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AN ADAPTATION THEORY FOR NONPARAMETRIC
CONFIDENCE INTERVALS1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

A nonparametric adaptation theory is developed for the construction
of confidence intervals for linear functionals. A between class modulus of
continuity captures the expected length of adaptive confidence intervals.
Sharp lower bounds are given for the expected length and an ordered modulus
of continuity is used to construct adaptive confidence procedures which are
within a constant factor of the lower bounds. In addition,minimax theory
over nonconvex parameter spaces is developed.

1. Introduction. The problem of estimating a linear functional occupies a
central position in nonparametric function estimation. It is most complete in the
Gaussian settings:

dY (t) = f (t) dt + n−1/2dW(t), −1
2 ≤ t ≤ 1

2,(1)

whereW(t) is standard Brownian motion and

Y (i) = f (i) + n−1/2zi, i ∈ M,(2)

wherezi are i.i.d. standard normal random variables andM is a finite or countably
infinite index set. In particular, minimax estimation theory has been well developed
in Ibragimov and Hasminskii (1984), Donoho and Liu (1991) and Donoho (1994).

Confidence sets also play a fundamental role in statistical inference. In the
context of nonparametric function estimation variable size confidence intervals,
bands and balls have received particular attention recently. For any confidence
set there are two main interrelated issues which need to be considered together,
coverage probability and the expected size of the confidence set.

One common technique for constructing confidence bands and intervals is
through the bootstrap. In this context it has been noted that intervals based on
the bootstrap often have poor coverage probability. See, for example, Hall (1992)
and Härdle and Marron (1991). Picard and Tribouley (2000) construct adaptive
confidence intervals for functions at a point using a wavelet method which achieve
optimal coverage accuracy up to a logarithmic factor although in this case the issue
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of optimal expected length is not addressed. On the other hand Li (1989), Beran
and Dümbgen (1998) and Genovese and Wasserman (2002) have constructed
confidence balls which guarantee coverage probability. Closer to the present work,
adaptive confidence bands have been constructed in the special case of shape
restricted functions. In this context Hengartner and Stark (1995) and Dümbgen
(1998) give a variable width confidence band which adapts to local smoothness
while maintaining a given level of coverage probability.

In this paper we focus on the construction of confidence intervals for linear
functionals which adapt to the unknown function. This adaptation problem can be
made precise by considering collections of parameter spaces{Fj , j ∈ J }, whereJ
is some index set. For such a collection of parameter spaces the confidence interval
should have a given coverage probability over the union of the parameter spaces.
Subject to this constraint the goal is to minimize the maximum expected length
simultaneously over each of the parameter spaces.

For example, consider the simple and most easily explained case of two
nested spaces,F1 ⊆ F . An adaptive confidence interval must attain optimal
expected length performance over bothF1 and F while satisfying a given
coverage probability overF . More specifically writeIα,F for the collection
of all confidence intervals which cover the linear functionalTf with minimum
coverage probability of at least 1− α over the parameter spaceF . Denote by
L(CI,G) = supf ∈G Ef (L(CI)) the maximum expected length of a confidence
interval CI over G whereL(CI) is the length of theCI. Then a benchmark for
the evaluation of the maximum expected length overF1 for any CI ∈ Iα,F is
given by

L∗
α(F1,F ) = inf

CI∈Iα,F

L(CI,F1).(3)

In particular, whenF1 = F setL∗
α(F ) = L∗

α(F ,F ), which gives the minimax
expected length of confidence intervals of level 1− α over F . For convexF ,
Donoho (1994) constructed fixed length intervals centered at affine estimators
which have length within a small constant factor ofL∗

α(F ).
The major result in the present paper is the construction of confidence

intervals which have expected length within a constant factor ofL∗
α(Fj ,F )

simultaneously over a collection of convex parameter spacesFj whereF = ∪Fj .
The construction of such intervals is general and is applicable to collections of
arbitrary convex parameter spaces. It is shown in Cai and Low (2003) that in
particular cases, such as collections of convex functions, the general procedure
can be modified to yield simple and easily implementable procedures.

The main technical tools used in the derivation of the general adaptive
confidence intervals are geometric quantities, the ordered and between class
moduli of continuity which are defined as follows. For a linear functionalT and
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parameter spacesF and G there are ordered moduli of continuityω(ε,F ,G)

associated with the Gaussian models (1) and (2) defined by

ω(ε,F ,G) = sup{T g − Tf :‖g − f ‖2 ≤ ε;f ∈ F , g ∈ G},(4)

where‖ · ‖2 is theL2(−1
2, 1

2) function norm in the white noise model (1) and the�2

sequence norm over the index setM in the Gaussian model (2). As we shall give
a unified treatment of both models it is convenient in the notation used throughout
the paper not to distinguish the function norm and the sequence norm. It is implicit
that for results concerning the white noise model (1) the notation‖ · ‖2 always
refers to theL2 function norm whereas for the sequence model (2) it always refers
to the�2 sequence norm. WhenG = F , ω(ε,F ,F ) is the modulus of continuity
overF introduced by Donoho and Liu (1991) and will be denoted byω(ε,F ).

For two parameter spacesF and G and a given linear functionalT , the
between class modulus of continuity is defined asω+(ε,F ,G) = max{ω(ε,F ,G),

ω(ε,G,F )}, or equivalently

ω+(ε,F ,G) = sup{|T g − Tf | :‖g − f ‖2 ≤ ε;f ∈ F , g ∈ G}.(5)

The between class and ordered moduli were first introduced in Cai and Low
(2002) in the context of adaptive estimation under mean squared error where they
were shown to be instrumental in characterizing the possible degree of adaptability
over two convex classesF andG in the same way that the modulus of continuity
ω(ε,F ) used by Donoho and Liu (1991) and Donoho (1994) captures the minimax
difficulty of estimation over a single convex parameter spaceF .

The paper is organized as follows. Section 2 covers adaptation over two convex
parameter spacesF1 andF2 where the theory is most easily understood. A lower
bound based on the between class modulus as defined in (5) is given forL∗

α(F1,F )

whereF = F1 ∪ F2. An adaptive confidence interval attaining this bound is also
constructed by using the ordered moduli as given in (4). Various examples are used
to illustrate the adaptation theory.

More generally let{Fj , j ∈ J } be a collection of convex parameter spaces with
nonempty intersections and letF = ∪Fj . The goal is then to simultaneously
minimize L(CI,Fj ) for confidence intervalsCI ∈ Iα,F . For each parameter
spaceFj , L∗

α(Fj ,F ) provides a lower bound on the maximum expected length
over Fj for any CI ∈ Iα,F . In Section 3 a complete treatment is given for
nestedFj , possibly infinite in number. For any collection of nested convex
parameter spaces a variable length confidence interval is constructed which
for a given level of coverage has expected length within a constant factor of
the minimum expected length simultaneously over all parameter spaces in the
collection.

Section 4 treats the case of a general finite collection of convex parameter
spaces. A more complicated procedure results in an interval which also has
expected length within a constant factor of the minimum expected length although
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the constant factor now depends on the number of parameter spaces in the
collection. Finally in Section 5 it is shown, by example, that the rate of growth
in this constant factor as a function of the number of parameter spaces cannot in
general be avoided. In addition, the adaptation theory developed in this paper is
used to extend the minimax theory to a finite union of convex parameter spaces.
This extension is given in Section 5.

2. Adaptation over two parameter spaces. In this section we consider
adaptation over two parameter spaces. For the development of this theory, it is
convenient for a givenα to provide a benchmark for the maximum expected length
overF1 of confidence intervals with a given coverage probability of 1− α over
F = F1 ∪ F2, namely to provide a lower bound forL∗

α(F1,F ) as defined in (3).
This benchmark is given in Section 2.1 for arbitrary parameter spaces.

We give a complete treatment of adaptation when the two parameter spaces
are convex. In this case adaptive intervals attaining the lower bound given in
Section 2.1 are constructed. The adaptive procedure is given in Section 2.2.
Examples illustrating the theory are given in Section 2.3.

It is convenient to writeal � bl whenever 0< lim inf al/bl ≤ lim supal/bl < ∞,
wherel ranges over either a continuous or discrete index set.

2.1. Lower bound on the length of confidence intervals. The following simple
two-point Normal mean problem is the basis for a surprisingly useful general lower
bound on the expected length of 1−α level confidence intervals. We shall see later
that the two-point bound is easy to apply for adaptation theory because each point
can be chosen to lie in different parameter spaces. Previous work on confidence
intervals for bounded Normal means as in Pratt (1961), Zeytinoglu and Mintz
(1984) and Stark (1992) is useful for minimax theory but it is not applicable for
general adaptation problems.

Let X ∼ N(θ,σ 2) and suppose thatθ ∈ � = {θ0, θ1} whereθ0 < θ1. Consider
the following simple statistical decision theory problem: construct confidence
intervalsCI(X) for θ which have smallest expected length underθ0 subject to
the coverage constraint

Pθ

(
θ ∈ CI(X)

) ≥ 1− α for θ ∈ �.

Throughout the paper setzα = �−1(1 − α) where� is the cumulative density
function of a standard Normal distribution. In addition writeL(CI) for the length
of a confidence intervalCI.

PROPOSITION1. Let X ∼ N(θ,σ 2) and suppose that θ ∈ � = {θ0, θ1} where
θ0 < θ1. Let CI(X) be a 1− α level confidence interval for θ . Then

Eθi
L

(
CI(X)

) ≥ (θ1 − θ0)

(
1− α − �

(
θ1 − θ0

σ
− zα

))
+

(6)
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for i = 0,1. Moreover there exists a confidence interval which attains the lower
bounds simultaneously for both i = 0 and i = 1.

PROOF. It is clear that it suffices to consider confidence intervalsCI(X) of
three possible forms:[θ0, θ1], {θ0} and {θ1}. The problem is then to minimize
Pθ0(CI(X) = [θ0, θ1]) subject to the constraintsPθ0(CI(X) = {θ1}) ≤ α and
Pθ1(CI(X) = {θ0}) ≤ α.

