

)2

(48)

is therefore equivalent to ‖β̃ −β0‖(s−q)/(r+s). The following result is a direct con-
sequence of Theorems 6 and 7.

COROLLARY 9. Suppose x∗ is a function satisfying |〈x∗, φk〉L2 | � k−s+q for
some 0 < q < s − 1/2. Then under the assumptions of Theorem 6,

lim
n→∞

inf
β̃∈B

sup
F∈F (s,M,K),β0∈H

P

{(∫
β̃(t)x∗(t) dt −

∫
β0(t)x

∗(t) dt

)2

(49)

> dn−2(r+q)/(2(r+s)+1)

}
> 0

for some constant d > 0, and the regularized estimator β̂nλ with λ satisfying (44)
achieves the optimal rate of convergence under the prediction error (48).

It is also evident that when ψk = φk , ‖ · ‖s/(r+s) is equivalent to ‖ · ‖L2 . There-
fore, Theorems 6 and 7 imply the following result.

COROLLARY 10. If φk = ψk for all k ≥ 1, then under the assumptions of
Theorem 6

lim
n→∞

inf
β̃∈B

sup
F∈F (s,M,K),β0∈H

P
(‖β̃ − β0‖2

L2
> dn−2r/(2(r+s)+1)) > 0(50)

for some constant d > 0, and the regularized estimate β̂nλ with λ satisfying (44)
achieves the optimal rate.

This result demonstrates that the faster the eigenvalues of the covariance oper-
ator for X(·) decay, the larger the estimation error. The behavior of the estimation
error thus differs significantly from that of prediction error.

Similar results on the lower bound have recently been obtained by Hall
and Horowitz (2007) who considered estimating β0 under the assumption that
|〈β0, φk〉L2 | decays in a polynomial order. Note that this slightly differs from our
setting where β0 ∈ H means that

∞∑
k=1

ρ−1
k 〈β0,ψk〉2

L2
=

∞∑
k=1

ρ−1
k 〈β0, φk〉2

L2
< ∞.(51)

Recall that ρk � k−2r . Condition (51) is comparable to, and slightly stronger than,

|〈β0, φk〉L2 | ≤ M0k
−r−1/2(52)



RKHS APPROACH TO FLR 3425

for some constant M0 > 0. When further assuming that 2s + 1 < 2r , and μk −
μk+1 ≥ M−1

0 k−2s−1 for all k ≥ 1, Hall and Horowitz (2007) obtain the same lower
bound as ours. However, we do not require that 2s +1 < 2r which in essence states
that β0 is smoother than the sample path of X. Perhaps, more importantly, we do
not require the spacing condition μk − μk+1 ≥ M−1

0 k−2s−1 on the eigenvalues
because we do not need to estimate the corresponding eigenfunctions. Such a con-
dition is impossible to verify even for a standard RKHS.

4.3. Estimating derivatives. Theorems 6 and 7 can also be used for estimating
the derivatives of β0. A natural estimator of the qth derivative of β0, β

(q)
0 , is β̂

(q)
nλ ,

the qth derivative of β̂nλ. In addition to φk = ψk , assume that ‖ψ(q)
k /ψk‖∞ � kq .

This clearly holds when H = W m
2 . In this case∥∥β̃(q) − β

(q)
0

∥∥
L2

≤ C0‖β̃ − β0‖(s+q)/(r+s).(53)

The following is then a direct consequence of Theorems 6 and 7.

COROLLARY 11. Assume that φk = ψk and ‖ψ(q)
k /ψk‖∞ � kq for all k ≥ 1.

Then under the assumptions of Theorem 6, for some constant d > 0,

lim
n→∞

inf
β̃(q)∈B

sup
F∈F (s,M,K),β0∈H

P
(∥∥β̃(q) − β

(q)
0

∥∥2
L2

> dn−2(r−q)/(2(r+s)+1))
(54)

> 0,

and the regularized estimate β̂nλ with λ satisfying (44) achieves the optimal rate.

Finally, we note that although we have focused on the squared error loss here,
the method of regularization can be easily extended to handle other goodness of fit
measures as well as the generalized functional linear regression [Cardot and Sarda
(2005) and Müller and Stadtmüller (2005)]. We shall leave these extensions for
future studies.

5. Numerical results. The Representer Theorem given in Section 2 makes the
regularized estimators easy to implement. Similarly to smoothness regularized es-
timators in other contexts [see, e.g., Wahba (1990)], η̂nλ and β̂nλ can be expressed
as a linear combination of a finite number of known basis functions although the
minimization in (3) is taken over an infinitely-dimensional space. Existing algo-
rithms for smoothing splines can thus be used to compute our regularized estima-
tors η̂nλ, β̂nλ and α̂nλ.

