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which the risk is measured.
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These adaptive procedures are based on a new wavelet block thresholding scheme which combines both the
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NONPARAMETRIC ESTIMATION OVER SHRINKING
NEIGHBORHOODS: SUPEREFFICIENCY AND ADAPTATION1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

A theory of superefficiency and adaptation is developed under flexible
performance measures which give a multiresolution view of risk and bridge
the gap between pointwise and global estimation. This theory provides a
useful benchmark for the evaluation of spatially adaptive estimators and
shows that the possible degree of superefficiency for minimax rate optimal
estimators critically depends on the size of the neighborhood over which the
risk is measured.

Wavelet procedures are given which adapt rate optimally for given
shrinking neighborhoods including the extreme cases of mean squared error
at a point and mean integrated squared error over the whole interval. These
adaptive procedures are based on a new wavelet block thresholding scheme
which combines both the commonly used horizontal blocking of wavelet
coefficients (at the same resolution level) and vertical blocking of coefficients
(across different resolution levels).

1. Introduction. Squared error loss at each point and integrated squared
error loss over an interval are two of the most common ways to evaluate the
performance of nonparametric function estimators. Integrated squared error is used
as a broad overall measure of loss whereas pointwise squared error loss gives a
highly localized measure of accuracy. Minimax theory for both these cases can be
found for example in Pinsker (1980), Ibragimov and Hasminski (1984), Donoho
and Liu (1991) and Donoho and Johnstone (1998), and there are a large number of
additional references in Efromovich (1999).

In nonparametric function estimation problems minimax risk provides a useful
uniform benchmark for the comparison of estimators. Such uniform bounds do
not, however, capture many aspects of these problems since in these infinite-
dimensional settings asymptotically minimax estimators can often be constructed
which are also superefficient at every parameter point. In fact, much recent work
on nonparametric function estimation can be viewed as attempts to construct
superefficient estimators with desirable properties. This is clear in the literature on
adaptive estimation where the connection between superefficiency and adaptation
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AMS 2000 subject classifications. Primary 62G99; secondary 62F12, 62C20, 62M99.
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has been considered as, for example, in Beran (1999, 2000). In adaptive estimation
the goal is to construct estimators which are simultaneously asymptotically (near)
minimax over a collection of parameter spaces. Such estimators are optimal over
this range of spaces.

This theory of adaptive estimation depends strongly on how risk is measured.
When the performance is measured globally full adaptation can often be achieved.
In particular, Efromovich and Pinsker (1984) constructed fully adaptive estimators
over a range of Sobolev spaces. Recent results on rate adaptive estimators focus on
more general Besov spaces. See, for example, Donoho and Johnstone (1995), Cai
(1999) and Härdle, Kerkyacharian, Picard and Tsybakov (1998).

When the performance is measured at a point, it is often the case that full
adaptation is not possible and superefficient estimators must have inflated risk
at other parameter points. A penalty, usually a logarithmic factor, must be paid
for not knowing the smoothness. Important work in this area began with Lepski
(1990) where attention focused on a collection of Lipschitz classes. See also Brown
and Low (1996), Efromovich and Low (1994), Lepski and Spokoiny (1997) and
Cai (2003).

Since optimally adaptive estimators at each point typically pay a logarithmic
penalty compared to the minimax risk, they are not necessarily optimally globally
adaptive. This has led to the approach of a simultaneous pointwise and global
analysis. The goal is then to construct estimators which, for a range of parameter
spaces, are both minimax rate optimal for integrated squared error loss and pay
only a logarithmic penalty for squared error loss at each point. See, for example,
Cai (1999, 2002) and Efromovich (2002).

