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Shortest Paths Through Pseudo-Random Points in the $d$-Cube

Abstract
A lower bound for the length of the shortest path through n points in [0, Ild is given in terms of the
discrepancy function of the n points. This bound is applied to obtain an analogue for several pseudorandom
sequences to the known limit behavior of the length of the shortest path through n independent uniformly
distributed random observations from [0, l]d.
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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 80, Number 1, September 1980

 SHORTEST PATHS THROUGH PSEUDO-RANDOM

 POINTS IN THE d-CUBE

 J. MICHAEL STEELE1

 ABsTRAcT. A lower bound for the length of the shortest path through n points in
 [0, Ild is given in terms of the discrepancy function of the n points. This bound is
 applied to obtain an analogue for several pseudorandom sequences to the known
 limit behavior of the length of the shortest path through n independent uniformly
 distributed random observations from [0, lJd.

 Introduction For a sequence {z,: 1 < i < oo) of elements of [0, I]d, d > 1, to be
 considered as a candidate for a sequence of pseudorandom observations, it must at

 least be uniformly distributed in the sense that the empirical frequency of any
 subcube must tend to the volume of that subcube [5, pp. 127-157]. For such a

 minimally pseudorandom sequence, it seems of interest to determine the extent to
 which additional features of independent uniformly distributed random variables
 must also hold. The additional feature which is considered in this note is the
 asymptotic growth rate of the shortest path through the initial sample

 { Z1, Z2, . . .* Zn)}
 For a sequence {x,, 1 < i < oo) of independent random variables uniformly

 distributed in [0, I]d, Beardwood, Halton and Hammersley [1] proved that X(n) =
 X(xI, x2, ... ., x"), the length of the shortest path through {xl, x2, .. , x"}, has the
 property that

 lim X(n)/n(d- l)/d = kd (1)

 with probability one for a constant kd > 0.

 While a result of such precision is too much to expect of a general pseudoran-

 dom sequence, a somewhat weaker version of (1) can be obtained in sufficient
 generality to cover a variety of classical cases. To make this precise, first suppose

 [0, I]d is partially ordered (<) by the usual coordinatewise ordering, and for each
 x E [0, j]d ,define the empirical distribution function

 Fn(x) = (I/n)#{1 < i < n: z, < x}
 of the sequence {z,: 1 < i < oo). The discrepancy function Dn is then defined by

 D = sup IF (x)- F(x)I
 x E [O, ]d
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 where F(x) is the volume of the region {y E [0, lId: y < x). For any pseudoran-
 dom sequence we may suppose that lii_n, Dn = 0. It will be by relating the

 convergence rate of Dn to the growth rate of X(n) = X(z1, Z2, .. , z.n) that the
 analogues of (1) can be proved.

 Since L. Few [2] has proved that there are constants- c such that for any {zi:
 1 i < oo, z, E[0, 1d} andall 1 (t< X

 X(n) = X(z1, Z2* ... 9 Zn) < cd"(d l)/d,

 the limit theory for X(n) will depend upon obtaining an appropriate lower bound.
 The following elementary bound suffices in many cases and is in a sense the best

 possible.

 THEOREM 1. There are constants cd > 0 such that X(n) cdDn (d- 1)/d for any
 uniformly distributed sequence and any sufficiently large n.

 PROOF. Divide [0, I]d into kd cubic cells of edge 1/k, and further divide each of
 these into 3d cells of edge 1/3k. The 1/3k-edge cells which do not touch the

 boundary of the l/k-edge cells will be called center cells. We note that if each of

 the center cells is occupied by at least one element of z1, Z29 ... , zn, then X(n) >
 (2/3k)(kd - 1), since there are kd center cells, and two points in different center
 cells must be at least 2/3k apart.

 Next note that if Dn < 2-d(3k)d, then each of the 1/3k-edge cells must be
 occupied by at least one zi, i = 1, 2, . . . , n. On choosing k so that 6-d(k + i)d <
 Dn < 6-dk-d, we finally have

 X(n) > (2/3)kd I > Dn (d-l)/d(k/6(k + 1))d-
 which easily implies the theorem.

 The main consequence of Theorem 1 is that together with Few's upper bound

 one obtains the following analogue of the Beardwood-Halton-Hammersley theo-
 rem.

 COROLLARY 1. If nDn = O(n e) for all e > 0, then

 lim log X(n)/log n = (d - 1)/d. (2)
 n oo

 There is extensive literature devoted to the determination of the discrepancy of
 special sequences, and many of these satisfy the hypotheses of Corollary 1. Several
 such examples are considered below, but for a genuine survey of discrepancy
 bounds of pseudorandom sequences and their applications in numerical analysis
 one should consult Niederreiter [11]. In the first example we recall Halton's

 important generalization of the van der Corput sequence, but to avoid notational

 digression we omit its explicit description.

 ExAMPLE 1 (HALTON [3]). For any d > 1 there is an infinite sequence in [0, 1]d
 such that nDn = O(Qlog n)d).

 The next two examples are of a more theoretical character.

 ExAMPLE 2. Let {ka} denote ka reduced modulo 1, and set zk =

 ({kal), {ka2},. .., {kad)) where 1, al, a2, .. ., ad are real algebraic numbers
 which are linearly independent over the rationals. Neiderreiter [8] has proved
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 132 J. M. STEELE

 nDn = O(ne) for all e > 0 by using an extension of the Thue-Siegel-Roth theorem

 due to W. Schmidt [13].