It follows from the Neyman–Pearson lemma that, subject to the constraint that
Pθ1(CI(X) = {θ0}) ≤ α,

Pθ0

(
CI(X) = {θ0}) ≤ �

(
θ1 − θ0

σ
− zα

)
.

Hence

Eθ0L(CI(X)) = (θ1 − θ0)Pθ0

(
CI (X) = [θ0, θ1])

= (θ1 − θ0)
(
1− Pθ0

(
CI (X) = {θ1}) − Pθ0

(
CI (X) = {θ0}))

≥ (θ1 − θ0)

(
1− α − �

(
θ1 − θ0

σ
− zα

))
.

The bound forθ1 follows similarly.
It is easy to see that an interval attaining the lower bound forθ0 andθ1 is given

by

CI(X) =



{θ0}, if X ≤ θ1 − zασ ,
[θ0, θ1], if θ1 − zασ < X < θ0 + zασ ,
{θ1}, if X ≥ θ0 + zασ ,

whenθ1 − zασ < θ0 + zασ . Otherwise set

CI(X) =




{θ0}, if X ≤ θ0 + θ1

2
,

{θ1}, if X >
θ0 + θ1

2
.

In this case the confidence interval always has zero length and coverage of at
least 1− α. �

Based on the two-point bound given in Proposition 1 the following theorem
gives a lower bound for infinite-dimensional Gaussian models.

THEOREM 1. Let 0< α < 1
2 and let F1 ⊆ F be two parameter spaces. Then

L∗
α(F1,F ) ≥

(
1

2
− α

)
ω+

(
zα√
n
,F1,F

)
(7)

where L∗
α(F1,F ) is defined in (3) and ω+(ε,F1,F ) is the between class modulus

as given in (5).



1810 T. T. CAI AND M. G. LOW

PROOF. We shall focus on the proof for the white noise with drift model (1).
The proof for the sequence model (2) is analogous. Fixε > 0. For anyδ > 0 there
are functionsf1 ∈ F1 andf2 ∈ F such that

|Tf2 − Tf1| ≥ ω+
(

ε√
n
,F1,F

)
− δ

and such that

‖f2 − f1‖2 ≤ ε√
n
.

Denote byPi the probability measure associated with the white noise process

dY (t) = fi(t) dt + 1√
n

dW(t), −1
2 ≤ t ≤ 1

2, i = 1,2.

Let βn = n‖f1 − f2‖2
2. Then a sufficient statistic for the family of measures

{Pi : i = 1,2} is given by the log-likelihood ratioSn = log(dP2/dP1) with

Sn ∼




N −
(

βn

2
, βn

)
underP1,

N

(
βn

2
, βn

)
underP2.

An equivalent sufficient statistic is thus given by

Qn = Tf1 + Tf2

2
+ Tf2 − Tf1

βn

· Sn

where

Qn ∼




N

(
Tf1,

(Tf2 − Tf1)
2

βn

)
underP1,

N

(
Tf2,

(Tf2 − Tf1)
2

βn

)
underP2.

It follows from Proposition 1 that for any confidence intervalCI(Qn) based onQn,

Ef1L
(
CI(Qn)

) ≥ |Tf2 − Tf1|
(

1− α − �

( |Tf2 − Tf1|
σ

− zα

))
+

whereσ = |Tf2−Tf1|√
βn

. Hence

Ef1L
(
CI(Qn)

) ≥ |Tf2 − Tf1|(1− α − �
(√

n‖f2 − f1‖2 − zα

))
+

≥
(
ω+

(
ε√
n
,F1,F

)
− δ

)(
1− α − �(ε − zα)

)
+.

Letting δ → 0, it follows that for anyε > 0,

L
(
CI(Qn),F1

) ≥ ω+
(

ε√
n
,F1,F

)(
1− α − �(ε − zα)

)
+.
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By the sufficiency ofQn, it follows that for any confidence intervalCI ∈ Iα,F

L(CI,F1) ≥ sup
ε>0

ω+
(

ε√
n
,F1,F

)(
1− α − �(ε − zα)

)
+.(8)

The theorem follows on takingε = zα. �

REMARK 1. Although the primary use of this theorem is for adaptive
confidence intervals, it can also be used to show that from a minimax point of view
there is relatively little to gain by using variable length intervals. In the minimax
setting Donoho (1994) showed that over a given convex parameter spaceF ,
fixed length confidence intervals for a linear functionalTf with coverage of at
least 1− α must have maximum length at least 2ω(2zα√

n
,F ) and that fixed length

confidence intervals can be centered on affine estimators with maximum length
at most 2ω(

2zα/2√
n

,F ). By taking F1 = F , Theorem 1 yields that the minimax

expected length of a 1− α level confidence interval over any parameter spaceF
satisfies

L∗
α(F ) ≥

(
1

2
− α

)
ω

(
zα√
n
,F

)
.(9)

This shows that for any givenα < 1/2 the optimal variable length confidence
intervals must have maximum expected length at least a fixed constant factor of the
length of the shortest fixed length confidence interval when the parameter spaceF
is convex.

2.2. Adaptive confidence interval. There are at least two natural ways to
define adaptive confidence intervals over a collection of convex parameter spaces
{Fi, i = 1, . . . , k}. Let F = ⋃k

i=1 Fi . Call a confidence intervalCI ∈ Iα,F

adaptive over the collection{Fi, i = 1, . . . , k} if, for all 1 ≤ i ≤ k,

L(CI,Fi ) ≤ Ci(α)ω+
(

zα√
n
,Fi ,F

)
,(10)

whereCi(α) are constants depending onα only. In other words a confidence
interval which adapts over the parameter spacesFi attains the lower bound given
in Theorem 1 for eachi while maintaining coverage overF . We shall show that
such adaptive confidence intervals can always be constructed whenk is finite.

It is also reasonable, in light of the minimax discussion given above, to term a
confidence intervalCI ∈ Iα,F adaptive over the collection of parameter spacesFi

if, for all 1 ≤ i ≤ k,

L(CI,Fi) ≤ Ci(α)ω

(
zα√
n
,Fi

)
(11)

whereCi(α) are constants depending onα only. We shall call such a confidence
interval strongly adaptive. It is clear that a confidence interval which is strongly
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adaptive is also adaptive. However strongly adaptive confidence intervals do not
always exist. Low (1997) has given examples whereL∗

α(F1,F )  L∗
α(F1), in

which case strongly adaptive estimators do not exist. Other examples are given
in Section 2.3 and throughout the paper. On the other hand, whenL∗

α(F1,F ) �
L∗

α(F1) strongly adaptive estimators do exist and any estimator which is adaptive
is also strongly adaptive.

In this section the focus is on adaptation over two parameter spaces where the
theory is most easily understood. For two parameter spacesF1 ⊆ F , Theorem 1
gives a lower bound for the maximum expected length overF1 of confidence
intervals with guaranteed coverage overF . We now show that the lower bound
can in fact be attained within a constant factor not depending onn whenF1 is
convex andF is the union ofF1 and another convex setF2.

Let {F1,F2} be a pair of convex parameter spaces with nonempty intersection
and letF = F1 ∪ F2. Our first objective is to construct a confidence interval for a
linear functionalTf which has guaranteed coverage probability of 1− α overF
and has maximum expected length overF1 within a constant factor of the lower
bound given in Theorem 1, namely, for anyCI ∈ Iα,F ,

L(CI,F1) ≥
(

1

2
− α

)
ω+

(
zα√
n
,F1,F

)
.(12)

The construction of the adaptive confidence interval relies on the ordered
modulusω(ε,Fi ,Fj ) as given in (4). For 1≤ i, j ≤ 2, set

ωi,j = ω

(
zα/2√

n
,Fi,Fj

)
.

Cai and Low (2004) give an algorithm for the construction of a linear estimatorT̂i,j

which has variance bounded by

Var(T̂i,j ) ≤ 1

z2
α/2

ω2
i,j(13)

and bias which satisfies

inf
f ∈Fj

(
E(T̂i,j ) − Tf

) ≥ −1
2ωi,j(14)

and

sup
f ∈Fi

(
E(T̂i,j ) − Tf

) ≤ 1
2ωi,j .(15)

We shall use the linear estimatorsT̂i,j to construct a confidence interval which
has guaranteed coverage probability overF and which also has expected length
overF1 within a constant factor of the lower bound given by (26). Forj = 1 and 2
define the confidence intervalsCI∗

j,α by

CI∗
j,α =

[
min
i=1,2

{
T̂i,j − 3

2ωi,j

}
, max
i=1,2

{
T̂j,i + 3

2ωj,i

}]
.(16)
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The following result shows that the confidence intervalCI∗
1,α attains the lower

bound on the maximum expected length overF1 given in (7) within a constant
factor not depending onn and satisfies the constraint that it has the minimum
coverage of 1− α for all f ∈ F .

LEMMA 1. Let F1 and F2 be convex parameter spaces with F1 ∩F2 �= ∅ and
let F = F1 ∪F2. Let the interval CI∗

j,α be defined as in (16) for j = 1 and 2. Then
CI∗

j,α ∈ Iα,F and CI∗
j,α has expected length over Fj which satisfies

L(CI∗
j,α,Fj ) ≤

{
9

zα/2
+ 4

}
ω+

(
zα/2√

n
,Fj ,F

)
.(17)

Lemma 1 follows from the proof of Proposition 4 given in Section 4.1.

REMARK 2. Theorem 1 and Lemma 1 together show that under the conditions
of Lemma 1,

L∗
α(F1,F ) � ω+

(
zα/2√

n
,F1,F

)
.(18)

Although the intervalCI∗
1,α has guaranteed coverage probability overF and

optimal expected length overF1, it may not have optimal expected length overF
because the expected length overF2 is not controlled. On the other hand, by
symmetryCI∗

2,α has guaranteed coverage probability overF and optimal expected
length overF2. By Bonferroni, the confidence intervalCI∗

α = CI∗
1,α/2 ∩ CI∗

2,α/2
also has coverage probability of at least 1− α and soCI∗

α ∈ Iα,F . Furthermore, it
is easy to see that it has optimal expected length over bothF1 andF2 and hence
also overF . In other words the confidence intervalCI∗

α is a 1− α level adaptive
confidence interval overF1 andF2.