Pointwise mean squared error can be viewed as an extreme (although useful)
way of measuring local performance of an estimatorf̂n. The focus in the present
paper is on a more flexible approach. Specifically we propose to evaluate the
performance of an estimator̂fn (nearx0) by using an average mean squared error
over a neighborhood ofx0:

R(f̂n, f ;x0, cn) ≡ 1

2cn

Ef

∫ x0+cn

x0−cn

(
f̂n(x) − f (x)

)2
dx.(1)

The choice of cn allows for considerable flexibility when measuring local
performance. For fixedn, by taking the limit ascn → 0 we can recover the usual
case of squared error loss atx0, and by takingx0 = 1

2 and cn = 1
2 we recover

the usual global risk. By evaluating the performance for a whole range ofcn it is
possible to give a multiresolution view of the risk. We show that this more flexible
approach to measuring local performance can be used to bridge the gap between
the pointwise and global theories.

In this paper we consider estimation over shrinking neighborhoods based on
observations from a Gaussian process

Z∗
n(t) ≡

∫ t

0
f (x) dx + 1√

n
B∗(t), 0≤ t ≤ 1,(2)
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where B∗(t) is a standard Brownian motion andf is an unknown function.
This Gaussian process is a prototypical model for many nonparametric function
estimation problems such as nonparametric regression and density estimation.

In Section 2 it is shown that the size of the neighborhood as governed
by cn determines both the possible degree of superefficiency for minimax rate
optimal estimators as well as the cost of adaptation. For “small” neighborhoods
superefficient estimators cannot be minimax rate optimal and hence fully rate
adaptive estimation is not possible. In fact the penalty for superefficiency
determines the cost of adaptation. On the other hand, for “large” neighborhoods
there exist minimax rate optimal estimators which are superefficient at every
parameter point.

Adaptive estimation is considered in Sections 3 and 4. In Section 3 a procedure
is constructed which optimally adapts to smoothness over given shrinking
neighborhoods. This construction includes the extreme cases of mean squared
error at a point and mean integrated squared error over the whole interval.

The adaptive procedure used in Section 3 is based on block thresholding of
empirical wavelet coefficients, a technique which has been shown to be effective
for adaptive estimation. See, for example, Hall, Kerkycharian and Picard (1998)
and Cai (1999, 2002). Block thresholding in these papers is done by blocking
of wavelet coefficients only at the same resolution level. The adaptive procedure
proposed here is based on a new block thresholding scheme. It combines both the
commonly used horizontal blocking of wavelet coefficients (at the same resolution
level) and vertical blocking of coefficients (across different resolution levels).
Furthermore, it appears that vertical blocking is essential for the resulting estimator
to be optimally adaptive.

The theory of adaptive estimation over given shrinking neighborhoods devel-
oped in Sections 2 and 3 provides a useful benchmark for the evaluation of es-
timators designed to be spatially adaptive. Spatially adaptive procedures should
however adapt not just to unknown smoothness but also to a whole range of shrink-
ing neighborhoods over which the risk is measured. This more complete analysis
incorporating a multi-resolution view of risk is given in Section 4. In that section
it is shown that a block thresholding estimator introduced in Cai (1999) exhibits,
from this point of view, good spatial adaptivity.

2. Superefficiency and adaptation. In nonparametric function estimation
problems minimax risk depends strongly on the parameter space. Typically the
parameter space is unknown and so attention is often focused on the construction of
adaptive estimators which simultaneously attain near minimaxity over a collection
of parameter spaces. The theory of adaptive estimators is closely connected to that
of superefficient estimators which in turn depend on how the risk is measured.

In this paper we shall develop the shrinking neighborhood theory for Hölder
classes

F(α,M) = {
f :

∣∣f (k)(x) − f (k)(y)
∣∣ ≤ M|x − y|α−k,0≤ x < y ≤ 1

}
,(3)
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wherek is the greatest integer strictly less thanα. Minimax theory in this setup
is standard. In particular, under the risk measure (1) with observations from
the Gaussian process (2) the minimax rate of convergence overF(α,M) is of
ordern−2α/(2α+1). The theory for superefficiency and adaptation is however quite
interesting.