To demonstrate the merits of the proposed estimators in finite sample settings,
we carried out a set of simulation studies. We adopt the simulation setting of Hall
and Horowitz (2007) where T = [0,1]. The true slope function β0 is given by

β0 =
50∑

k=1

4(−1)k+1k−2φk,(55)
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where φ1(t) = 1 and φk+1(t) = √
2 cos(kπt) for k ≥ 1. The random function X

was generated as

X =
50∑

k=1

ζkZkφk,(56)

where Zk are independently sampled from the uniform distribution on [−√
3,

√
3]

and ζk are deterministic. It is not hard to see that ζ 2
k are the eigenvalues of the

covariance function of X. Following Hall and Horowitz (2007), two sets of ζk

were used. In the first set, the eigenvalues are well spaced: ζk = (−1)k+1k−ν/2

with ν = 1.1,1.5,2 or 4. In the second set,

ζk =
⎧⎨
⎩

1, k = 1,
0.2(−1)k+1(1 − 0.0001k), 2 ≤ k ≤ 4,
0.2(−1)k+1[(5�k/5�)−ν/2 − 0.0001(k mod 5)], k ≥ 5.

(57)

As in Hall and Horowitz (2007), regression models with ε ∼ N(0, σ 2) where
σ = 0.5 and 1 were considered. To comprehend the effect of sample size, we
consider n = 50,100,200 and 500. We apply the regularization method to each
simulated dataset and examine its estimation accuracy as measured by integrated
squared error ‖β̂nλ − β0‖2

L2
and prediction error ‖β̂nλ − β0‖2

0. For the purpose of

illustration, we take H = W 2
2 and J (β) = ∫

(β ′′)2, for which the detailed estima-
tion procedure is given in Section 2. For each setting, the experiment was repeated
1000 times.

As is common in most smoothing methods, the choice of the tuning parameter
plays an important role in the performance of the regularized estimators. Data-
driven choice of the tuning parameter is a difficult problem. Here we apply the
commonly used practical strategy of empirically choosing the value of λ through
the generalized cross validation. Note that the regularized estimator is a linear
estimator in that ŷ = H(λ)y where ŷ = (η̂nλ(x1), . . . , η̂nλ(xn))

′ and H(λ) is the
so-called hat matrix depending on λ. We then select the tuning parameter λ that
minimizes

GCV(λ) = (1/n)‖ŷ − y‖2
�2

(1 − tr(H(λ))/n)2 .(58)

Denote by λ̂GCV the resulting choice of the tuning parameter.
We begin with the setting of well-spaced eigenvalues. The left panel of Figure 1

shows the prediction error, ‖β̂nλ − β0‖2
0, for each combination of ν value and

sample size when σ = 0.5. The results were averaged over 1000 simulation runs
in each setting. Both axes are given in the log scale. The plot suggests that the
estimation error converges at a polynomial rate as sample size n increases, which
agrees with our theoretical results from the previous section. Furthermore, one can
observe that with the same sample size, the prediction error tends to be smaller for
larger ν. This also confirms our theoretical development which indicates that the
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FIG. 1. Prediction errors of the regularized estimator (σ = 0.5): X was simulated with a covari-
ance function with well-spaced eigenvalues. The results are averaged over 1000 runs. Black solid
lines, red dashed lines, green dotted lines and blue dash-dotted lines correspond to ν = 1.1, 1.5, 2
and 4, respectively. Both axes are in log scale.

faster the eigenvalues of the covariance operator for X(·) decay, the smaller the
prediction error.

To better understand the performance of the smoothness regularized estimator
and the GCV choice of the tuning parameter, we also recorded the performance of
an oracle estimator whose tuning parameter is chosen to minimize the prediction
error. This choice of the tuning parameter ensures the optimal performance of the
regularized estimator. It is, however, noteworthy that this is not a legitimate statis-
tical estimator since it depends on the knowledge of unknown slope function β0.
The right panel of Figure 1 shows the prediction error associated with this choice
of tuning parameter. It behaves similarly to the estimate with λ chosen by GCV.
Note that the comparison between the two panels suggest that GCV generally leads
to near optimal performance.

We now turn to the estimation error. Figure 2 shows the estimation errors, av-
eraged over 1000 simulation runs, with λ chosen by GCV or minimizing the es-
timation error for each combination of sample size and ν value. Similarly to the
prediction error, the plots suggest a polynomial rate of convergence of the estima-
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FIG. 2. Estimation errors of the regularized estimator (σ = 0.5): X was simulated with a covari-
ance function with well-spaced eigenvalues. The results are averaged over 1000 runs. Black solid
lines, red dashed lines, green dotted lines and blue dash-dotted lines correspond to ν = 1.1,1.5,2
and 4, respectively. Both axes are in log scale.

tion error when the sample size increases, and GCV again leads to near-optimal
choice of the tuning parameter.

A comparison between Figures 1 and 2 suggests that when X is smoother (larger
ν), prediction (as measured by the prediction error) is easier, but estimation (as
measured by the estimation error) tends to be harder, which highlights the differ-
ence between prediction and estimation in functional linear regression. We also
note that this observation is in agreement with our theoretical results from the
previous section where it is shown that the estimation error decreases at the rate
of n−2r/(2(r+s)+1) which decelerates as s increases; whereas the prediction error
decreases at the rate of n−2(r+s)/(2(r+s)+1) which accelerates as s increases.