PROPOSITION 2. Let F1 and F2 be convex parameter spaces with F1 ∩
F2 �= ∅ and let F = F1 ∪ F2. Let the interval CI∗

j,α be defined as in (16) and
let CI∗

α = CI∗
1,α/2 ∩ CI∗

2,α/2. Then CI∗
α is a 1−α level adaptive confidence interval

over F1 and F2. That is, CI∗
α ∈ Iα,F and for both j = 1 and 2,

L∗
α(Fj ,F ) ≤ L(CI∗

α,Fj ) ≤ C(α)L∗
α(Fj ,F )(19)

where C(α) is a constant depending only on α. Consequently L(CI∗
α,Fj ) �

ω+(
zα/2√

n
,Fj ,F ).

REMARK 3. It is shown in Cai and Low (2004) that the ordered modulus is
concave. It follows that, ifb ≥ 1, then for allε > 0,

ω+(bε,F ,G) = max
(
ω(bε,F ,G),ω(bε,G,F )

)
≤ max

(
bω(ε,F ,G), bω(ε,G,F )

)
≤ bω+(ε,F ,G).

(20)
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It then follows from the bounds given in (7) and (17) and inequality (20) that the
constantC(α) in (19) can be taken as

C(α) = 9+ 4zα/4

(1/2− α)zα

.

2.3. Discussion. In nonparametric function estimation the goal of adaptive
estimation is often framed in terms of achieving optimality results simultaneously
over a collection of parameter spaces{Fj }. The benchmark for success is given by
how well one could do if the parameter space is completely specified. We termed
any such confidence interval strongly adaptive.

So far, attention has focused on constructing adaptive confidence procedures
which attain the lower bound on expected length given in Theorem 1. This bound
gives the best one can do in this adaptive confidence interval problem. The lower
bound however may differ quite dramatically from the minimax expected length
if the parameter spaceFj is prespecified. In particular suppose, as is common,
that the between class modulus of continuity is Hölderian. That is, the modulus
satisfies

ω+(ε,Fi ,Fj ) = Ci,j ε
qi,j

(
1+ o(1)

)
, 1 ≤ i, j ≤ 2,

for some constantsCi,j > 0 and 0< qi,j ≤ 1. Such is the case in the examples
given in Section 3.2 and also in many other commonly treated problems. When the
modulusω+(ε,F ,G) is Hölderian writeq(F ,G) for the exponent of the modulus.
That is,

ω+(ε,F ,G) � εq(F ,G).

Also setq(G) = q(G,G).
Without loss of generality, assumeq(F1) ≥ q(F2). Throughout the remainder

of the paperC is used to denote a generic constant which may vary from place
to place and setF = F1 ∪ F2. Note thatq(F1,F ) = min{q(F1), q(F1,F2)} and
q(F ) = min{q(F1), q(F2), q(F1,F2)}. In this setup strongly adaptive confidence
intervals exist if and only ifq(F1,F ) = q(F1) or equivalentlyq(F1) ≤ q(F1,F2).

There are four cases of interest.

Case 1. q(F2) ≤ q(F1) ≤ q(F1,F2). In this caseq(F1,F ) = q(F1) and
strongly adaptive confidence intervals exist. These intervals have maximum
expected length which can attain the same optimal rate of convergence as the
minimax confidence interval over knownFi . Specific shape restricted examples
are given in Section 3.2 which illustrate this case and more general theory.
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Case 2. q(F1,F2) = q(F2) < q(F1). In this caseq(F1,F ) < q(F1) and thus
strongly adaptive confidence intervals do not exist. Adaptive confidence intervals
of level 1− α over F1 andF2 have maximum expected length overF1 which
satisfies

L(CI,F1) ≥
(

1

2
− α

)
ω+

(
zα√
n
,F1,F

)
� n−q(F )/2.(21)

In contrast, if it is known thatf ∈ F1, 1 − α level confidence intervals can be
constructed which satisfy

L(CI,F1) ≤ Cn−q(F1)/2 � Cn−q(F )/2.

Hence from this point of view the cost of adaptation is substantial. The rate of
convergence of the maximum expected length ofCI overF1 is the same as that for
the maximum expected length overF .

EXAMPLE 1. Consider estimating the linear functionalTf = f (0) over
Lipschitz classes based on the Gaussian observations given in (1). For 0< β ≤ 1
and−1

2 ≤ a < b ≤ 1
2, the Lipschitz function class over the interval[a, b] is defined

as

F(β,M, [a, b])
= {

f :
[−1

2, 1
2

] → R, |f (x) − f (y)| ≤ M|x − y|β for x, y ∈ [a, b]}.(22)

It is also convenient to writeF(β,M) for F(β,M, [−1
2, 1

2]).

Let 0 < β2 < β1 ≤ 1, setFi = F(βi,M) for i = 1,2. In this case standard
calculations as, for example, outlined in Cai and Low (2002) show thatω(ε,F1) =
Cε2β1/(2β1+1)(1+ o(1)) andω(ε,F1,F2) = Cε2β2/(2β2+1)(1+ o(1)). Hence

q(F1,F ) = q(F1,F2) = 2β2

2β2 + 1
< q(F1) = 2β1

2β1 + 1
.

Case 3. q(F2) < q(F1,F2) < q(F1). In this caseq(F1,F ) < q(F1) and
strongly adaptive confidence intervals do not exist. Any 1− α level adaptive
confidence intervalCI overF1 andF2, must have maximum expected length ofCI
overF1 satisfying

L(CI,F1) ≥
(

1

2
− α

)
ω+

(
zα√
n
,F1,F

)
� n−q(F1,F2)/2  n−q(F1)/2.(23)

The cost of adaptation in this case is that the rate of convergence of the maximum
expected length ofCI overF1 is slower than that if it is known thatf ∈ F1 but
faster than for the maximum expected length overF2. An example for this case
can be given as follows.
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EXAMPLE 2. Suppose that the white noise with drift process (1) is observed
and that the linear functionalTf = f (0). Let the Lipschitz classF(β,M, [a, b])
be defined as above and letD be the set of all decreasing functions on[−1

2, 1
2].

Set

FD(β1,M1, β2,M2) = F
(
β1,M1,

[−1
2,0

]) ∩ F
(
β2,M2,

[
0, 1

2

]) ∩ D .

Let F1 = FD(γ1,M1, γ2,M2) andF2 = FD(β1,N1, β2,N2) with 1 ≥ γ1 > γ2 >

β1 > β2 > 0. Then as in Cai and Low (2002) it is easy to check that

ω(ε,F1) = Cε2γ1/(2γ1+1)(1+ o(1)
)
,

ω(ε,F2) = Cε2β1/(2β1+1)(1+ o(1)
)
,

(24)
ω(ε,F1,F2) = Cε2γ2/(2γ2+1)

(
1+ o(1)

)
,

ω(ε,F2,F1) = Cε2γ1/(2γ1+1)
(
1+ o(1)

)
.

Note that in this caseω(ε,F1,F2) �= ω(ε,F2,F1)(1+o(1)). Sinceγ1 > γ2, it then
follows from (24) that

q(F1,F ) = q(F1,F2) = 2γ2

2γ2 + 1
.

Hence 0< q(F2) < q(F1,F ) < q(F1) < 1.

Case 4. q(F1,F2) < q(F2) ≤ q(F1). In this case, strongly adaptive confi-
dence intervals do not exist and the cost of adaptation is extraordinary. Iff is
known to be inFi , one can attain the rate of convergencenq(Fi)/2 for the maximum
expected length of the optimal 1−α level confidence interval overFi . Without the
information 1− α level adaptive confidence intervals overF1 andF2 must have
maximum expected length overFi at least of ordern−q(F1,F2)/2. An example is
given below.

EXAMPLE 3. Once again consider the white noise model withTf = f (0).
Let

F(β1,M1, β2,M2) = F
(
β1,M1,

[−1
2,0

]) ∩ F
(
β2,M2,

[
0, 1

2

])
and consider 0< γ2 ≤ γ1 ≤ 1 and 0< β1 ≤ β2 ≤ 1. SetF1 = F(γ1,M1, γ2,M2)

and F2 = F(β1,N1, β2,N2). Standard calculations show thatω(ε,F1) =
Cε2γ1/(2γ1+1)(1 + o(1)) and ω(ε,F2) = Cε2β2/(2β2+1)(1 + o(1)). The between
class modulus is given as

ω(ε,F1,F2) = Cε2ρ/(2ρ+1)
(
1+ o(1)

)
(25)

whereρ = max(min(γ1, β1),min(γ2, β2)).
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Whenγ1 ≥ β2 > β1 ≥ γ2, the quantityρ in (25) equalsβ1 and hence

q(F1,F2) = 2β1

2β1 + 1
.

Therefore in this caseq(F1,F2) < min(q(F1), q(F2)).

3. Adaptation over nested parameter spaces. Section 2 gave the adaptation
theory for two convex parameter spaces. This theory can be extended to more
general collections of parameter spaces. In this section the focus is on adaptation
over a collection of a finite or countably infinite number of nested convex
parameter spaces,F1 ⊂ F2 ⊂ · · · ⊂ Fk, where in the case ofk = ∞, F∞ denotes⋃∞

i=1 Fi . The objective is, for a given linear functionalTf , to construct variable
length confidence intervals which have coverage probability of at least 1− α

overFk and which simultaneously minimize the expected length over each of the
parameter spacesFj . A target for these expected lengths has been provided by the
lower bound given in Theorem 1, namely

L∗
α(Fj ,Fk) ≥

(
1

2
− α

)
ω+

(
zα√
n
,Fj ,Fk

)
(26)

whereω+(ε,Fj ,Fk) is the between class modulus as given in (5).
The major result of this section is to show that adaptive confidence intervals

exist and to construct such adaptive intervals. As in Section 2.2 the construction of
these adaptive confidence procedures relies on the ordered modulusω(ε,Fi ,Fj )

as given in (4). For 1≤ i, j ≤ k setωi,j = ω(
zα/2√

n
, Fi,Fj ) and letT̂i,j be linear

estimators with variances and biases bounded as in (13)–(15).
The confidence procedure is built in two steps. In the first step for each

1 ≤ j ≤ k an interval is constructed which controls the coverage probability
overFk and which also has expected length overFj within a constant factor of
the lower bound given by (26). In the second step these intervals are combined to
create a single interval which maintains coverage while simultaneously attaining
an expected length over everyFj within a fixed constant factor of the lower bound
given in (26).

