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Convex Hulls of Random Walks

Abstract

Features related to the perimeter of the convex hull C, of a random walk in R2 are studied, with particular
attention given to its length L,,. Bounds on the variance of Ln are obtained to show that, for walks with drift,
L, obeys a strong law. Exponential bounds on the tail probabilities of L, under special conditions are also
obtained. We then develop simple expressions for the expected values of other features of Cn, including the
number of faces, the sum of the lengths and squared lengths of the faces, and the number of faces of length t or
less.
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CONVEX HULLS OF RANDOM WALKS

TIMOTHY LAW SNYDER AND J. MICHAEL STEELE

(Communicated by George C. Papanicolaou)

ABSTRACT. Features related to the perimeter of the convex hull C, of arandom
walkin R? are studied, with particular attention given to its length L, . Bounds
on the variance of L, are obtained to show that, for walks with drift, L,
obeys a strong law. Exponential bounds on the tail probabilities of L, under
special conditions are also obtained. We then develop simple expressions for
the expected values of other features of Cj , including the number of faces, the
sum of the lengths and squared lengths of the faces, and the number of faces
of length ¢ or less.

1. INTRODUCTION

Let Z;j, 1 < j < o0, be a sequence of independent, identically distributed
random vectors with Z; € R?, EZ; = u, and E|Z;]* < co. We set Sp = 0
and let S, denote the partial sum of the Z; over 1 < j < k. The purpose
of this article is to investigate geometrical features of the convex hull C, of
{So, St,...,Sa}, and we are particularly concerned with L,, the length of
the perimeter of C,.

The variable L, was first studied by Spitzer and Widom [11], and, by using
a classical geometrical theorem of Cauchy (cf., Eggleston [6, p. 89]) that says
the length of the perimeter of a convex set is the average of the length of its
projections on a line through the origin, they found an elegant formula for the
expectation

n
1

. = —E|Si]|.
(1.1) EL, 2k§:=lk 1S

Spitzer and Widom’s passage from Cauchy’s formula to (1.1) called upon a
combinatorial identity discovered earlier by Kac and proved by Dyson (cf., Kac
[8]). A different proof of (1.1) was later given by Baxter [1], where the Cauchy
representation was replaced by a purely combinatorial approach.
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1166 T. L. SNYDER AND J. M. STEELE

In §2, we obtain more detailed information concerning the distribution of
L,. This is achieved by coupling the classical representation of Spitzer and
Widom with the theory of jackknife inequalities. The end product is a general
bound on the variance of L,. When the Z; are assumed to have finite variance
and nonzero mean, the variance bound can be used to obtain a law of large
numbers for the length of the boundary of the convex hull of a random walk.

In §3 we obtain strong inequalities for the tail probabilities of L, when
the Z; are assumed to be bounded; namely, we find that if ||Z;||lc < 1, then
P(|L, — EL,| > t) < 2exp(—t?/8nn?). The proof of this inequality rests on
three ingredients: martingale differences, “change-one” random variables from
the theory of jackknife inequalities, and a lemma of Hoeffding [7].

Section 4 provides a simple formula for the expected value of several quanti-
ties related to the faces of C, . For example, for walks without drift, we obtain
an intriguing identity for E Lf,z) , the expected sum of the squared lengths of the
faces

(1.2) ELY® =2n(d} +a}).

Here 0} and o} denote the variances of the coordinates of the summands

Z;=(X;, Y;), and, curiously, EL§,2) does not depend on the correlation of the
coordinates.

The last section focuses on connections between the results of this paper and
basic questions in the theory of algorithms. Brief note is made of some open
problems.

2. THE VARIANCE OF L,

In the course of their proof of the basic identity (1.1), Spitzer and Widom
pointed out a useful representation of L,, namely, that L, equals the average
size of the numerical range of the projections of the set {S;, 0 <k < n} onto
a line with direction 8. Thus, if p(Si, ) denotes the projection of S; onto
the line through the origin that makes an angle 6 with the x-axis, then for all
realizations of the random walk we have

n

@) L= [ [ max p(5c. 0)- min p(si. 0)] a0,
where p(Sk, 8) = Xy cos0 + Y, sin@ for Sy = (Xi, ¥;) and 0< O < 7.