Figure 3 reports the prediction and estimation error when tuned with GCV for
the large noise (σ = 1) setting. Observations similar to those for the small noise
setting can also be made. Furthermore, notice that the prediction errors are much
smaller than the estimation error, which confirms our finding from the previous
section that prediction is an easier problem in the context of functional linear re-
gression.
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FIG. 3. Estimation and prediction errors of the regularized estimator (σ 2 = 12): X was simu-
lated with a covariance function with well-spaced eigenvalues. The results are averaged over 1000
runs. Black solid lines, red dashed lines, green dotted lines and blue dash-dotted lines correspond to
ν = 1.1,1.5,2 and 4, respectively. Both axes are in log scale.

The numerical results in the setting with closely spaced eigenvalues are quali-
tatively similar to those in the setting with well-spaced eigenvalues. Figure 4 sum-
marizes the results obtained for the setting with closely spaced eigenvalues.

We also note that the performance of the regularization estimate with λ tuned
with GCV compares favorably with those from Hall and Horowitz (2007) using
FPCA-based methods even though their results are obtained with optimal rather
than data-driven choice of the tuning parameters.

6. Proofs.

6.1. Proof of Proposition 2. Observe that

∫
T ×T

f (s)C(s, t)f (t) ds dt ≤ μ1‖f ‖2
L2

≤ c1‖f ‖2
H(59)
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FIG. 4. Estimation and prediction errors of the regularized estimator: X was simulated with a
covariance function with closely-spaced eigenvalues. The results are averaged over 1000 runs. Both
axes are in log scale. Note that y-axes are of different scales across panels.

for some constant c1 > 0. Together with the fact that J (f ) ≤ ‖f ‖2
H, we conclude

that

‖f ‖2
R =

∫
T ×T

f (s)C(s, t)f (t) ds dt + J (f ) ≤ (c1 + 1)‖f ‖2
H.(60)

Recall that ξk , k = 1, . . . ,N, are the orthonormal basis of H0. Under the as-
sumption of the proposition, the matrix 
 = (〈Cξj , ξk〉H)1≤j,k≤N is a positive
definite matrix. Denote by μ′

1 ≥ μ′
2 ≥ · · · ≥ μ′

N > 0 its eigenvalues. It is clear that
for any f0 ∈ H0

‖f0‖2
R ≥ μ′

N‖f0‖2
H.(61)

Note also that for any f1 ∈ H1,

‖f1‖2
H = J (f1) ≤ ‖f1‖2

R.(62)

For any f ∈ H, we can write f := f0 + f1 where f0 ∈ H0 and f1 ∈ H1. Then

‖f ‖2
R =

∫
T ×T

f (s)C(s, t)f (t) ds dt + ‖f1‖2
H.(63)
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Recall that

‖f1‖2
H ≥ ρ−1

1 ‖f1‖2
L2

≥ ρ−1
1 μ−1

1

∫
T ×T

f0(s)C(s, t)f0(t) ds dt.(64)

For brevity, assume that ρ1 = μ1 = 1 without loss of generality. By the Cauchy–
Schwarz inequality,

‖f ‖2
R ≥ 1

2

∫
T ×T

f (s)C(s, t)f (t) ds dt + ‖f1‖2
H

≥ 1

2

∫
T ×T

f0(s)C(s, t)f0(t) ds dt + 3

2

∫
T ×T

f1(s)C(s, t)f1(t) ds dt

−
(∫

T ×T
f0(s)C(s, t)f0(t) ds dt

)1/2

×
(∫

T ×T
f1(s)C(s, t)f1(t) ds dt

)1/2

≥ 1

3

∫
T ×T

f0(s)C(s, t)f0(t) ds dt,

where we used the fact that 3a2/2 − ab ≥ −b2/6 in deriving the last inequality.
Therefore,

3

μ′
N

‖f ‖2
R ≥ ‖f0‖2

H.(65)

Together with the facts that ‖f ‖2
H = ‖f0‖2

H + ‖f1‖2
H and

‖f ‖2
R ≥ J (f1) ≥ ‖f1‖2

H,(66)

we conclude that

‖f ‖2
R ≥ (1 + 3/μ′

N)−1‖f ‖2
H.(67)

The proof is now complete.

6.2. Proof of Theorem 3. First note that

R−1/2f =
∞∑

k=1

〈R−1/2f, ζk〉L2ζk =
∞∑

k=1

〈R−1/2f, ν
1/2
k R−1/2ωk〉L2ν

1/2
k R−1/2ωk

= R−1/2

( ∞∑
k=1

νk〈R−1/2f,R−1/2ωk〉L2ωk

)
= R−1/2

( ∞∑
k=1

νk〈f,ωk〉Rωk

)
.