The focus in this section is on how the size of the shrinking neighborhood affects
the penalty for superefficient estimators. The connection between superefficient
estimation and adaptation is then made clear. Our interest in superefficiency is
mainly for the insight it provides for the question of adaptation and we show how
lower bounds derived for the penalty of superefficiency are directly applicable to
the minimum cost of adaptation.

2.1. Superefficiency. For a parameter spaceF we call an estimatorf̂n

superefficient atf ∈ F under a loss functionLn if the risk atf converges faster
than the minimax risk, namely

Ef Ln(f̂n, f )

inf
f̂n

supf ∈F Ef Ln(f̂n, f )
→ 0.(4)

As mentioned in the Introduction, for estimation under mean integrated squared
error (i.e.,x0 = 1

2 and cn = 1
2) fully rate adaptive estimators exist and so there

are superefficient estimators which are also minimax rate optimal. In particular,
Brown, Low and Zhao (1997) give examples of estimating the whole function
under integrated squared error loss where an estimator is superefficient at every
parameter while also maintaining the minimax rate of convergence. On the other
hand, for estimation under pointwise mean squared error (cn = 0) Lepski (1990)
and Brown and Low (1996) showed that any superefficient estimator cannot be
minimax rate optimal overF(α,M) and hence in this case fully rate optimal
adaptation is not possible. This case is similar to the superefficiency phenomenon
arising in regular parametric problems. See, for example, Le Cam (1953) and
Lehmann (1983).

As argued in the Introduction, integrated squared error and pointwise squared
error are two extremes of a whole range of risk measures, each of which sheds
light on the performance of a particular estimatorf̂n. Shrinking neighborhoods
give a more general way to evaluate the performance of an estimator. We
begin by exploring the minimal cost of superefficiency for a specified shrinking
neighborhood and find the critical size of neighborhood which will allow for the
construction of superefficient estimators which are also minimax rate optimal.

For a given shrinking neighborhood ofx0 let �(f0) be the collection of
estimatorsf̂n based on the Gaussian observations (2) that are superefficient at
rateBn at the parameter pointf0. More specifically, let

�(f0) =
{
f̂n : lim sup

n→∞
n2α/(1+2α)BnR(f̂n, f0;x0, cn) < ∞

}
.(5)
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The following result then precisely quantifies the minimum penalty of such
superefficient estimators.

THEOREM 1. Fix 0 < x0 < 1, 0< M ′ < M , and set cn = dnn
−1/(1+2α). Let

Bn → ∞ and n
logBn

→ ∞ and suppose that f0 ∈ F(α,M ′).

(i) If lim supn→∞ dn · (logBn)
−1/(1+2α) = 0, then for any f̂n ∈ �(f0),

lim inf
n→∞

(
n

logBn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) > 0(6)

and there exists some f̂n ∈ �(f0) satisfying

lim sup
n→∞

(
n

logBn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(7)

(ii) If lim infn→∞ dn · (logBn)
−1/(1+2α) > 0 and lim supn→∞ dn ×

(logBn)
−1 = 0, then for any f̂n ∈ �(f0),

lim inf
n→∞ n2α/(1+2α) · dn

logBn

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) > 0(8)

and there exists some f̂n ∈ �(f0) satisfying

lim sup
n→∞

n2α/(1+2α) dn

logBn

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(9)

(iii) If lim infn→∞ dn

logBn
> 0, then there exists an estimator f̂n ∈ �(f0)

satisfying

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(10)

Note that the rate in the upper bound in case (iii) is sharp because it is also the
minimax rate of convergence.

Theorem 1 gives bounds on the maximum risk after prespecifying the degree of
superefficiency. For each of the three cases the proof of Theorem 1 constructs
specific wavelet block thresholding procedures which attain the lower bounds.
In other words, these wavelet procedures have minimal maximum risk given a
particular level of superefficiency at a specified function.