For the first step define the confidence intervalsCI∗
j as follows. For 1≤ j ≤ k

setξj = ω+(
zα/2√

n
,Fj ,Fk) and defineCI∗

j by

CI∗
j =

[
T̂j,k + T̂k,j

2
− {(T̂j,k − T̂k,j )+ + 2ξj },

T̂j,k + T̂k,j

2
+ {(T̂j,k − T̂k,j )+ + 2ξj }

]
.

(27)

Lemma 2 shows that these intervals have guaranteed coverage overFk and near
optimal expected length overFj .
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REMARK 4. This interval is designed for 0< α ≤ 0.2. If 0.2 < α ≤ 0.5 all
subsequent results hold with minor modifications, as noted in later remarks, when
the interval is replaced by

CI∗
j =

[
T̂j,k + T̂k,j

2
− {(T̂j,k − T̂k,j )+ + 3ξj },

T̂j,k + T̂k,j

2
+ {(T̂j,k − T̂k,j )+ + 3ξj }

]
.

(28)

LEMMA 2. For 0 < α ≤ 0.2, the confidence interval CI∗
j defined in (27) has

coverage probability of at least 1− 2
7α for all f ∈ Fk and satisfies

L(CI ∗
j ,Fj ) ≤

{
2�

(
1

2
zα/2

)
+ 4√

2πzα/2
exp

(
−1

8
z2
α/2

)
+ 4

}
· ξj

≤ 8ω+
(

zα/2√
n

,Fj ,Fk

)
.

(29)

REMARK 5. For 0.2 < α ≤ 0.5 the interval given in (28) satisfies the same
coverage but has expected length bounded by 10ω+(

zα/2√
n
,Fj ,Fk).

In the following proof, and throughout the rest of the paper, writeZ for a
standard Normal random variable.

PROOF OFLEMMA 2. Lemma 2 gives a bound on both coverage probability
and expected length. First consider coverage probability. It is easy to see that the
intervalCI∗

j contains the intervalCIj defined as

CIj = [T̂k,j − 2ξj , T̂j,k + 2ξj ](30)

where the intervalCIj is taken to be the empty set whenever the left endpoint
of the above interval is larger than the right endpoint. First note that forf ∈ Fk ,
ET̂k,j − Tf ≤ 1

2ωk,j and thatET̂j,k − Tf ≥ −1
2ωj,k . Let

zk,j = T̂k,j − Tf − (1/2)ωk,j

ωk,j /zα/2
,

zj,k = T̂j,k − Tf + (1/2)ωj,k

ωj,k/zα/2
.

Then for anyf ∈ Fk it follows from (14) and (15) thatzk,j has a Normal
distribution with mean less than or equal to zero and variance bounded by 1,
andzj,k has a Normal distribution with mean greater than or equal to zero and
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variance bounded by 1. Note thatξj = max(ωk,j ,ωj,k). Hence forf ∈ Fk ,

P (Tf /∈ CI ∗
j ) ≤ P (Tf /∈ CIj )

≤ P

(
zk,j >

(
2

ξj

ωk,j

− 1

2

)
zα/2

)
+ P

(
zj,k ≥

(
−2

ξj

ωj,k

+ 1

2

)
zα/2

)

≤ 2P

(
Z ≥ 3

2
zα/2

)
.

Note that for a fixedλ > 1, it is easy to verify thatg(z) = P (Z ≥ λz)/P (Z ≥ z) is
a strictly decreasing function ofz for z > 0 and forα = 0.2,

2P
(
Z ≥ 3

2zα/2
) ≤ 2

7α.

Hence,P (Tf /∈ CI∗
j ) ≤ 2

7α and so the claim of the required coverage probability
has been established.

Now turn to the bound on expected length given in (29) for which the following
technical lemma is needed.

LEMMA 3. Let X ∼ N(µ,σ 2) with µ ≤ µ0 and 0 < σ ≤ σ0. Then

EX1(X > 0) ≤ µ0�

(
µ0

σ0

)
+ σ0√

2π
exp

(
− µ2

0

2σ 2
0

)
.(31)

PROOF. It is easy to check by taking partial derivatives thatEX1(X > 0) is
an increasing function of bothµ andσ . Hence

Eµ,σX1(X > 0)

≤ Eµ0,σ0X1(X > 0)

= 1√
2πσ0

∫ ∞
0

x exp
(
−(x − µ0)

2

2σ 2
0

)
dx

= 1√
2πσ0

∫ ∞
0

µ0 exp
(
−(x − µ0)

2

2σ 2
0

)
dx + σ0√

2π

∫ ∞
−µ0/σ0

y exp
(
−y2

2

)
dy

= µ0�

(
µ0

σ0

)
+ σ0√

2π
exp

(
− µ2

0

2σ 2
0

)
. �

Now note that forf ∈ Fj ,

E(T̂j,k − T̂k,j ) ≤ ξj and Var(T̂j,k − T̂k,j ) ≤ 4

z2
α/2

ξ2
j ,

and so from Lemma 3 it follows that

E(T̂j,k − T̂k,j )+ ≤
{
�

(
1

2
zα/2

)
+ 2√

2πzα/2
exp

(
−1

8
z2
α/2

)}
· ξj ≤ 2ξj(32)
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and hence (29) is satisfied.�

Lemma 2 shows that the intervalCI ∗
j has guaranteed coverage overFk and

near optimal expected length overFj . Before turning to the construction of an
adaptive confidence interval we state a simple preliminary lemma. The proof is
straightforward and not given here.

LEMMA 4. Let 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξk be a sequence of monotonically
increasing positive numbers. Then there exists a unique subsequence ξj1 < ξj2 <

· · · < ξjm with jm = k, such that for all 1 ≤ i ≤ m,

ξji
≥ 2ξji−1 and ξji

< 2ξj for all ji−1 < j < ji(33)

where we set j0 = 0 and ξ0 = 0.

The construction of the adaptive confidence interval proceeds as follows. Once
again for 1≤ j ≤ k, setξj = ω+(

zα/2√
n
,Fj ,Fk). Let ξj1 < ξj2 < · · · < ξjm be the

subsequence satisfying (33). Letĵ be the index of the shortest interval among all
theCI∗

ji
for 1≤ i ≤ m. More precisely,

ĵ = arg min
ji ,1≤i≤m

L
(
CI∗

ji

)
.

Then the adaptive confidence interval forTf is defined by

CI∗ = CI∗
ĵ
.(34)

The following theorem shows thatCI∗ is a 1− α level adaptive confidence
interval over the collection{Fj , j = 1, . . . , k}.

THEOREM 2. The confidence interval CI∗ defined in (34) has coverage
probability of at least 1− α for all f ∈ Fk , that is, CI∗ ∈ Iα,Fk

and satisfies

L∗
α(Fj ,Fk) ≤ L(CI∗,Fj ) ≤ 16zα/2

(1/2− α)zα

L∗
α(Fj ,Fk)(35)

simultaneously for all 1 ≤ j ≤ k. Moreover,

L
(
CI∗,Fji

) ≤ 8ω+
(

zα/2√
n

,Fji
,Fk

)
(36)

for all 1≤ i ≤ m, and for all 1 ≤ j ≤ k

L(CI∗,Fj ) ≤ 16ω+
(

zα/2√
n

,Fj ,Fk

)
.(37)
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The proof of Theorem 2 rests on the following important technical lemma.
Recall that Lemma 2 gives a lower bound on coverage overFk and an upper bound
on expected length overFj . Lemma 5 shows, in a precise way, that ifCI ∗

j has a
large expected length it must have high coverage probability.

LEMMA 5. If f ∈ Fk and

P (Tf /∈ CI∗
j ) > 2P

(
Z ≥ 1

4(λ + 3)zα/2
)
,

then

E(T̂j,k − T̂k,j ) ≤ λξj .

PROOF. First note that

P (Tf /∈ CI∗
j ) ≤ P

(
Tf ≤ T̂j,k + T̂k,j

2
− (T̂j,k − T̂k,j + 2ξj )

)

+ P

(
Tf ≥ T̂j,k + T̂k,j

2
+ (T̂j,k − T̂k,j + 2ξj )

)
.

Now note that

−1

2
ξj − 1

2
E(T̂j,k − T̂k,j ) ≤ E

T̂j,k + T̂k,j

2
− Tf ≤ 1

2
ξj + 1

2
E(T̂j,k − T̂k,j ).

Let X = T̂j,k+T̂k,j

2 − Tf − (T̂j,k − T̂k,j + 2ξj ). Suppose that

E(T̂j,k − T̂k,j ) > λξj .

Then

E(X) ≤ −1
2(λ + 3)ξj and Var(X) ≤ 4

z2
α/2

ξ2
j .

Hence

P

(
Tf ≤ T̂j,k + T̂k,j

2
− (T̂j,k − T̂k,j + 2ξj )

)
= P (X ≥ 0)

≤ P

(
Z ≥ 1

4
(λ + 3)zα/2

)
.

Similarly,

P

(
Tf ≥ T̂j,k + T̂k,j

2
+ (T̂j,k − T̂k,j + 2ξj )

)
≤ P

(
Z ≥ 1

4
(λ + 3)zα/2

)
.