Applying bounded positive definite operator R1/2 to both sides leads to

f =
∞∑

k=1

νk〈f,ωk〉Rωk.(68)
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Recall that 〈ωk,ωj 〉R = ν−1
k δkj . Therefore,

‖f ‖2
R =

〈 ∞∑
k=1

νk〈f,ωk〉Rωk,

∞∑
j=1

νj 〈f,ωj 〉Rωj

〉
R

= ∑
k,j=1

νkνj 〈f,ωk〉R〈f,ωj 〉R〈ωk,ωj 〉R

= ∑
k=1

νk〈f,ωk〉2
R.

Similarly, because 〈Cωk,ωj 〉L2 = δkj ,

〈Cf,f 〉L2 =
〈
C

( ∞∑
k=1

νk〈f,ωk〉Rωk

)
,

∞∑
j=1

νj 〈f,ωj 〉Rωj

〉
L2

=
〈 ∞∑

k=1

νk〈f,ωk〉RCωk,

∞∑
j=1

νj 〈f,ωj 〉Rωj

〉
L2

= ∑
k,j=1

νkνj 〈f,ωk〉R〈f,ωj 〉R〈Cωk,ωj 〉L2

= ∑
k=1

ν2
k 〈f,ωk〉2

R.

6.3. Proof of Proposition 4. Recall that for any f ∈ H0, Cf �= 0 if and only if
f = 0, which implies that H0 ∩ l.s.{φk :k ≥ 1}⊥ = {0}. Together with the fact that
H0 ∩ H1 = {0}, we conclude that H = H1 = l.s.{φk :k ≥ 1}. It is not hard to see
that for any f,g ∈ H,

〈f,g〉R =
∫

T ×T
f (s)C(s, t)g(t) ds dt + 〈f,g〉K.(69)

In particular,

〈ψj ,ψk〉R = (μk + ρ−1
k )δjk,(70)

which implies that {((μk + ρ−1
k )−1,ψk) :k ≥ 1} is also the eigen system of R, that

is,

R(s, t) =
∞∑

k=1

(μk + ρ−1
k )−1ψk(s)ψk(t).(71)

Then

Rψk :=
∫

T
R(·, t)ψk(t) dt = (μk + ρ−1

k )−1ψk, k = 1,2, . . . .(72)
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Therefore,

R1/2CR1/2ψk = R1/2C
(
(μk + ρ−1

k )−1/2ψk

)
= R1/2(

μk(μk + ρ−1
k )−1/2ψk

) = (1 + ρ−1
k μ−1

k )−1ψk,

which implies that ζk = ψk = φk , νk = (1 + ρ−1
k μ−1

k )−1 and γk = ρkμk . Conse-
quently,

ωk = ν
−1/2
k R1/2ψk = ν

−1/2
k (μk + ρ−1

k )−1/2ψk = μ
−1/2
k ψk.(73)

6.4. Proof of Theorem 5. Recall that H = W m
2 , which implies that ρk � k−2m.

By Corollary 2 of Ritter, Wasilkowski and Woźniakowski (1995), μk � k−2(s+1).
It therefore suffices to show γk � k−2(s+1+m). The key idea of the proof is a result
from Ritter, Wasilkowski and Woźniakowski (1995) indicating that the reproduc-
ing kernel Hilbert space associated with C differs from W s+1

2 ([0,1]) only by a
finite-dimensional linear space of polynomials.

Denote by Qr the reproducing kernel for W r
2([0,1]). Observe that Q

1/2
r (L2) =

W r
2 [e.g., Cucker and Smale (2001)]. We begin by quantifying the decay rate

of λk(Q
1/2
m Qs+1Q

1/2
m ). By Sobolev’s embedding theorem, (Q

1/2
s+1Q

1/2
m )(L2) =

Q
1/2
s+1(W m

2 ) = W m+s+1
2 . Therefore, Q

1/2
m Qs+1Q

1/2
m is equivalent to Qm+s+1.

Denote by λk(Q) be the kth largest eigenvalue of a positive definite opera-
tor Q. Let {hk :k ≥ 1} be the eigenfunctions of Qm+s+1, that is, Qm+s+1hk =
λk(Qm+s+1)hk , k = 1,2, . . . . Denote by Fk and F ⊥

k the linear space spanned by
{hj : 1 ≤ j ≤ k} and {hj : j ≥ k + 1}, respectively. By the Courant–Fischer–Weyl
min–max principle,

λk(Q
1/2
m Qs+1Q

1/2
m ) ≥ min

f ∈Fk

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

≥ C1 min
f ∈Fk

‖Q1/2
m+s+1f ‖2

L2
/‖f ‖2

L2

≥ C1λk(Qm+s+1)

for some constant C1 > 0. On the other hand,

λk(Q
1/2
m Qs+1Q

1/2
m ) ≤ max

f ∈F ⊥
k−1

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

≤ C2 min
f ∈F ⊥

k−1

‖Q1/2
m+s+1f ‖2

L2
/‖f ‖2

L2

≤ C2λk(Qm+s+1)

for some constant C2 > 0. In summary, we have λk(Q
1/2
m Qs+1Q

1/2
m ) � ×

k−2(m+s+1).
As shown by Ritter, Wasilkowski and Woźniakowski [(1995), Theorem 1,

page 525], there exist D and U such that Qs+1 = D + U , D has at most 2(s + 1)
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nonzero eigenvalues and ‖U1/2f ‖L2 is equivalent to ‖C1/2f ‖L2 . Moreover, the
eigenfunctions of D, denoted by {g1, . . . , gd} (d ≤ 2(s + 1)) are polynomials of
order no greater than 2s + 1. Denote G the space spanned by {g1, . . . , gd}. Clearly
G ⊂ W m

2 = Q
1/2
m (L2). Denote {h̃j : j ≥ 1} the eigenfunctions of Q

1/2
m Qs+1Q

1/2
m .