Alternatively, it is also useful to classify the existence of minimax superefficient
estimators in terms of a given neighborhood. The results can then be conveniently
summarized as follows.

CASE 1 (Small neighborhoods). When the size of the neighborhood is smaller
thanDn−1/(2α+1) (i.e., 0≤ dn ≤ D) for some constantD, no minimax rate optimal
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estimator can be superefficient. In particular, whendn = 0, which corresponds to
the usual pointwise risk atx0, superefficient estimators cannot be minimax rate
optimal. In other words, minimax rate optimal estimators must have the same “flat”
rate of convergence at everyf in the interior ofF(α,M).

CASE 2 (Large neighborhoods). When the size of the neighborhood satisfies
lim inf dn = ∞ there are superefficient estimators attaining the minimax rate. The
possible degree of superefficiency of a minimax rate optimal estimator however
depends on the size of the neighborhood as described in the following three cases.

Case A. lim infn→∞ dn = ∞ and lim supn→∞ dn

logn
= 0. In this case a minimax

rate optimal estimator can be superefficient atf0, but the rate of convergence of its
risk atf0 cannot be algebraically faster than the minimax rate.

Case B. 0 < lim infn→∞ dn

logn
< lim supn→∞ dn

logn
< A < ∞. In this case an

estimator can have risk atf0 converging at an algebraic rate faster than the
minimax rate while maintaining the minimax convergence rate overF(α,M).

Case C. lim infn→∞ dn

logn
= ∞. In this case a minimax rate optimal estimator

can have its risk atf0 converging at a rate which is faster than any algebraic rate.
Hence an estimator can achieve a high degree of superefficiency atf0 without
paying a penalty in terms of its maximum risk overF(α,M).

An interesting consequence of these results is that for a prespecified shrinking
neighborhood of sizen−γ superefficient estimators which are also minimax rate
optimal exist forF(α,M) if and only if 0< α <

1−γ
2γ

. In particular, forγ ≥ 1 there
are no minimax superefficient estimators over any Hölder classF(α,M) and for
0 < γ < 1 superefficient minimax rate optimal estimators exist only for the less
smooth function spaces.

2.2. Superefficiency in global estimation. An interesting special case of the
results considered in the previous section is that of estimation under mean
integrated squared error which corresponds to the choice ofx0 = 1

2 andcn = 1
2.

In this case the results of Theorem 1 show that an estimator can simultaneously
attain the minimax rate overF(α,M) and a high degree of superefficiency at
any specificf0 in the interior ofF(α,M). The following corollary of Theorem 1
precisely quantifies how superefficient the estimator can be while maintaining the
minimax rate of convergence overF(α,M).

COROLLARY 1. Let 0< M ′ < M and f0 ∈ F(α,M ′). Suppose

lim sup
n→∞

n1/(1+2α) · (logBn)
−1 = 0.(11)
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If f̂n is an estimator based on (2) satisfying

lim sup
n→∞

BnEf0‖f̂n − f0‖2
2 < ∞,(12)

then

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

Ef ‖f̂n − f ‖2
2 = ∞.(13)

Thus, a minimax rate optimal estimator cannot have risk atf0 converging faster
thane−Dn1/(1+2α)

for all D > 0.
Condition (11) is sharp. That is, there exist estimators which converge super-

fast at any fixedf0 ∈ F(α,M) with the rate ofe−Dn1/(1+2α)
and yet still attain the

minimax rate uniformly over the classF(α,M).

THEOREM 2. Let f0 ∈ F(α,M) be fixed. For any constant D > 0 there exists
an estimator which satisfies

lim sup
n→∞

eDn1/(1+2α)

Ef0‖f̂n − f0‖2
2 < ∞(14)

and

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

Ef ‖f̂n − f ‖2
2 < ∞.(15)

The theorem guarantees the existence of such superefficient estimators. One
such estimator based on block thresholding of empirical wavelet coefficients is
given by (63) and (64) in Section 6.