Because of jackknife inequalities like that of Efron and Stein [5], this repre-
sentation of Spitzer and Widom suggests a convenient way to bound the variance
of L,. Although the original Efron-Stein Inequality applies only to functions
of random variables S(X;, Xi, ..., X,) that are almost surely invariant un-
der permutations of their arguments, a modified version given in Steele [12]
can be applied to any real-valued function Y (X, X3, ..., X,) of n indepen-
dent identically distributed random vectors X;. Specifically, if we write ¥ =
Y(X1,X2, .00, Xn) and let YU) = Y(X], Xy, ..., Xj_l, Xj, Xj.,.], cees Xn),
where the 2n random vectors X; and X;, for 1 <i < n,arei.i.d., then Steele
[12] shows that

1 .
(2.2) VarY < S E Y (¥ -y

j=1
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Applying (2.2) to L, viewed as a (non-permutation-invariant) function of
the Z;, we obtain
n

(2.3) VarL, < —;—E (L, — LI,
j=1

where LS{ ) denotes the length of the convex hull of {Sij ), S§j ) s rens S,(,j )} and
the S,(c’) are formed by replacing the jth summand Z; by the independent
copy Z;j . ‘

To bound E(L, — LY)*, we use the parameterized range function

4 = ~ mi
(2.4) R(n, 0) lréllggnp(Sk, 6) lf<_1r;clgnp(Sk, 6),

so the Spitzer and Widom representation (2.1) becomes L, = fg’ R(n, 6)d0.
We can now write

. n 2
(2.5) E(Ly-L{? =E {/ (R(n, 6) = R (n, 9))d9} ,
0

where RU)(n, 6) isjust R(n, 8) with S; replaced by S,(cj) foreach 1<k <n.
Our first lemma bounds t~he change in the range function in terms of Z; and
its redrawn counterpart Z; .

Lemma 2.1. Forall 1<j<n,

(2.6) IR(n, ) — RI(n, 0)| < |p(Z;, 0) ~ (Z;, O)].

Proof. Consider the eﬁect on p(Sy, 8) when Z; isreplaced vyith Z; . If j>k,
then p(Si, 8) =p(SY), 0). If j <k, then p(S, 0) =p(S, 6) +p(Z;, 0) -
p(Z;, 0). Hence, for all j, .

(2.7) p(Sk, 0) <p(S, 0) +[p(Z;, 6) ~ p(Z;, Ol

where we write [x]; = x if x >0 and [x]; =0 if x <0 (and [x]- =0 if
x>0 and [x]- = x if x <0). We therefore have that

() . (7.

(28) llsnka_i_(np(Sk, 0) < I?I?anp(sk i 0) + [p(ZJ > 9) p(Z] » 0)]+ .
Similarly, we find

; : () . — (7.
(29)  min p(Se, 0) > min p(S, 0)+(Z;, 0)=p(Z), O)-,
so, combining (2.8) and (2.9), one has
(2.10) R(n, 8)-R9(n, 0) < p(Z;, )~p(Z;, O~ 1p(Z;, 0)-P(Z;, 0))-;
but, by the identity [x]+ — [x]- = |x| and by the symmetry of R(n, @) and

RU(n, @), we can replace the left side of (2.10) with the corresponding absolute
value, thus completing the lemma. O

If we now insert the bound of Lemma 2.1 into equation (2.5) and apply the
jackknife bound (2.3), we obtain

n n - 2
@.11) varL, <383 | [ 10(2), 0)~p(Z;, 0)1d6) -
j=1

To bound (2.11), write Z; = (X;, ¥;), and let g} and o} be the variances
of the X; and Y;, respectively.
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Lemma 2.2, Forall 1 <j<mn,

n - 2
(2.12) E U lp(Z;, 8) —p(Z;, 9)|d0} < n*(0% +03).
0
Proof. We first apply the Schwarz Inequality to the left-hand side of (2.12) to
get
n . 2 n -
(2.13) E UO lp(Z;, 6) - p(Z;j, 9)!d9} < nE/O Ip(Z;, 0) —p(Z;, 0)*d6.