Let F̃k and F̃ ⊥
k be defined similarly as Fk and F ⊥

k . Then by the Courant–Fischer–
Weyl min–max principle,

λk−d(Q1/2
m UQ1/2

m ) ≥ min
f ∈F̃k∩Q

−1/2
m (G)⊥

‖U1/2Q1/2
m f ‖2

L2
/‖f ‖2

L2

= min
f ∈F̃k∩Q

−1/2
m (G)⊥

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

= min
f ∈F̃k

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

≥ C1λk(Qm+s+1)

for some constant C1 > 0. On the other hand,

λk+d(Q1/2
m Qs+1Q

1/2
m ) ≤ max

f ∈F̃ ⊥
k−1∩Q

−1/2
m (G)⊥

‖U1/2Q1/2
m f ‖2

L2
/‖f ‖2

L2

= max
f ∈F̃ ⊥

k−1∩Q
−1/2
m (G)⊥

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

= min
f ∈F̃ ⊥

k−1

‖Q1/2
s+1Q

1/2
m f ‖2

L2
/‖f ‖2

L2

≤ C2λk(Qm+s+1)

for some constant C2 > 0. Hence λk(Q
1/2
m UQ

1/2
m ) � k−2(m+s+1).

Because Q
1/2
m UQ

1/2
m is equivalent to R1/2CR1/2, following a similar argument

as before, by the Courant–Fischer–Weyl min–max principle, we complete the the
proof.

6.5. Proof of Theorem 6. We now proceed to prove Theorem 6. The analy-
sis follows a similar spirit as the technique commonly used in the study of the
rate of convergence of smoothing splines [see, e.g., Silverman (1982); Cox and
O’Sullivan (1990)]. For brevity, we shall assume that EX(·) = 0 in the rest of the
proof. In this case, α0 can be estimated by ȳ and β0 by

β̂nλ = arg min
β∈H

[
1

n

n∑
i=1

(
yi −

∫
T

xi(t)β(t) dt

)2

+ λJ (β)

]
.(74)

The proof below also applies to the more general setting when EX(·) �= 0 but with
considerable technical obscurity.
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Recall that

�n(β) = 1

n

n∑
i=1

(
yi −

∫
T

xi(t)β(t) dt

)2

.(75)

Observe that

�∞(β) := E�n(β) = E

[
Y −

∫
T

X(t)β(t) dt

]2

= σ 2 +
∫

T

∫
T
[β(s) − β0(s)]C(s, t)[β(t) − β0(t)]ds dt

= σ 2 + ‖β − β0‖2
0.

Write

β̄∞λ = arg min
β∈H

{�∞(β) + λJ (β)}.(76)

Clearly

β̂nλ − β0 = (β̂nλ − β̄∞λ) + (β̄∞λ − β0).(77)

We refer to the two terms on the right-hand side stochastic error and deterministic
error, respectively.

6.5.1. Deterministic error. Write β0(·) = ∑∞
k=1 akωk(·) and β(·) =∑∞

k=1 bkωk(·). Then Theorem 3 implies that

�∞(β) = σ 2 +
∞∑

k=1

(bk − ak)
2, J (β) =

∞∑
k=1

γ −1
k b2

k .

Therefore,

β̄∞λ(·) =
∞∑

k=1

ak

1 + λγ −1
k

ωk(·) =:
∞∑

k=1

b̄kωk(·).(78)

It can then be computed that for any a < 1,

‖β̄∞λ − β0‖2
a =

∞∑
k=1

(1 + γ −a
k )(b̄k − ak)

2

=
∞∑

k=1

(1 + γ −a
k )

(
λγ −1

k

1 + λγ −1
k

)2

a2
k

≤ λ2 sup
k

(1 + γ −a)γ −1
k

(1 + λγ −1
k )2

∞∑
k=1

γ −1
k a2

k

= λ2J (β0) sup
k

(1 + γ −a)γ −1
k

(1 + λγ −1
k )2

.
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Now note that

sup
k

(1 + γ −a)γ −1
k

(1 + λγ −1
k )2

≤ sup
x>0

(1 + x−a)x−1

(1 + λx−1)2

≤ sup
x>0

x−1

(1 + λx−1)2 + sup
x>0

x−(a+1)

(1 + λx−1)2

= 1

infx>0(x1/2 + λx−1/2)2 + 1

infx>0(x(a+1)/2 + λx−(1−a)/2)2

= 1

4λ
+ C0λ

−(a+1).