2.3. Connection to adaptation. The results on superefficiency given in Sec-
tion 2.1 have direct implications for adaptation. Consider two function classes
F(α1,M) andF(α2,M) with 0 < α1 < α2 ≤ 1. ThenF(α2,M) ⊂ F(α1,M) and
a fully rate adaptive estimator̂fn over these classes would need to satisfy

sup
f ∈F(αi,M)

R(f̂n, f ;x0, cn) � n−2αi/(2αi+1)(16)

for bothi = 1 andi = 2. The risk off̂n for eachf ∈ F(α2,M) must then converge
faster than the minimax risk over the larger parameter spaceF(α1,M). Hence such
estimators must be superefficient at eachf ∈ F(α2,M) with respect toF(α1,M).
The results in Theorem 1 can then be applied to yield corresponding lower bounds
for adaptation over shrinking neighborhoods. These results are summarized in the
following corollary.
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COROLLARY 2. Consider two function classes F(α1,M1) and F(α2,M2)

with α1 < α2. Let 0 < x0 < 1 and cn = dnn
−1/(1+2α1). If lim supn→∞ dn ×

(logn)−1 = 0, then

max
i=1,2

lim sup
n→∞

n2αi/(1+2αi) inf
f̂n

sup
f ∈F(αi ,Mi)

R(f̂n, f ;x0, cn) = ∞.(17)

More specifically, suppose f̂n is any estimator satisfying

lim sup
n→∞

nr sup
f ∈F(α2,M2)

R(f̂n, f ;x0, cn) < ∞(18)

for some r > 2α1
1+2α1

.

(i) If lim supn→∞ dn · (logn)−1/(1+2α1) = 0, then

lim inf
n→∞

(
n

logn

)2α1/(1+2α1)

sup
f ∈F(α1,M1)

R(f̂n, f ;x0, cn) > 0.(19)

(ii) If lim infn→∞ dn · (logn)−1/(1+2α1) > 0 and lim supn→∞ dn · (logn)−1 = 0,
then

lim inf
n→∞ n2α1/(1+2α1)

dn

logn
sup

f ∈F(α1,M1)

R(f̂n, f ;x0, cn) > 0.(20)

The results in this corollary state that it is impossible to adaptively attain the
minimax rates over the two function classes with different convergence rates
whenever the size of the neighborhood is “too small.” In Section 3 it is shown
that the lower bounds on the cost of adaptation given by (19) and (20) are in fact
sharp.

3. Adaptive estimation. We now turn our attention to adaptive estimation and
the construction of adaptive estimators. In this section the focus is on adaptation
over smoothness classes for a given shrinking neighborhood. Wavelet thresholding
estimators are constructed which attain the bounds given by (19) and (20). In
Section 4 we shall consider adaptation to both smoothness and to the size of the
neighborhood.

3.1. Wavelet thresholding. Let φ and ψ be a pair of compactly supported
father and mother wavelets which generate an orthonormal basis ofL2[0,1]
through dilation and translation and where as is typicalφ is chosen to satisfy∫

φ = 1. The support lengths ofφ and andψ are written asNφ and Nψ ,
respectively.

Throughout this paper it is also assumed thatψ is r-regular, meaning it hasr
vanishing moments andr continuous derivatives. Under these assumptions let

φj,k(t) = 2j/2φ(2j t − k), ψj,k(t) = 2j/2ψ(2j t − k).
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Then for some choice ofj0 the collection {φj0,k, k = 1, . . . ,2j0;ψj,k, j ≥ j0, k =
1, . . . ,2j } with appropriate boundary corrections is an orthonormal basis of
L2[0,1]. See Cohen, Daubechies, Jawerth and Vial (1993), Daubechies (1994)
and Meyer (1991) for further details on wavelet bases on the unit interval[0,1].
For wavelets on the line, see Daubechies (1992) and Meyer (1992).