Hence,

P (Tf /∈ CI∗
j ) ≤ 2P

(
Z ≥ 1

4(λ + 3)zα/2
)
. �
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PROOF OFTHEOREM 2. Note that it suffices to prove (36) since (37) follows
immediately from (36) and (35) is a direct consequence of (20), (7) and (37).
For (36) assume without loss of generality thatξj ≥ 2ξj−1 for all 1 ≤ j ≤ k;
otherwise we can work along the subsequence. First note that sinceCI∗ is the
shortest of all theCI∗

j confidence intervals Lemma 2 yields that the expected length
of CI∗ satisfies

L(CI∗,Fj ) ≤ L(CI∗
j ,Fj )

≤
{

2�

(
1

2
zα/2

)
+ 4√

2πzα/2
exp

(
−1

8
z2
α/2

)
+ 4

}
· ξj

≤ 8ξj .

(38)

Now turn to the proof of coverage. Note that

P (Tf /∈ CI∗) =
k∑

j=1

P (Tf /∈ CI∗
j ∩ ĵ = j)

≤
k∑

j=1

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}.

(39)

For l ≥ 0, denoted(l) = 2P (Z ≥ 1
4(l + 6)zα/2). Note thatd(0) = 2P (Z ≥

3
2zα/2) ≤ 2

7α. For l ≥ 1 let

Al = {j :d(l) < P (Tf /∈ CI ∗
j ) ≤ d(l − 1)}(40)

and letj (l) = min{j : j ∈ Al}. Note that it follows from Lemma 2 that
⋃

l Al =
{j ≥ 1}. Then by Lemma 5

E
(
T̂j (l),k − T̂k,j (l)

) ≤ (l + 3)ξj (l).(41)

Note that Var(T̂j (l),k − T̂k,j (l)) ≤ 4
z2
α/2

ξ2
j , so

P
(
L

(
CI∗

j (l)

)
> 4ρξj (l)

) = P
(
T̂j (l),k − T̂k,j (l) > 2(ρ − 1)ξj (l)

)
≤ P

(
Z ≥ (

ρ − 5
2 − 1

2l
)
zα/2

)
.

Sinceξj ≥ 2ξj−1, it follows that, for any integerm > 0,

P
(
ĵ ≥ j (l) + m

) ≤ P
(
L

(
CI∗

j (l)

)
> 4ξj (l)+m

)
≤ P

(
L

(
CI∗

j (l)

)
> 4 · 2mξj (l)

)
≤ P

(
Z ≥ (

2m − 5
2 − 1

2l
)
zα/2

)
≡ γl,m.
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Let j∗ = min{j (l) : 1 ≤ l ≤ 8}. For m = 3 and 1≤ l ≤ 8, γl,m = P (Z ≥ 1
2(11−

l)zα/2). If j∗ = j (1), then

k∑
j=j∗

min{P (Tf /∈ CI∗
j ),P (ĵ = j)} ≤ d(0) + d(0) + d(0) + γ1,3

≤ 6
7α + P (Z ≥ 5zα/2).

Similarly, if j∗ = j (l) for some 2≤ l ≤ 8, then

k∑
j=j∗

min{P (Tf /∈ CI∗
j ),P (ĵ = j)} ≤ d(l − 1) + d(0) + d(0) + γl,3

≤ 6
7α + P (Z ≥ 5zα/2).

Hence

k∑
j=j∗

min{P (Tf /∈ CI∗
j ),P (ĵ = j)} ≤ 6

7α + P (Z ≥ 5zα/2).(42)

The following simple lemma can be used to boundP (Z ≥ 5zα/2).

LEMMA 6. Let Z ∼ N(0,1) and let a > 0 and b > 0 be two constants. Then

P (Z ≥ a + b) ≤ exp
(−(

ab + 1
2b2))P (Z > a).

Applying Lemma 6 witha = zα/2 andb = 4zα/2, it follows that

P (Z ≥ 5zα/2) = P (Z ≥ zα/2 + 4zα/2)

≤ exp(−12z2
α/2) · α

2
≤ 1

14
α.

Therefore

P (Tf /∈ CI∗) ≤
k∑

j=1

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}

≤ 13
14α +

∞∑
l=9

∑
j∈Al

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}.

For l ≥ 9, let ml be the smallest integer satisfying 2ml ≥ 1
4(3l + 7). Thenml ≤

log2(3l + 7) − 1. Recall that forj ∈ Al , P (Tf /∈ CI∗
j ) ≤ 2P (Z ≥ 1

4(l + 3)zα/2).
Now note that

P
(
ĵ ≥ j (l) + ml

) ≤ γl,ml
≤ P

(
Z ≥ 1

4(l + 3)zα/2
)
.



1824 T. T. CAI AND M. G. LOW

So, forl ≥ 9, ∑
j∈Al

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}

≤ ml · 2P
(
Z ≥ 1

4(l + 3)zα/2
) + γl,ml

≤ (2ml + 1)P
(
Z ≥ 1

4(l + 3)zα/2
)
.

So
∞∑
l=9

∑
j∈Al

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}

≤
∞∑
l=9

(
2 log2(3l + 7) − 1

)
P

(
Z ≥ 1

4(l + 3)zα/2
)
.

Lemma 6 yields

P

(
Z ≥ 1

4
(l + 3)zα/2

)
≤ P

(
Z ≥ zα/2 + 1

4
(l − 1)zα/2

)

≤ exp
(
−

(
1

4
(l − 1) + 1

32
(l − 1)2

)
z2
α/2

)
· α

2
.

Hence,
∞∑
l=9

∑
j∈Al

min{P (Tf /∈ CI∗
j ),P (ĵ = j)}

≤ α

2

∞∑
l=9

(
2 log2(3l + 7) − 1

)
exp

(
−

(
1

4
(l − 1) + 1

32
(l − 1)2

)
z2
α/2

)

≤ α

2

∞∑
l=8

(
2 log2(3l + 10) − 1

)
exp

(
−z2

α/2

32
l2

)
exp

(
−z2

α/2

4
l

)
.

It is easy to see that forl ≥ 8, (2 log2(3l + 10) − 1)exp(−(z2
α/2/32)l2) is strictly

decreasing and

(
2 log2(3l + 10) − 1

)
exp

(
−z2

α/2

32
l2

)
≤ 1

2
.

So,
∞∑
l=9

∑
j∈Al

min{P (Tf /∈ CI∗
j ),P (ĵ = j)} ≤ 1

4
α

∞∑
l=8

exp
(
−z2

α/2

4
l

)
≤ 1

14
α.

Hence,

P (Tf /∈ CI∗) ≤ 13
14α + 1

14α = α. �
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3.1. Adaptation over nearly nested parameter spaces. In some common cases
of interest such as Hölder spaces, Sobolev spaces and Besov spaces, the parameter
spaces are not exactly nested, but have nested structure in terms of the moduli of
continuity. Theorem 2 can be generalized to such nearly nested parameter spaces.

Denote by C.Hull(F ) the convex hull of a parameter setF . LetFi , i = 1, . . . , k,
be convex parameter spaces and for any integer 1≤ m ≤ k let Gm = ⋃m

l=1 Fl .
Suppose the following condition, which is trivially satisfied ifFi are nested, holds.

CONDITION C. For 1≤ j ≤ k and some constantsC2 ≥ C1 > 0,

ω
(
ε,C.Hull(Gj ),C.Hull(Gk)

) ≤ C1ω(ε,Gj ,Gk) ≤ C2ω(ε,Fj ,Fk)

and

ω
(
ε,C.Hull(Gk),C.Hull(Gj )

) ≤ C1ω(ε,Gk,Gj ) ≤ C2ω(ε,Fk,Fj )

for all 0 < ε < ε0.

Similarly to the nested case for 1≤ i, j ≤ k, setω′
i,j = ω(

zα/2√
n
,C.Hull(Gi),

C.Hull(Gj )), and once again Cai and Low (2004) give a construction of linear
estimatorsT̂ ′

i,j which have variance bounded by

Var(T̂ ′
i,j ) ≤ 1

z2
α/2

ω′
i,j

2

and bias which satisfies

inf
f ∈Fj

(
E(T̂ ′

i,j ) − Tf
) ≥ −1

2ω′
i,j

and

sup
f ∈Fi

(
E(T̂ ′

i,j ) − Tf
) ≤ 1

2ω′
i,j .

Set ξ ′
j = ω+(

zα/2√
n
,C.Hull(Gj ),C.Hull(Gk)) and define the confidence inter-

vals CI∗
j as earlier. When 0< α ≤ 0.2, let

CI∗
j =

[ T̂ ′
j,k + T̂ ′

k,j

2
− {(T̂ ′

j,k − T̂ ′
k,j )+ + 2ξ ′

j },

T̂ ′
j,k + T̂ ′

k,j

2
+ {(T̂ ′

j,k − T̂ ′
k,j )+ + 2ξ ′

j }
](43)

and when 0.2 < α < 0.5 let

CI∗
j =

[ T̂ ′
j,k + T̂ ′

k,j

2
− {(T̂ ′

j,k − T̂ ′
k,j )+ + 3ξ ′

j },

T̂ ′
j,k + T̂ ′

k,j

2
+ {(T̂ ′

j,k − T̂ ′
k,j )+ + 3ξ ′

j }
]
.

(44)
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Following the argument given in the nested case letξ ′
ji

be a subsequence ofξ ′
j

satisfying (33) and let̂j = arg minji ,1≤i≤m L(CI∗
ji
) be the index of the shortest

interval along the subsequence and define the adaptive confidence interval forTf

by

CI∗ = CI∗
ĵ
.(45)

As stated precisely in the following result this confidence interval is adaptive over
the parameter spaces{Fj : j = 1, . . . , k}.