 EXAMPLE 3. (W. SCHMIDT [12]). For all (, 12 .2... I ad) E [0, I1d, except a set of
 Lebesgue measure zero, the sequence Zk = ({kal}, {ka2} ..., {kad}) satisfies

 nDn = O((log n)d ++e).
 Each of the preceding sequences has the benefit of being infinite, but the most

 widely used pseudorandom sequences do not have this property. The linear

 congruential pseudorandom numbers (LCPRN) are periodic with period m. This

 periodicity makes a limit result like Corollary 1 infeasible; but since bounds on Dn
 for LCPRN are known (Neiderreiter [9], [10]), the proof of Theorem 1 would yield

 a bound on X(n) for each n < m. Experience with LCPRN's indicates that in this

 case one should be able to obtain more precise information by direct analysis than

 by an application of discrepancy bounds, so this example has not been pursued.

 One should similarly note that discrepancy estimates fall short of Corollary 1 for

 independent and uniformly distributed random variables. By Kiefer's [4] law of the

 iterated logarithm nDn = O((n log log n)112) with probability one, so by Theorem 1
 and Few's bound one obtains only

 (d - )/d > lim sup log X(n)/log n > lim inf log X(n)/log n > (d - 1)/2d.

 Despite these two disappointments, Theorem 1 is essentially the best possible. In

 particular, the next result shows that if there is no estimate on the rate at which Dn
 tends to zero, the most one can say about X(n) is that X(n) -+ oo.

 THEOREM 2. Given any positive +(n) for which +(n) -> oo, there is a uniformly
 distributed sequence for which, for all integers n > 1,

 X(n) < o(n). (3)
 PROOF. For any finite sequences define their product by

 (XI, X29 .. 9 Xk) * (X1, X2, .. 9 Xl)I (XI, X29 ... 9 Xk, X1X2...,X

 and then define the powers (xI, x2, .. ., x1)*k correspondingly. Our basic lemma is
 the following:

 For any uniformly distributed sequence (x,) in [0, I1d and any integers k, for

 which ik, increases, one has, for (yj).' 1 defined by

 (Y1,y2, * Y * ) = (X1)kl * (X1, X2) *k2 * (X1 X29 X3)*k3 * 9 i i

 that (y,).? I is uniformly distributed.
 To prove the lemma let Dnx and Dy denote the respective discrepancies of (x)i? I

 and (y1). 1. Now for any positive integer s there is ap such that

 p

 s iki + (p + 1)q + r where 0 < q < kP+I, 0 < r <p + 1. (4)
 i=l

 We therefore have for (yj).? 1 that

 p

 sDy < E jkjDjx + q(p + I)Dpx+1 + rDrx.
 j=1
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 PSEUDORANDOM POINTS IN THE d-CUBE 133

 Letting 74(j) = SUPk>jDk, we see 4A(j) is nonincreasing and tends to zero by the
 uniform distribution of (x,), 1. Since D,x 6 1 and q(p + 1)/s 6 1,

 P P

 Dsy < I 41(j)(jkjls) + 41(p + 1)+ (p + 1) .(5)
 j=l =

 To show DY tends to zero it thus suffices to prove the same for the sum

 EjP 1 4i(j)(jkj/s). For this recall Steffensen's inequality [7, p. 142].
 If ai, bi, c* are positive, c* nonincreasing and E,1 ai S ' I bi for 1 < m < p,

 then ER- 1 c,ai < E I c1 bi.
 In our case c, = 4A(i), ai = iki/s and b, = i/p. The facts that ER 1 iki < s and

 that ik, is nondecreasing provide the hypothesis ET I ai < E 1m bi, 1 < m < p.
 Consequently we have 2R 1(4'(i)ik,)/s S (l/Pp)X 1 AP(i), and since A'(i) tends to
 zero, so do both sums. Together with (5) this completes the proof of the lemma.

 To prove the theorem we estimate XY(n) in terms of Xx(n) and (k,)'2. l. First we

 note the elementary relations

 (x1 x2, . . . ,Xx, x', x2, . .. , xm) < d12 + (x1, X2 . * . , X,) + X(X, 4, . X Xm,

 X((X1)*k) = 0 and X((x1, x2, . .. ., x")) = X(x1, x2, 9 X. .,

 For s as in (4), one thus obtains

 p+1

 XY(s) < (p + 1)d1/2 + X(x1 x29 ... , Xi). (6)
 i=l

 By Few's inequality, X(x1, x2, ... 9, x) S cd(i)(d- )/d, So (6) certainly implies XY(s)
 < p2 for p sufficiently large. Now for any +(n) which is integer valued and

 nondecreasing, we can choose kToo so that k > n for all n. Since s > ER. 1 iki

 > kp and s < k,,(,), we have +(s) > p by the monotonicity of the k,. By the bound
 Xy(s) < p2 we thus have XY(s) < 4(S)2 for s sufficiently large. Since i(s) in this
 construction was arbitrary, this implies the theorem for all n sufficiently large. By

 special consideration of kl, the result is easily shown to hold for all n.
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