A functionf : [0,1] → R can then be expanded in this orthonormal series. Set

ξj0,k =
∫ 1

0
f (t)φj0,k(t) dt and θj,k =

∫ 1

0
f (t)ψj,k(t) dt,

whereξj0,k are the wavelet coefficients at the coarse level andθj,k are coefficients
at the detail levels.

Under the orthonormal wavelet basis, the Gaussian model (2) is equivalent to
the sequence model

ỹj0,k = ξj0,k + n−1/2z̃j0,k, 1≤ k ≤ 2j0,(21)

yj,k = θj,k + n−1/2zj,k, 1≤ k ≤ 2j , j ≥ j0,(22)

wherez̃j0,k andzj,k are i.i.d.N(0,1) random variables. Reconstructions off can
then be based on estimates of the wavelet coefficients.

One particularly effective technique for estimating the wavelet coefficients
is that based on block thresholding. Block thresholding estimates the wavelet
coefficients in groups rather than individually, making simultaneous decisions
to retain or to discard all the empirical coefficients within a block. It increases
estimation accuracy by using information about neighboring wavelet coefficients
balancing variance and bias along the curve. More details of such adaptive
smoothing can be found in Hall, Kerkyacharian and Picard (1998) and Cai
(1999, 2002). More standard term-by-term thresholding rules can be thought of
as a special case of block thresholding with block size one.

The block thresholding rules used in the above-mentioned papers are con-
structed by grouping wavelet coefficients only at the same resolution level. In our
context it is necessary to use block thresholding rules which employ vertical block-
ing of coefficients across different resolution levels as well as the commonly used
horizontal blocking of wavelet coefficients at the same resolution level. We thus
give below a generic description of a general block thresholding estimator which
possibly uses both horizontal and vertical blocking.

Let J > j0 be some dividing resolution level. Group the wavelet coefficients
from levelj0 to levelJ into nonoverlapping blocks of lengthL. Let Bi be the set
of indices for coefficients in theith block and letS2

i = ∑
(j,k)∈Bi

y2
j,k be the sum of

squares for this block. The block thresholding estimator of the wavelet coefficients
has the form

θ̂j,k =
{

η(S2
i ) · yj,k, for (j, k) ∈ Bi, j ≤ J ,

0, for j > J ,
(23)
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whereη(S2
i ) is some thresholding function. For example, one can takeη(S2

i ) =
I (S2

i > λ) or

η(S2
i ) =

(
1− λLn−1

S2
i

)
+

(24)

whereλ is some thresholding constant. The shrinkage rule (24) is used throughout
this paper with a variety of values ofλ andL.

3.2. Adaptive estimation on given neighborhoods. The lower bound on the
performance of an adaptive estimator over a collection of Hölder classesF (α,M)

has been given in Corollary 2 of Section 2.3. For neighborhoods withcn ≤ logn
n

an estimator is given in Section 4 which adapts both to smoothness and to the
size of neighborhood while attaining the bounds of Corollary 2. In this section,
an estimator designed for neighborhoods withcn >

logn
n

is given. It is a wavelet
estimator based on a block thresholding scheme. Using the same notation as in
Section 3.1, letJ , J∗ andJ ∗ be the smallest integers satisfying

2J ≥ n, 2J∗ ≥ c−1
n and 2J

∗ ≥ c−1
n logn,

respectively. Then in the casecn >
logn

n
considered here, it follows thatJ ∗ < J .

We setJ∗ = j0 whenJ∗ < j0 and let

Hj = {(j, k) : supp(ψj,k) ∩ [x0 − cn, x0 + cn] �= ∅} and H ∗ = ⋃
J∗≤j<J ∗

Hj .

Then

Card(Hj ) ≤
{

Nψ, if j < J∗,

Nψ2j cn, if j ≥ J∗,

and Card(H ∗) � logn whereNψ is the length of the support ofψ .
The estimator we propose, a hybrid estimator of soft thresholding, vertical block

thresholding and horizontal block thresholding, can be described in four steps as
follows.