PROPOSITION 3. Suppose Condition C holds. Then the confidence inter-
val CI∗ defined in (45) has coverage probability of at least 1 − α for all f ∈
F = ⋃k

j=1Fj and satisfies the lower bound on expected length,

L∗
α(Fj ,F ) ≤ L(CI∗,Fj ) ≤ C(α)L∗

α(Fj ,F ),(46)

simultaneously for all 1 ≤ j ≤ k, where the constant C(α) only depends on α

and is independent of k. In other words, L(CI∗,Fj ) � ω+(
zα/2√

n
,Fj ,F ) for all

1 ≤ j ≤ k.

We omit the proof of Proposition 3 since it essentially follows a similar path to
that of Theorem 2.

3.2. Examples. Theorem 2 and Proposition 3 have established general adap-
tation results for collections of nested or nearly nested parameter spaces. In this
section a couple of examples are given which illustrate this general theory.

Suppose that we observe the white noise with drift process (1) and that the linear
functional is point evaluation. For convenience takeTf = f (0). Let D be the set
of all decreasing functions on[−1

2, 1
2] and letFD(β,M) = F(β,M) ∩ D be the

collection of monotonically decreasing Lipschitz functions whereF(β,M) is the
Lipschitz class defined in (22).

For integerj ≥ 1 let Mj = 2j (2β+1) 1√
n

and letG = ⋃∞
j=1FD(β,Mj). Standard

calculations as in, for example, Donoho and Liu (1987), yield

ω
(
ε,FD(β,M),G

) = ω
(
ε,G,FD(β,M)

)
= (2β + 1)1/(2β+1)M1/(2β+1)ε2β/(2β+1)

(47)

for M ≥ (2β + 1)1/2ε. Let ξj = ω(
zα/2√

n
,FD(β,Mj),G). Then it is easy to see that

ξj+1 = 2ξj and hence the adaptive confidence interval given in (34) has coverage
probability overG of at least 1− α and satisfies

L
(
CI∗,FD(β,Mj)

) ≤ 6(2β + 1)1/(2β+1)M
1/(2β+1)
j z

2β/(2β+1)
α/2 n−β/(2β+1).(48)

Furthermore, for anyM > 0,

L
(
CI∗,FD(β,M)

) ≤ 12(2β + 1)1/(2β+1)M1/(2β+1)z
2β/(2β+1)
α/2 n−β/(2β+1)(49)
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for all sufficiently largen.
Another common problem in function estimation is to adapt over smoothness

classes. For fixedM > 0, the classesFD(γ1,M) ⊂ FD(γ2,M) whenever 0< γ2 <

γ1 ≤ 1. LetG′ = ⋃
0≤γ≤1 FD(γ,M). Then once again standard calculations yield

ω
(
ε,FD(β,M),G′) = ω

(
ε,G′,FD(β,M)

)
= (2β + 1)1/(2β+1)M1/(2β+1)ε2β/(2β+1).

(50)

Now let 1= β1 > β2 > · · · be the sequence such that

ω+
(

zα/2√
n

,FD(βj+1,M),G′
)

= 2ω+
(

zα/2√
n

,FD(βj ,M),G′
)
.

Then the adaptive confidence interval given in (34) has coverage probability
overG′ of at least 1− α and satisfies

L
(
CI∗,FD(βj ,M)

)
≤ 6(2βj + 1)1/(2βj+1)M1/(2βj+1)z

2βj/(2βj +1)

α/2 n−βj /(2βj+1).
(51)

Furthermore, for any 0< β ≤ 1,

L
(
CI∗,FD(β,M)

) ≤ 12(2β + 1)1/(2β+1)M1/(2β+1)z
2β/(2β+1)
α/2 n−β/(2β+1)(52)

for all sufficiently largen.

4. Adaptation over a general collection of convex parameter spaces.
Section 3 focused on collections of nested parameter spaces. It has been shown
that the between class modulus of continuity completely characterizes the optimal
expected length of adaptive confidence intervals. One particularly interesting
feature of the nested case is that the optimal expected length of the confidence
intervals does not depend on the number of parameter spaces in the collection.

The nested case, although interesting, is somewhat special. In this section
general finite collections of convex parameter spaces are considered. In this general
setting the theory is more complicated and in general the number of parameter
spaces, sayk, may also play a role in the optimal expected length of adaptive
confidence intervals. For a fixed and finite number of parameter spaces the optimal
expected length of adaptive intervals is still within a constant factor of the between
class modulus of continuity. However the constant factor in this case can depend
on the number of parameter spaces. We construct adaptive confidence intervals
which show that this constant factor does not grow faster than

√
logk and we give

an example which shows that this factor is sometimes necessary.
Let {Fj : j = 1, . . . , k} be a collection of convex spaces with nonempty

intersections, that is,Fi ∩ Fj �= ∅ for all i, j . The objective is to construct
an adaptive confidence interval for a linear functionalTf which has guaranteed
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coverage probability of 1− α overG = ⋃k
j=1Fj and rate optimal expected length

over each of the parameter spacesFj .
The adaptive confidence interval given in this section differs substantially from

that given in the nested case. However, the general strategy for constructing
adaptive confidence intervals in this setup is similar to that of the nested case.
In particular, a key step is to first construct an interval which has optimal expected
length over one of the parameter spaces while attaining coverage probability over
the union of the parameter spaces.

4.1. Constrained optimal expected length confidence intervals. As mentioned
above, it is convenient to construct a confidence interval which has shortest
possible expected length over a givenFj while maintaining coverage probability
overG = ⋃k

j=1Fj .
First note that for any confidence intervalCI ∈ Iα,G, Theorem 1 yields a target

for the expected length

L(CI,Fj ) ≥
(

1

2
− α

)
ω+

(
zα√
n
,Fj ,G

)
.(53)

As in Section 2.2, for 1≤ i, j ≤ k setωi,j = ω(
zα/2√

n
,Fi ,Fj ) and letT̂i,j be a

linear estimator which has variance bounded by1
z2
α/2

ω2
i,j and bias which satisfies

inf
f ∈Fj

(
E(T̂i,j ) − Tf

) ≥ −1
2ωi,j(54)

and

sup
f ∈Fi

(
E(T̂i,j ) − Tf

) ≤ 1
2ωi,j .(55)

As a first step in the construction of adaptive confidence intervals, defineCI∗
j,α

by

CI∗
j,α =

[
min

i

{
T̂i,j − 3

2ωi,j

}
,max

i

{
T̂j,i + 3

2ωj,i

}]
.(56)

The following result shows that this confidence interval attains the lower bound
on the maximum expected length overFj given in (53) and satisfies the constraint
that it has the minimum coverage of 1− α for all f ∈ G.

PROPOSITION 4. Let Fj , j = 1, . . . , k, be convex parameter spaces with
Fi ∩ Fj �= ∅ for all i, j and let G = ⋃k

j=1Fj . Let the interval CI∗
j,α be defined as

in (56).Then CI∗
j,α ∈ Iα,G and CI∗

j,α has expected length over Fj satisfying

L∗
α(Fj ,G) ≤ L(CI∗

j,α,Fj ) ≤
{

8
√

log(k + 1) + 4zα/2

(1/2− α)zα

}
· L∗

α(Fj ,G).(57)
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REMARK 6. It follows from (59) that the expected length of the confidence
intervalCI∗

j,α is rate optimal asn → ∞ as long ask remains fixed.

PROOF OF PROPOSITION 4. First consider the coverage probability of the
intervalCI∗

j,α. Supposef ∈ Fm for some 1≤ m ≤ k. Note that the intervalCI∗
j,α

contains

CIm,j = [
T̂m,j − 3

2ωm,j , T̂j,m + 3
2ωj,m

]
.

The derivation below shows that the intervalCIm,j has correct coverage proba-
bility. First note that forf ∈ Fm, ET̂m,j − Tf ≤ 1

2ωm,j and thatET̂j,m − Tf ≥
−1

2ωj,m. Let

Xm,j = T̂i,j − Tf − (1/2)ωm,j

ωm,j/zα/2
,

Xj,m = T̂j,m − Tf + (1/2)ωj,m

ωj,m/zα/2
.

Then for anyf ∈ Fm it follows from (54) and (55) thatXm,j has a Normal
distribution with mean less than or equal to zero and variance bounded by 1
andXj,m has a Normal distribution with mean greater than or equal to zero and
variance bounded by 1. Hence, forf ∈ Fm,

P (Tf ∈ CI∗
j,α) ≥ P (Tf ∈ CIm,j )

= P (Xm,j ≥ −zα/2 andXj,m ≤ zα/2)

≥ 1− P (Xm,j ≤ −zα/2) − P (Xj,m ≥ zα/2)

≥ 1− α.

So for anyf ∈ G, P (Tf ∈ CI∗
j,α) ≥ 1−α and thus coverage has been established.

The bounds on the expected length of these intervals can now be obtained by
using the following technical lemma from Dudley [(1999), pages 56 and 57].

LEMMA 7. Let X1,X2, . . . ,Xk be normally distributed random variables with
mean 0 and variance ≤ σ 2. Then

E max
1≤i≤k

|Xi | ≤ σ

(
2+ 4+ log4

log(3/2)

)1/2√
log(k + 1).(58)

Let

ξj = ω+
(

zα/2√
n

,Fj ,G

)
= max

1≤i≤k
{ωi,j ,ωj,i}.

It is easy to see that the length of the intervalCI∗
j,α is bounded by

L(CI∗
j,α) ≤ max

i
(T̂j,i − Tf )+ + max

i
(Tf − T̂i,j )+ + 3ξj .
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Now note that iff ∈ Fj , then for anyi �= j ,

aj,i ≡ E(T̂j,i − Tf ) ≤ 1
2ωj,i

and

bi,j ≡ E(Tf − T̂i,j ) ≤ 1
2ωi,j .

Also note that for any real numbersx andy, (x + y)+ ≤ (x)+ + (y)+. So for
f ∈ Fj the expected length ofCI∗

j,α satisfies

EL(CI∗
j,α) ≤ E max

i
(T̂j,i − Tf )+ + E max

i
(Tf − T̂i,j )+ + 3ξj

≤ E

(
max

i
{(aj,i)+ + (T̂j,i − Tf − aj,i)+}

)

+ E

(
max

i
{(bi,j )+ + (T̂i,j − Tf − bi,j )+}

)
+ 3ξj

≤ E

(
max

i
(T̂j,i − T̂ f − aj,i)+

)
+ E

(
max

i
(T̂i,j − T̂j − bi,j )+

)
+ 4ξj .