Hereafter, we use C0 to denote a generic positive constant. In summary, we have

LEMMA 12. If λ is bounded from above, then

‖β̄∞λ − β0‖2
a = O(λ1−aJ (β0)).

6.5.2. Stochastic error. Next, we consider the stochastic error β̂nλ − β̄∞λ. De-
note

D�n(β)f = −2

n

n∑
i=1

[(
yi −

∫
T

xi(t)β(t) dt

)∫
T

xi(t)f (t) dt

]
,

D�∞(β)f = −2EX

(∫
T

X(t)[β0(t) − β(t)]dt

∫
T

X(t)f (t) dt

)

= −2
∫

T

∫
T
[β0(s) − β(s)]C(s, t)f (t) ds dt,

D2�n(β)fg = 2

n

n∑
i=1

[∫
T

xi(t)f (t) dt

∫
T

xi(t)g(t) dt

]
,

D2�∞(β)fg = 2
∫

T

∫
T

f (s)C(s, t)g(t) ds dt.

Also write �nλ(β) = �n(β) + λJ (β) and �∞λ = �∞(β) + λJ (β). Denote Gλ =
(1/2)D2�∞λ(β̄∞λ) and

β̃ = β̄∞λ − 1
2G−1

λ D�nλ(β̄∞λ).(79)

It is clear that

β̂nλ − β̄∞λ = (β̂nλ − β̃) + (β̃ − β̄∞λ).(80)

We now study the two terms on the right-hand side separately. For brevity, we
shall abbreviate the subscripts of β̂ and β̄ in what follows. We begin with β̃ − β̄ .
Hereafter we shall omit the subscript for brevity if no confusion occurs.
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LEMMA 13. For any 0 ≤ a ≤ 1,

E‖β̃ − β̄‖2
a � n−1λ−(a+1/(2(r+s))).(81)

PROOF. Notice that D�nλ(β̄) = D�nλ(β̄) − D�∞λ(β̄) = D�n(β̄) − D�∞(β̄).
Therefore

E[D�nλ(β̄)f ]2 = E[D�n(β̄)f − D�∞(β̄)f ]2

= 4

n
Var

[(
Y −

∫
T

X(t)β̄(t) dt

)∫
T

X(t)f (t) dt

]

≤ 4

n
E

[(
Y −

∫
T

X(t)β̄(t) dt

)∫
T

X(t)f (t) dt

]2

= 4

n
E

(∫
T

X(t)[β0(t) − β̄(t)]dt

∫
T

X(t)f (t) dt

)2

+ 4σ 2

n
E

(∫
T

X(t)f (t) dt

)2

,

where we used the fact that ε = Y − ∫
Xβ0 is uncorrelated with X. To bound the

first term, an application of the Cauchy–Schwarz inequality yields

E

(∫
T

X(t)[β0(t) − β̄(t)]dt

∫
T

X(t)f (t) dt

)2

≤
{
E

(∫
T

X(t)[β0(t) − β̄(t)]dt

)4

E

(∫
T

X(t)f (t) dt

)4}1/2

≤ M‖β0 − β̄‖2
0‖f ‖2

0,

where the second inequality holds by the second condition of F (s,M,K). There-
fore,

E[D�nλ(β̄)f ]2 ≤ 4M

n
‖β0 − β̄‖2

0‖f ‖2
0 + 4σ 2

n
‖f ‖2

0,(82)

which by Lemma 12 is further bounded by (C0σ
2/n)‖f ‖2

0 for some positive con-
stant C0. Recall that ‖ωk‖0 = 1. We have

E[D�nλ(β̄)ωk]2 ≤ C0σ
2/n.(83)

Thus, by the definition of β̃ ,

E‖β̃ − β̄‖2
a = E

∥∥∥∥1

2
G−1

λ D�nλ(β̄)

∥∥∥∥
2

a

= 1

4
E

[ ∞∑
k=1

(1 + γ −a
k )(1 + λγ −1

k )−2(D�nλ(β̄)ωk)
2

]
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≤ C0σ
2

4n

∞∑
k=1

(1 + γ −a
k )(1 + λγ −1

k )−2

≤ C0σ
2

4n

∞∑
k=1

(
1 + k2a(r+s))(1 + λk2(r+s))−2

� C0σ
2

4n

∫ ∞
1

x2a(r+s)(1 + λx2(r+s))−2
dx

� C0σ
2

4n

∫ ∞
1

(
1 + λx2(r+s)/(2a(r+s)+1))−2

dx

= C0σ
2

4n
λ−(a+1/(2(r+s)))

∫ ∞
λa+1/(2(r+s))

(
1 + x2(r+s)/(2a(r+s)+1))−2

dx

� n−1λ−(a+1/(2(r+s))).