Since Z; and Z ; are identically distributed, by the definition of p(Z;, 6) one
has

E\p(Z;, 8) - p(Z;, 0)* = 2 Var[p(Z;, 6)]
= 2(0% cos? 6 + o sin? @ + 2 cos 8 sin 8 pxyoxoy),

SO
n _ 7 n
E/ 0(Z;, 0) - p(Z,, O)Pd6 =2 (a}(/ coszf)d9+a,7;/ sin29d9)
0 0 0
n
(2.14) +4pxanay/ cos@sinf do
0

= n(0% + o).
This proves the lemma. 0O

Lemma 2.2 and the jackknife inequality (2.11) provide a basic bound on the
variance of L, .

Theorem 2.3. Forall n>1,
(2.15) Var L, < n’n(c} + 03)/2.
The O(n) bound can be used in a familiar way with an interpolation argu-

ment and the Borel-Cantelli Lemma to give a strong law for L, when p # 0.
To sketch the argument, we first need to check that
(2.16) EL, ~2n|y}.
This follows from the Spitzer and Widom identity (1.1) if E|Sk| ~ k|u|, but,
for summands with finite variance, the latter relation is well known and can be
extracted using, for example, a theorem of Marcinkiewicz and Zygmund (see
Chow and Teicher [4, p. 125]).

Finally, by taking n; = k2 and C = n?(¢%+0%)/2 and applying our variance
bound of Cn; with Chebyshev’s inequality, we find for any ¢ > 0 that

= C 1
(217) . > P((Ln, - EL,)/m > &) < '2?:72 7z <00
We therefore see that (Ly,,, — ELy,)/n; — 0 almost surely as k — oo. Since
EL, is monotone, there is no difficulty in completing the interpolation argument
needed to show that L,/n converges almost surely.

3. LARGE DEVIATIONS

In this section we assume that the steps of the random walk are bounded. We
use the following bound on the moment-generating function of L, to provide
bounds on the tail probabilities of L, — EL,.
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Lemma 3.1. If |Zj|lcc <1, then for all t >0

(3.1) Elexp(t(L, — EL,))] < exp(2nn?t?).

Before proving Lemma 3.1, we note that applying the lemma twice with
Markov’s Inequality gives us a basic tail bound.

Corollary 3.2. If ||Zj|lcoc < 1, then for all t >0

(3.2) P(|L, — EL,| > t) < 2exp(—t*/8nn?).
Proof. We first note that the Spitzer-Widom representation and Jensen’s In-
equality yield

exp(n~'t(L, — EL,)) = exp (—:E /n(R(n ,0)—ER(n, 8)) d(J)

(3.3) 00

<L / exp(t(R(n, 6) — ER(n, 6)))d6..
Tt Jo

Now if % denotes the o-field generated by {Z;, Z,, ..., Z;} and % denotes
the trivial o-field, then we have for each 6 that

n
(3.4) R(n, 0)— ER(n, 0) = d;(6),
Jj=1
where d; is the martingale difference defined by

(3.5) d;(6) = EIR(n, 0)|%] - E[R(n, 6)|F 1]

for 1 < j < n. Asin §2, we use the “change-one” variables RU)(n, @) and
note that since Z; is independent of .%;, we have

(3.6) E[RY(n, 6)|F] = E[R(n, 0)|F_1];
thus, we can write d; conveniently as
(3.7) d;(0) = E[R(n, 8) - RI(n, 0)|F].