It then follows from Lemma 7 that

Ef

(
L(CI∗

j,α)
) ≤ 2

zα/2
ξj

(
2+ 4+ log4

log(3/2)

)1/2√
log(k + 1) + 4ξj

≤
{
8

√
log(k + 1)

zα/2
+ 4

}
ξj

and it follows by taking the supremum overFj that

L(CI∗
j,α,Fj ) ≤

{
8

√
log(k + 1)

zα/2
+ 4

}
ω+

(
zα/2√

n
,Fj ,G

)
.(59)

The proposition now follows by combining (20), (7) and (59).�

4.2. Adaptive confidence intervals. The intervalsCI∗
j,α constructed in the

last section have near optimal expected length overFj but do not control the
expected length over otherFi . In this section adaptive confidence intervals over
{Fj : 1 ≤ j ≤ k} are formed by intersecting such intervals. For a fixedk, the
resulting interval has rate optimal expected length over every parameter spaceFj

for all 1 ≤ j ≤ k. A Bonferroni approach is applied to the intervals of Section 4.1
to yield an adaptive confidence interval.

More specifically, define the confidence intervalCI∗ by

CI∗ =
k⋂

j=1

CI∗
j,α/k(60)
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whereCI∗
j,α are given in(56). The following theorem shows that this confidence

interval has guaranteed coverage probability and also has near optimal expected
length overFj for each 1≤ j ≤ k.

THEOREM 3. Let Fj , j = 1, . . . , k, be convex parameter spaces with Fi ∩
Fj �= ∅ for all i, j and let G = ⋃k

j=1Fj . Let the interval CI∗ be given as in (60).
Then CI∗ ∈ Iα,G and CI∗ satisfies

L∗
α(Fj ,G) ≤ L(CI∗

α,Fj ) ≤ 12zα/2k

(1/2− α)zα

· L∗
α(Fj ,G)(61)

for all 1≤ j ≤ k.

PROOF. The results follow easily from Proposition 4. For anyf ∈ G,
Proposition 4 shows that

P (Tf ∈ CI∗
j,α/k) ≥ 1− α

k
.

Hence, for anyf ∈ G,

P (Tf ∈ CI∗) = 1− P (Tf /∈ CI∗) ≥ 1−
k∑

j=1

P (Tf /∈ CI∗
j,α) ≥ 1− α.

For the expected length note that

L(CI∗,Fj ) ≤ L(CI∗
j,α/k,Fj ) ≤

{
8

√
log(k + 1)

zα/2k

+ 4
}
ω+

(
zα/2k√

n
,Fj ,G

)

for any 1≤ j ≤ k. For 0< α < 0.5, calculations show that√
log(k + 1)

zα/2k

≤ 1

and hence

L(CI∗,Fj ) ≤ 12ω+
(

zα/2k√
n

,Fj ,G

)
.(62)

The theorem now follows by combining (7), (20) and (62).�

REMARK 7. It follows from Lemma 6 thatzα/2k ≤
√

2
z2
α/2

logk + 1 · zα/2.

Hence it follows from (62) and (20) that

L(CI∗,Fj ) ≤ 12ω+
(√

2

z2
α/2

logk + 1 · zα/2√
n

,Fj ,G

)

≤ 12

√
2

z2
α/2

logk + 1 · ω+
(

zα/2√
n

,Fj ,G

)
.
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The ratio of the upper bound just given to the lower bound in (53) is thus clearly
bounded by a constant multiple of

√
logk.

Section 5.2 gives an example of a nearly black object which shows that this√
logk factor cannot in general be improved.

5. Minimax confidence interval for nonconvex parameter spaces. As
mentioned in the Introduction, Donoho (1994) constructed for any convex
parameter spaceF fixed length intervals centered at affine estimators which have
length within a small constant factor of the minimax expected lengthL∗

α(F ).
Although the focus of the present paper is on adaptation the adaptation theory
developed in the previous sections can also be used to yield a minimax theory for
parameter spaces that are finite unions of convex parameter spaces. In this section
confidence intervals with a specified coverage probability are given which also
have near optimal maximum expected length. It is also shown, in contrast to the
theory for convex parameter spaces, that optimal confidence intervals centered on
affine estimators can have expected length much longer than the expected length
of optimal confidence intervals centered at nonlinear estimators.

Let Fi , i = 1, . . . , k, be convex parameter spaces withFi ∩ Fj �= ∅ for all i, j

and letG = ⋃k
i=1 Fi . Note that the parameter spaceG is in general nonconvex. The

minimax expected length of confidence intervalsCI ∈ Iα,G can be bounded above
and below as follows.

Set 0< α < 1
2 and let CI be a 1− α level confidence interval for allf ∈

G = ⋃k
i=1 Fi . It follows from Theorem 1 that the maximum expected length of

CI ∈ Iα,G is bounded below by

L(CI,G) ≥
(

1

2
− α

)
ω

(
zα√
n
,G

)
.(63)

Upper bounds on the minimax expected length can be obtained by considering
the confidence intervalCI∗ as defined in (60). As shown in Theorem 3 this interval
has coverage probability of at least 1− α overG. In addition, it follows from (61)
that the maximum of the expected length ofCI∗ overG satisfies

L(CI∗,G) = max
1≤j≤k

L(CI∗,Fj )

≤ 12 max
1≤j≤k

ω+
(

zα/2k√
n

,Fj ,G

)

= 12ω
(

zα/2k√
n

,G

)
.

(64)

Hence, (63) and (64) together yield the following result on the minimax expected
length of 1− α level confidence intervals overG.
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THEOREM 4. Let G = ⋃k
j=1Fi , where for j = 1, . . . , k Fj are convex spaces

with nonempty intersections and suppose 0 < α < 1
2. Then(

1

2
− α

)
ω

(
zα√
n
,G

)
≤ L∗

α(G) ≤ 12ω
(

zα/2k√
n

,G

)
.(65)

Hence, the confidence intervalCI∗ attains the optimal rate of convergence for
the maximum expected length over the parameter spacesG when the number of
convex subspaces is fixed and finite.

The example of confidence intervals in Section 5.2 for a linear functional of
nearly black objects shows that the factor ofzα/2k � √

logk in the upper bound
of (65) cannot be dropped in general when the numberk of convex subspaces
grows withn.

5.1. Confidence intervals centered at affine estimators. We now consider the
performance of confidence intervals centered at affine estimators over nonconvex
parameter spaces. As mentioned earlier, when the parameter spaceF is assumed
to be fixed and convex, Donoho (1994) and Theorem 1 given in Section 2 together
show that the length of the shortest fixed length confidence interval centered on an
affine estimator is within a fixed constant factor of the maximum expected length
of the optimal confidence interval. Hence there is relatively little to gain by looking
beyond the class of fixed length confidence intervals centered on affine estimators.

The following theorem considers the case when the parameter space is
nonconvex. Once again let C.Hull(F ) denote the convex hull of a parameter
spaceF .

THEOREM 5. Consider the white noise model (1) or the sequence model (2).
Let T̂ be an affine estimator of Tf and γ ≥ 0 a nonnegative random variable. If
CI = [T̂ − γ, T̂ + γ ] is a (variable length) confidence interval centered at T̂ and
CI ∈ Iα,F , then

L(CI,F ) ≥ C(α)ω

(
2zα/2√

n
,C.Hull(F )

)
(66)

where C(α) > 0 is a constant depending on α only. In particular, if the interval CI
is of fixed length, then

L(CI) ≥ 1

2
ω

(
2zα/2√

n
,C.Hull(F )

)
.(67)

PROOF. It is shown in Cai and Low (2004) that the affine estimatorT̂ satisfies

sup
f ∈F

|ET̂ − Tf | = sup
f ∈C.Hull(F )

|ET̂ − Tf |.
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It then follows from Theorem 2 of Low (1995) thatT̂ must satisfy either

sup
f ∈F

|ET̂ − Tf | ≥ 1

4
ω

(
2zα/2√

n
,C.Hull(F )

)
(68)

or

σ
T̂

≥ 1

4zα/2
ω

(
2zα/2√

n
,C.Hull(F )

)
,(69)

whereσ
T̂

denotes the standard deviation of the estimatorT̂ . We now consider the
two cases separately. If (68) holds, then for anyε > 0, there existsf ∈ F such that

Bf ≡ |ET̂ − Tf | ≥ 1

4
ω

(
2zα/2√

n
,C.Hull(F )

)
− ε.(70)

SinceCI = [T̂ − γ, T̂ + γ ] has minimum coverage probability of at least 1− α

overF ,

1− α ≤ Pf (|T̂ − Tf | ≤ γ )

= Pf (|T̂ − Tf | ≤ γ andγ ≤ Bf ) + Pf (|T̂ − Tf | ≤ γ andγ > Bf )

≤ Pf (|T̂ − Tf | ≤ Bf ) + P (γ > Bf ).

SinceT̂ is an affine estimator and thus has a normal distribution, it is easy to check
thatPf (|T̂ − Tf | ≤ Bf ) ≤ 1/2 and hence

P (γ > Bf ) ≥ 1
2 − α.(71)

Letting ε → 0 in (70), it then follows that

Ef L(CI) = 2Ef (γ ) ≥ 2Bf P (γ > Bf )

≥
(

1

4
− α

2

)
ω

(
2zα/2√

n
,C.Hull(F )

)
.

