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A Counterexample Related to a Criterion for a Function to be Continuous

Abstract

A construction is given of a right-continuous function which satisfies an arithmetic continuity condition, but

which is not continuous. The problem is motivated by a familiar criterion for the continuity of sample paths of
a stochastic process.
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A COUNTEREXAMPLE RELATED TO A CRITERION FOR A
FUNCTION TO BE CONTINUOUS

J. MICHAEL STEELE

ABSTRACT. A construction is given of a right-continuous function which satisfies an
arithmetic continuity condition, but which is not continuous. The problem is
motivated by a familiar criterion for the continuity of sample paths of a stochastic
process.

In order to prove the continuity of sample functions of a stochastic process, such
as Brownian motion, one sometimes applies a result like the following proposition
from the forthcoming book of K. L. Chung.

Let f be a real-valued function defined on (-o0, c0) and continuous from the
right everywhere. Suppose that f also has left limits and satisfies

jim [ max I{E2) - A5)|] - o m

then f continuous in (-o0, ).

Professor Chung recently brought to the author’s attention the following ques-
tion: Can one give an example which shows that the assumption of the existence of
left limits cannot be dropped from the preceding proposition? There does not seem
to be an example in the literature, and the arithmetical character of (1) rules out
the trivial candidates. The main objective of this note is to provide a construction
which settles the question and which is sufficiently systematic to prove useful in
related problems.

If Cy(R) denotes the class of continuous functions with compact support, one can

q q

The required example will be constructed as an application of a lemma which
establishes a relation between || f||, and || f]| .

= max
Wlls = ma

LEMMA. Given any integer M and 0 < a < b < 1, there is a real continuous  with
support contained in (a, b) for which (1) ||Y||, > M and (2) ||{||, < 5.

Supposing this lemma for the moment, we take disjoint intervals I; = (a;, b)) with
a; 7 1and b, » 1. By normalizing the functions provided by the lemma, we obtain
functions ¢, such that supp ¢; C I, [|¢]l,, = 1, and ||¢)||, < 1//2forj=1,2,....
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On setting f(x) = 272 19;(x), one immediately sees f(x) is right-continuous but not

continuous; to check (1) we note
(k+1) k (k+1) k
A5) A5 < 2 (55 - o5
The finite sum gives a uniformly continuous function, and the infinite sum can be
made as small as we like. This completes the verification of (1) and construction of
the desired example. The heart of the matter thus rests in proving the lemma we
have just used.

By Fy we denote the fractions in [0, 1] which have denominators no larger than
N. We then define a step as a transition from one p/q € Q to another element of
the form p/q = 1/aq * ¢, where a is an integer and ¢ is any rational for which
le] < 1/N. Next ¢ is defined at each element of Fy N (a, b) as the least number of
steps needed to leave the interval (a, b), and ¢ is defined to be zero at each element
of F N (a, b)°. The definition of y is then extended to R by linear interpolation.

To see that ||y||, < 5, we note [¢((p + 1)/q) — Y(p/q)| < 1if p/q € F) since
at most one more step is needed to leave (p + 1)/q than was required to leave
from p/q. Next consider p/q & F,, and choose rationals r,, r, € F, such that
|y —p/q| <1/N and |r, — (p + 1)/q| < 1/N. Since g > N, one also has |r; —
r,| < 3/N, and consequently |¢(r,;) — Y(r,)| < 3. The fact that [{(r) — ¥(p/q)| <
1 and |yY(r,) — Y((p + 1)/g)| < 1 then completes the proof that |||, < 5.

Now we attend to the more serious matter of showing that N can be chosen so
that |||, > M. To this end consider the interval /;, consisting of the middle third
of (a, b). Let / denote the length of I,, and choose a quadratic irrational a € I,
The only fact needed from diophantine analysis is that for any quadratic irrational
there is a constant ¢ > O such that |p/q — a| > ¢/g*forallp/q € Q[1, p. 45].

First take any p,/ N such that |p,/N — a| < 1/N, and let d; denote the largest
distance one can go from p,/ N in k steps. We then have

<2

Ji<J

+J§J -

1 1
dk+1 <dk+w+§,
where Q is the smallest integer so that for some p one has |[P/Q — p,/N| < d,.. We
have |p/Q — a| < d, + 1/N by the choice of p;, so by bound on |p/q — q]
mentioned above we have

1 1\/2 _,
— — —-1/2
0 < (a'k + N) c .
This proves the basic recursion inequality,

1 1) -1/2
By choosing N prime we can guarantee that p,/N is irreducible and thus 4, <

2/ N. The basic recursion now immediately shows that N can be taken sufficiently
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large to guarantee that d,,,, </. Since a is in the middle third of (a, b), the
inequality d,,,, </ implies that one cannot go from p,/ N to the exterior of (a, b)
in M or fewer steps. This is naturally equivalent to saying y(p,/N) > M, so

l¥]l, > M as claimed.
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