By Lemma 2.1 and the bound ||Z;||c < 1, we therefore find that ||d;(0)[|c < 2
forall .
Next we note that

n
exp| 1y d;(6)
j=1
By a lemma of Hoeffding [7, Equation 4.1], if X has mean zero and if || X |l <

a, then E[exp(tX)] < exp(a®t?/2). Applying Hoeffding’s lemma to the expec-
tation of d,(8) in (3.8), we see that

n n—-1
(3.9) E [exp (z > d,-(e))} < exp(2t2)E [exp (z > d,-(@))} )
j=1

3.8) E =E

n—1
exp (tzjd,-w)) E[exp(tdn(e»m_u} :

j=1

j=1
Repeating the argument for n— 1, n—2, ..., we find for all § that
n
(3.10) E|exp| 1) d;i(0) || <exp(2ni®),
j=1

so on returning to (3.3), we can apply (3.10) to obtain (3.1). O
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4. FUNCTIONS OF THE FACE LENGTHS

We will now give a formula that generalizes that of Spitzer and Widom and
provides new information on the expectations of several other features of the
convex hull of a random walk. The derivation of these expectations will depend
on the following

Lemma (Baxter [1]). Let {z,, z2, ..., zn} be vectors in R? such that all 2"

subsets of {z1, 22, ..., zn} have distinct sums. For any permutation ¢ of
1,2,...,n,let s{o) = }:i.‘zl Zguy Jor 1 <k < n, and let so = 0. Then, for
any nonempty m-set AC {1,2,...,n}, thevector z4 = ZjeA z; is a face of
the convex hull c,(c) of {so(c), 51(0), ..., sa(0)} for exactly
(4.1) 2(m — 1)1 (n — m)!
of the permutations of {1,2, ..., n}.
Forany f: R — R, let

Hy,
(4.2) Gn=Y_ f(lel),

i=1
where e, leal, ..., |en,| are the lengths of the faces of the convex hull of
{So, Si,...,Sy}. Here one should note that H, is a random variable. If

we suppose that the Z; for 1 < j < n have a common density, then with
probability one {Z;, 1 < j < n} is a set with distinct subset sums, and we can
apply Baxter’s Lemma. If we let G,(0) = Ga(Z5(1), Zo(2)5 - -+ » Za(n)) > then we
can now determine the sum of G,(g) over all ¢ in terms of a sum over all
nonempty A4 C {1,2,...,n}. Let Cy(o) denote the convex hull of Sp and
Sk(0) = Zgay + -+ + Zoy, where 1 < k < n. Letting Z, denote YieaZj
and 1 the standard indicator function, we have

ST Gu(0) = YD f1Z4)1(Z4 is a face of Cy(0))
o g 4
(4.3) =" fUZ4)D_1(Z4 is a face of Cy(0))
A 4
= ZA:f(IZAIﬂ(lAI = Di(n - 4],
where the last step follows from Baxter’s Lemma. The left side of (4.3) has

expectation n!EG, , so, using the fact that Ef(|Z4]) = Ef(|Sk]) if |4] =k,
we see that

(4.4) nEG(n) =23 (Z)Ef(lskl)(k —)(n-k).
k=1

This yields the following lemma.

Lemma 4.1. If the summands Z;, where 1 < j < k, have a common density,
then, for any f for which E f(|Sk|) exists,

“\ E f(|Sk])
(4.5) EG,=2Y =Lk
2Tk
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The identity (4.5) turns out to be quite powerful. For example, when f(x) =
1, then G, = H,, and we recapture the interesting relation

n
1
(4.6) EH,,=2k§_:lk—~21nn,
which is due to Baxter [1]. Further, if f(x) = x, then (4.5) returns to us the
formula of Spitzer and Widom, (1.1), which was originally proved via Cauchy’s
formula, but here emerges from purely combinatorial calculations.
These two choices of f are not the only ones for which interesting formulas

result. If we consider f(x) = x? and define Lﬁ,z) to be the sum of the squared
edge lengths of C,, then we find for Z; = (X;, Y;) that

ISiP=X+ X+ + X))+ Y+ Yo+ + Y

If we take the X; and Y; to be distributed with mean zero and variance o%
and o2, respectively, then E|Si|> = k(c} +03), so

% 1S, 12 n
(4.7) E [Z L]-"(-L =2 (0} +0}) = 2n(o + 03),
k=1 k=1
from which we find the remarkable formula
(4.8) ELY =2n(c2 + 0});

that is, the expected sum of squares of the faces of the convex hull of a random
walk is just n times twice the variance of an individual step. Although the
development of (4.8) has proceeded somewhat seamlessly, it might otherwise
have been difficult to guess or prove (4.8) without Lemma 4.1.