The proof is now complete. �

Now we are in position to bound E‖β̂ − β̃‖2
a . By definition,

Gλ(β̂ − β̃) = 1
2D2�∞λ(β̄)(β̂ − β̃).(84)

First-order condition implies that

D�nλ(β̂) = D�nλ(β̄) + D2�nλ(β̄)(β̂ − β̄) = 0,(85)

where we used the fact that �n,λ is quadratic. Together with the fact that

D�nλ(β̄) + D2�∞λ(β̄)(β̃ − β̄) = 0,(86)

we have

D2�∞λ(β̄)(β̂ − β̃) = D2�∞λ(β̄)(β̂ − β̄) + D2�∞λ(β̄)(β̄ − β̃)

= D2�∞λ(β̄)(β̂ − β̄) − D2�nλ(β̄)(β̂ − β̄)

= D2�∞(β̄)(β̂ − β̄) − D2�n(β̄)(β̂ − β̄).

Therefore,

(β̂ − β̃) = 1
2G−1

λ [D2�∞(β̄)(β̂ − β̄) − D2�n(β̄)(β̂ − β̄)].(87)

Write

β̂ =
∞∑

k=1

b̂kωk and β̄ =
∞∑

k=0

b̄kωk.(88)
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Then

‖β̂ − β̃‖2
a

= 1

4

∞∑
k=1

(1 + λγ −1
k )−2(1 + γ −a

k )

×
[ ∞∑

j=1

(b̂j − b̄j )

∫
T

∫
T

ωj(s)

(
1

n

n∑
i=1

xi(t)xi(s) − C(s, t)

)

× ωk(t) ds dt

]2

≤ 1

4

∞∑
k=1

(1 + λγ −1
k )−2(1 + γ −a

k )

[ ∞∑
j=1

(b̂j − b̄j )
2(1 + γ −c

j )

]

×
( ∞∑

j=1

(1 + γ −c
j )−1

[∫
T

∫
T

ωj(s)

(
1

n

n∑
i=1

xi(t)xi(s) − C(s, t)

)

× ωk(t) ds dt

]2)
,

where the inequality is due to the Cauchy–Schwarz inequality.
Note that

E

( ∞∑
j=1

(1 + γ −c
j )−1

[∫
T

ωj(s)

(
1

n

n∑
i=1

xi(t)xi(s) − C(s, t)

)
ωk(t) ds dt

]2)

= 1

n

∞∑
j=1

(1 + γ −c
j )−1 Var

(∫
T

ωj (t)X(t) dt

∫
T

ωk(t)X(t) dt

)

≤ 1

n

∞∑
j=1

(1 + γ −c
j )−1E

[(∫
T

ωj (t)X(t) dt

)2(∫
T

ωk(t)X(t) dt

)2]

≤ 1

n

∞∑
j=1

(1 + γ −c
j )−1E

[(∫
T

ωj (t)X(t) dt

)4]1/2

E

[(∫
T

ωk(t)X(t) dt

)4]1/2

≤ M

n

∞∑
j=1

(1 + γ −c
j )−1E

[(∫
T

ωj(t)X(t) dt

)2]
E

[(∫
T

ωk(t)X(t) dt

)2]

= M

n

∞∑
j=1

(1 + γ −c
j )−1 � n−1,
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provided that c > 1/2(r + s). On the other hand,
∞∑

k=1

(1 + λγ −1
k )−2(1 + γ −a

k )

≤ C0

∞∑
k=1

(
1 + λk2(r+s))−2(

1 + k2a(r+s))

�
∫ ∞

1

(
1 + λx2(r+s))−2

x2a(r+s) dx

�
∫ ∞

1

(
1 + λx2(r+s)/(2a(r+s)+1))−2

dx

= λ−(a+1/(2(r+s)))
∫ ∞
λa+1/(2(r+s))

(
1 + x2(r+s)/(2a(r+s)+1))−2

dx

� λ−(a+1/(2(r+s))).

To sum up,

‖β̂ − β̃‖2
a = Op

(
n−1λ−(a+1/(2(r+s)))‖β̂ − β̄‖2

c

)
.(89)

In particular, taking a = c yields

‖β̂ − β̃‖2
c = Op

(
n−1λ−(c+1/(2(r+s)))‖β̂ − β̄‖2

c

)
.(90)

If

n−1λ−(c+1/(2(r+s))) → 0,(91)

then

‖β̂ − β̃‖c = op(‖β̂ − β̄‖c).(92)

Together with the triangular inequality

‖β̃ − β̄‖c ≥ ‖β̂ − β̄‖c − ‖β̂ − β̃‖c = (
1 − op(1)

)‖β̂ − β̄‖c.(93)

Therefore,

‖β̂ − β̄‖c = Op(‖β̃ − β̄‖c)(94)

Together with Lemma 13, we have

‖β̂ − β̄‖2
c = Op

(
n−1λ−(c+1/(2(r+s)))) = op(1).(95)

Putting it back to (89), we now have:

LEMMA 14. If there also exists some 1/2(r + s) < c ≤ 1 such that n−1 ×
λ−(c+1/2(r+s)) → 0, then

‖β̂ − β̃‖2
a = op

(
n−1λ−(a+1/2(r+s))).(96)
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Combining Lemmas 12–14, we have

lim
D→∞ lim

n→∞ sup
F∈F (s,M,K),β0∈H

P
(‖β̂nλ − β0‖2

a > Dn−2(1−a)(r+s)/(2(r+s)+1))
(97)

= 0

by taking λ � n−2(r+s)/(2(r+s)+1).