If (69) holds, we have, forf ∈ F ,

1− α ≤ Pf (|T̂ − Tf | ≤ γ )

= P

(
− γ

σ
T̂

− ET̂ − Tf

σ
T̂

≤ Z ≤ γ

σ
T̂

− ET̂ − Tf

σ
T̂

)

≤ P

(
|Z| ≤ γ

σ
T̂

)

= P

(
|Z| ≤ γ

σ
T̂

andγ ≤ z0.25σT̂

)
+ P

(
|Z| ≤ γ

σ
T̂

andγ > z0.25σT̂

)

≤ P (|Z| ≤ z0.25) + P (γ > z0.25σT̂
)
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whereZ denotes a standard normal random variable. Hence

P (γ > z0.25σT̂
) ≥ 1

2 − α.

Consequently,

Ef L(CI) = 2Ef (γ ) ≥ 2z0.25σT̂
P (γ > z0.25σT̂

)

≥ (1− 2α)
z0.25

4zα/2
ω

(
2zα/2√

n
,C.Hull(F )

)

≥ 1− 2α

10zα/2
ω

(
2zα/2√

n
,C.Hull(F )

)
.

Equation (66) now follows by takingC(α) = min{1
4 − α

2 , 1−2α
10zα/2

}. Equation (67)

for the fixed length case is easier to prove and we omit the proof here.�

REMARK 8. Theorem 5 shows that the minimax expected length of con-
fidence intervals centered at affine estimators is determined by the modulus
of continuity over the convex hull ofF , not overF itself. In the case that
ω(ε,C.Hull(F ))  ω(ε,F ), any confidence intervals centered at affine estima-
tors will perform poorly. Such is the case in the near black object example given
in the next section.

5.2. Nearly black object. In this section an example is given which shows
that the factorzα/2k � √

logk in the upper bound of the minimax expected length
given in Theorem 4 cannot in general be dropped. It is also shown that confidence
intervals centered at affine estimators are far from optimal.

Consider the Gaussian sequence model (2) with the index setM = {1,2, . . . , n},
namely

Y (i) = f (i) + n−1/2zi, i = 1, . . . , n,(72)

wherezi
i.i.d.∼ N(0,1). The size of the vector,n, is assumed large. We assume that

the vectorf is sparse: only a small fraction of components are nonzero, and the
indices or locations of the nonzero components are not known in advance.

Denote the�0 quasi-norm by‖f ‖0 = Card({i :f (i) �= 0}). Fix mn. The
collection of vectors with at mostmn nonzero entries is

G = �0(mn) = {f ∈ R
n :‖f ‖0 ≤ mn}.

Assume thatmn is known andmn ≤ nγ whereγ < 1
2.

Such an example is considered in Cai and Low (2004) in the context of
minimax estimation. The model, which arises naturally in wavelet analysis, has
also been studied in Donoho, Johnstone, Hoch and Stern (1992) and Abramovich,
Benjamini, Donoho and Johnstone (2000) for estimating the whole object.



1836 T. T. CAI AND M. G. LOW

Let the linear functionalTf be given by

Tf =
n∑

i=1

f (i),

and following Cai and Low (2004) letI(mn,n) be the class of all subsets of
{1, . . . , n} of mn elements and forI ∈ I(mn,n) let

FI = {f ∈ R
n :f (j) = 0 ∀ j /∈ I }.

Note thatFI is an mn-dimensional subspace spanned by the coordinates inI .
These are obviously convex andG = ∪FI where the union is taken overI in the
setI(mn,n). From now on we shall assume thatI is in the setI(mn,n).

Simple calculations show that for allI, J ∈ I(mn,n)

ω(ε,FI ,FJ ) = √
Card(I ∪ J )ε

and consequently

ω(ε,FI ,G) = ω(ε,G,FI ) = ω(ε,G) = √
2mnε.

REMARK 9. It is easy to see that C.Hull(G) = R
n and henceω(ε,

C.Hull(G)) = √
nε. It follows from Theorem 5 and (66) that any confidence in-

terval with coverage of at least 1− α centered at an affine estimator must have
maximum expected length bounded from below by a fixed constant not depending
onn.

Let k be the number of themn-dimensional parameter spacesFI . Thenk is
equal ton choosemn and it is easy to see that

k =
(

n

mn

)
≤ nmn.

The following result gives a lower bound on the expected length of any
confidence interval with a minimum coverage probability of 1− α overG.

PROPOSITION5. Suppose that we observe the Gaussian sequence model (72),
that n ≥ 4 and mn < nγ with γ < 1

2. Let Tf = ∑n
i=1 f (i) and 0 < α < 1

2. Suppose
that CI(Y ) is a confidence interval for Tf based on (72) and CI(Y ) ∈ Iα,G. Then
for all sufficiently large n,

E0L(CI(Y )) ≥
(

1

2
− α

)
mn√

n

√
1

2
log

(
n

m2
n

)

≥
(

1

2
− α

)√
1

4
− γ

2
· ω

(√
logk√

n
,G

)(73)

where E0 denotes expectation under the Gaussian model (72) with f (i) = 0 for
i = 1,2, . . . , n.
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REMARK 10. It follows immediately from (73) that the maximum expected
length ofCI(Y ) overG satisfies

L
(
CI(Y ),G

) ≥ Cω

(√
logk√

n
,G

)
.(74)

Comparing the lower bound (74) for the maximum expected length with the
minimax upper bound given in (65) shows that the factor

√
logk in the upper

bound for the minimax expected length cannot be dropped in general. A similar
result also holds for adaptation.

PROOF OFPROPOSITION5. In the following proof the calculation of theL1
distance between a mixture of normals and a given normal distribution follows
a similar calculation used in Cai and Low (2004). We include the details of
the calculation here for completeness. In the proof we will omit the subscript
in mn and simply writem for mn. Let ψf be the joint density of the Gaussian
observations given in (72). More specificallyψf is a multivariate normal density
with mean(f (1), f (2), . . . , f (n)) and covariance matrix1

n
An whereAn is the

n × n identity matrix. Fix a constantρ > 0. For I ∈ I(m,n) let fI be defined
by fI (j) = ρ√

n
1(j ∈ I ) and let f0 be the sequence defined byf0(j) = 0 for

j = 1,2, . . . , n. Finally let

ψ∗ = 1(n
m

) ∑
I∈I(m,n)

ψfI
.

Note that a similar mixture prior was used in Baraud (2002) to give lower
bounds in a nonparametric testing problem. Note that for allfI , TfI = m

ρ√
n

and
thatTf0 = 0. Note also that if

PψfI

(
m

ρ√
n

∈ CI(Y )

)
≥ 1− α

for all I ∈ I(m,n) then it follows that

Pψ∗

(
m

ρ√
n

∈ CI(Y )

)
= 1(n

m

) ∑
I∈I(m,n)

ψfI
PψfI

(
m

ρ√
n

∈ CI(Y )

)
≥ 1− α.

Note that ∫
ψ2∗
ψf0

= 1(n
m

)2

∑
I∈I(m,n)

∑
I ′∈I(m,n)

∫
ψfI

ψfI ′
ψf0

,

and simple calculations show that∫
ψfI

ψfI ′
ψf0

= exp(jρ2),
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wherej is the number of points in the setI ∩ I ′. It follows that∫
ψ2∗
ψf0

= E exp(Jρ2),

whereJ has a hypergeometric distribution,

P (J = j) =
(m
j

)(n−m
m−j

)
(n
m

) .

Now note that from Feller [(1968), page 59],

P (J = j) ≤
(

m

j

)(
m

n

)j(
1− m

n

)m−j(
1− m

n

)−m

.

Now suppose thatn ≥ 4 and thatm < n1/2. Then(
1− m

n

)−m

≤ 4m2/n

and hence

P (J = j) ≤ 4m2/n

(
m

j

)(
m

n

)j(
1− m

n

)m−j

.

It now follows that ifn ≥ 4 andm < nγ with γ < 1
2, then

∫
ψ2∗
ψf0

= E exp(Jρ2)

≤ 4m2/n

(
1− m

n
+ m

n
exp(ρ2)

)m

≤ 4m2/n

(
1+ m

n
exp(ρ2)

)m

.

Now takeρ =
√

1
2 log n

m2 . Then

∫
ψ2∗
ψf0

≤ 4n−(1−2γ )
(

1+ 1

n1/2

)nγ

↓ 1.

Hence we can bound theL1 distance by∫
|ψ∗ − ψf0| ≤

(∫
(ψ∗ − ψf0)

2

ψf0

)1/2

=
(∫

ψ2∗
ψf0

− 1
)1/2

≤
(

4n−(1−2γ )
(

1+ 1

n1/2

)nγ

− 1
)1/2

↓ 0.

So for any 0< ε < 1−2α there existsnε such that for alln ≥ nε,
∫ |ψ∗ −ψf0| ≤ ε.
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It follows from the fact thatCI has minimum coverage probability of 1− α and
that theL1 distance betweenψf0 andψ∗ is bounded above byε that

Pψf0

(
m

ρ√
n

∈ CI
)

≥ Pψ∗

(
m

ρ√
n

∈ CI
)

− ε ≥ 1− α − ε.

Hence

Pψf0

(
0 ∈ CI andm

ρ√
n

∈ CI
)

≥ 1− 2α − ε.

SinceCI is an interval the length of this interval must be at leastm
ρ√
n

when both 0
andm

ρ√
n

are in the interval. Hence forn ≥ nε,

Eψf0
L(CI(Y )) ≥ (1− 2α − ε)

m√
n

√
1

2
log

(
n

m2

)
.

Now takeε = 1
2 − α. Then for all sufficiently largen,

Eψf0
L(CI(Y )) ≥

(
1

2
− α

)
m√
n

√
1

2
log

(
n

m2

)

≥
(

1

2
− α

)√
1

4
− γ

2
· ω

(√
logk√

n
,G

)
,

wherek is the number of convex parameter spaces inG. �

REMARK 11. It follows immediately from Proposition 5 that

L∗
α(FI ) ≥

(
1

2
− α

)√
1

4
− γ

2
· ω+

(√
logk√

n
,FI ,G

)
.

Hence the factor ofzα/2k � √
logk for adaptation in the upper bound of Theorem 3

and the same factor for minimax confidence procedures in Theorem 4 cannot in
general be removed.
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