The lemma can also be used to determine the expected cardinality of subsets
of the faces that satisfy certain properties. As an example, we determine the
expected number of hull faces that are of length ¢ or less under a normality
assumption.

Proposition. If Z; = (X, Y;) areiid. N(O, o2I), then one has an exact ex-
pression for the number of faces e; of C, having length t or less:

n
(4.9) El{i:lel <t} =2 71_(1 _ e~ fl2katy,
k=1
Proof. Let f(x)=1(x <t). To prove (4.9), we use Lemma 4.1:
n
EG, =2 P(l&;{\ <1
k=1

X

x

(4.10) . 2 . 2
1
=2) P (ZX,-) +(_ Y,-) <t
=1 J=1 J=1

Since the X; and Y; are normally distributed, a traditional calculation tells
us that (Efz, X;)?+ (E’;: ; Y;)? is exponentially distributed with mean 1/4 =
2ko?. We see then that P(|Si| < 1) = 1 — e~F/2%" and thus (4.9) follows
immediately. [
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5. CONCLUDING REMARKS

A basic topic in computational geometry is the determination of the convex
hull of point setsin R?. One result of particular interest is the “output sensitive”
algorithm of Kirkpatrick and Seidel [9] that determines the convex hull of an -
set of R? in time O(nlogh), where £ is the number of faces of the convex hull.
The Kirkpatrick-Seidel algorithm asymptotically outperforms older O(nlogn)
algorithms when a point set is such that the number of faces of its convex hull
is relatively small.

This situation prevails in some, but not all, probabilistic contexts. For exam-
ple, Rényi and Sulanke [10] showed that for points selected uniformly from the
unit square, the expected number of hull faces is E4 ~ (8/3)Inn. This implies
that a convex hull for such point sets can be found in O(nloglogn) expected
time by the Kirkpatrick-Seidel algorithm. On the other hand, for variables that
are distributed uniformly in the unit disk, Rényi and Sulanke [10] showed that
Eh ~ an'/3, where « is constant. Thus, for these point sets, we can expect the
Kirkpatrick-Seidel algorithm to run in time that is the same order of magnitude
as that required by older methods.

One of the motivations for studying the convex hull of random walks is that it
provides a second rich stochastic context in which the Klrkpatnck-Seldel algo-
rithm leads to an order of magnitude expected speedup in the time needed
to determine the convex hull. Specifically, the results of §4 imply that an
O(nloglogn) expected running time suffices to determine the convex hull of
a random walk. Though there exist algorithms that run in linear expected time
(see, e.g., Bentley and Shamos [2] and Borgwardt, Gaffke, Jinger, and Reinelt
[3]), these algorithms still exhibit O(rlogn) worst-case behavior.

2

1.0
g6 .

. e

Variance of Length of Hull Boundary, 100 Trials per Value of n {two outliers omitted)

T T Y T
0 50000 100000 150000 200000 250000

n

FIGURE 1
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There are several natural and concrete problems that the methods of this
article leave unresolved. First, the variance bound of O(n) provided by the
jackknife inequality appears to be difficult to improve, but there is no compelling
reason to expect that O(n) is the correct order of magnitude; VarL, may
indeed be smaller. One would expect that an o(n) bound would contribute to
the understanding of the behavior of L, in the zero-drift case. Results from
simulations, however, as illustrated in Figure 1, indicate that an o(n) bound in
the zero-drift case may not hold. In a complementary direction, the analysis of
§4 suggests that a distributional limit result, perhaps even a Poisson law, might
hold for the number of edges of length less than ¢; however, the main tools
used here, the Spitzer-Widom representation and Baxter’s Lemma, do not seem
to offer progress on either of these problems.
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