6.6. Proof of Theorem 7. We now set out to show that n−2(1−a)(r+s)/(2(r+s)+1)

is the optimal rate. It follows from a similar argument as that of Hall and Horowitz
(2007). Consider a setting where ψk = φk , k = 1,2, . . . . Clearly in this case we
also have ωk = μ

−1/2
k φk . It suffices to show that the rate is optimal in this special

case. Recall that β0 = ∑
akφk . Set

ak =
{

L
−1/2
n k−rθk, Ln + 1 ≤ k ≤ 2Ln,

0, otherwise,
(98)

where Ln is the integer part of n1/(2(r+s)+1), and θk is either 0 or 1. It is clear that

‖β0‖2
K ≤

2Ln∑
k=Ln+1

L−1
n = 1.(99)

Therefore β0 ∈ H. Now let X admit the following expansion: X = ∑
k ξkk

−sφk

where ξks are independent random variables drawn from a uniform distribution
on [−√

3,
√

3]. Simple algebraic manipulation shows that the distribution of X

belongs to F (s,3). The observed data are

yi =
2Ln∑

k=Ln+1

L−1/2
n k−(r+s)ξikθk + εi, i = 1, . . . , n,(100)

where the noise εi is assumed to be independently sampled from N(0,M2). As
shown in Hall and Horowitz (2007),

lim
n→∞ inf

Ln<j≤2Ln

inf
θ̃j

∗
supE(θ̃j − θj )

2 > 0,(101)

where
∗

sup denotes the supremum over all 2Ln choices of (θLn+1, . . . , θ2Ln), and
infθ̃ is taken over all measurable functions θ̃j of the data. Therefore, for any esti-
mate β̃ ,

∗
sup‖β̃ − β0‖2

a = ∗
sup

2Ln∑
k=Ln+1

L−1
n k−2(1−a)(r+s)E(θ̃j − θj )

2

(102)
≥ Mn−2(1−a)(r+s)/(2(r+s)+1)

for some constant M > 0.
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Denote

˜̃
θk =

⎧⎨
⎩

1, θ̃k > 1,
θ̃k, 0 ≤ θ̃k ≤ 1,
0, θ̃k < 0.

(103)

It is easy to see that

2Ln∑
k=Ln+1

L−1
n k−2(1−a)(r+s)(θ̃j − θj )

2

(104)

≥
2Ln∑

k=Ln+1

L−1
n k−2(1−a)(r+s)(

˜̃
θj − θj )

2.

Hence, we can assume that 0 ≤ θ̃j ≤ 1 without loss of generality in establishing
the lower bound. Subsequently,

2Ln∑
k=Ln+1

L−1
n k−2(1−a)(r+s)(θ̃j − θj )

2 ≤
2Ln∑

k=Ln+1

L−1
n k−2(1−a)(r+s)

(105)
≤ L−2(1−a)(r+s)

n .

Together with (102), this implies that

lim
n→∞ inf

β̃

∗
supP

(‖β̃ − β‖2
a > dn−2(1−a)(r+s)/(2(r+s)+1)) > 0(106)

for some constant d > 0.

APPENDIX: SACKS–YLVISAKER CONDITIONS

In Section 3, we discussed the relationship between the smoothness of C and
the decay of its eigenvalues. More precisely, the smoothness can be quantified
by the so-called Sacks–Ylvisaker conditions. Following Ritter, Wasilkowski and
Woźniakowski (1995), denote

�+ = {(s, t) ∈ (0,1)2 : s > t} and
(107)

�− = {(s, t) ∈ (0,1)2 : s < t}.
Let cl(A) be the closure of a set A. Suppose that L is a continuous function on
�+ ∪ �− such that L|�j

is continuously extendable to cl(�j ) for j ∈ {+,−}. By
Lj we denote the extension of L to [0,1]2, which is continuous on cl(�j ), and on
[0,1]2 \ cl(�j ). Furthermore write M(k,l)(s, t) = (∂k+l/(∂sk ∂t l))M(s, t). We say
that a covariance function M on [0,1]2 satisfies the Sacks–Ylvisaker conditions of
order r if the following three conditions hold:
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(A) L = M(r,r) is continuous on [0,1]2, and its partial derivatives up to order 2
are continuous on �+ ∪ �−, and they are continuously extendable to cl(�+)

and cl(�−).
(B)

min
0≤s≤1

(
L

(1,0)
− (s, s) − L

(1,0)
+ (s, s)

)
> 0.(108)

(C) L
(2,0)
+ (s, ·) belongs to the reproducing kernel Hilbert space spanned by L and

furthermore

sup
0≤s≤1

∥∥L(2,0)
+ (s, ·)∥∥L < ∞.(109)
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