1. For empirical coefficientsyj,k between levelsj0 and J∗ apply term-by-term
soft thresholding rule. The soft thresholding rule is also applied to coefficients
at levels betweenJ∗ andJ ∗ where(j, k) /∈ H ∗, in which case the support of
the corresponding wavelet basis functionψj,k has empty intersection with the
interval[x0 − cn, x0 + cn].

2. Group all the empirical coefficientsyj,k with (j, k) ∈ H ∗ into a single vertical
block and denote byS2

v = ∑
(j,k)∈H ∗ y2

j,k the sum of squared coefficients in the
vertical block. Apply a single James–Stein shrinkage rule of the form (24) to
the coefficients in this block.
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3. At each resolution levelJ ∗ ≤ j < J , divide the empirical wavelet coefficients
yj,k into nonoverlapping blocks of lengthL = logn. Denote by(jb) the set
of indices of the coefficients in thebth block at levelj , that is, (jb) =
{(k : (b − 1)L + 1 ≤ k ≤ bL}, and letS2

(jb) = ∑
k∈(jb) y

2
j,k denote the sum of

squares for the block(jb). Then apply the James–Stein shrinkage rule to each
block (jb) for J ∗ ≤ j < J .

4. Forj ≥ J , estimate allθj,k by 0.

More precisely, each coefficientθj,k is estimated by

θ̂j,k =




sgn(yj,k)
(|yj,k| −

√
2n−1 logn

)
+,

if j0 ≤ j < J ∗ and(j, k) /∈ H ∗,(
1− λ∗Ln−1

S2
v

)
+
yj,k, if (j, k) ∈ H ∗,

(
1− λ∗Ln−1

S2
(jb)

)
+
yj,k, if J ∗ ≤ j < J andk ∈ (jb),

0, if j ≥ J ,

(25)

whereλ∗ = 4.50524 is a constant satisfyingλ∗ − logλ∗ − 1 = 2. Define the
wavelet estimator off by

f̂n(x) =
2j0∑
k=1

ỹj0,kφj0,k(x) +
∞∑

j=j0

2j∑
k=1

θ̂j,kψj,k(x)(26)

with θ̂j,k given in (25). This estimator attains the lower bounds in Corollary 2
at least whencn >

logn
n

. For smaller neighborhoods, the estimator given by
(32) and (33) in Section 4 also attains the lower bounds. These results are
summarized in the following theorem.

THEOREM 3. When cn >
logn

n
, let f̂n be the estimator given by (25) and (26)

where the wavelet ψ is r-regular with r > α, whereas if cn ≤ logn
n

let f̂n be the
BlockJS estimator given in (32) and (33).Let 0< x0 < 1 and cn = dnn

−1/(1+2α).

(i) If lim supn→∞ dn · (logn)−1/(1+2α) < ∞, then

lim sup
n→∞

(
n

logn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(27)

(ii) If lim infn→∞ dn · (logn)−1/(1+2α) = ∞ and lim supn→∞ dn ×
(logn)−1 = 0, then

lim sup
n→∞

n2α/(1+2α) dn

logn
sup

f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(28)
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(iii) If lim infn→∞ dn · (logn)−1 > 0, then

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(29)

In view of Theorem 1, the estimator given in (25) and (26) attains the adaptive
minimax rate for estimatingf over the neighborhood[x0 − cn, x0 + cn].

A particularly interesting choice ofcn, cn = n−γ , is summarized in the
following corollary which shows that fully rate optimal adaptation can be achieved
overF(α,M) if and only if 0< α <

1−γ
2γ

.

COROLLARY 3. Let f̂n be the estimator given in (25) and (26) and let
cn = n−γ for some 0 < γ < 1. Suppose the wavelet ψ is chosen to be r-regular
with r >

1−γ
2γ

. Then for 0 < α <
1−γ
2γ

,

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞,(30)

and for 1−γ
2γ

≤ α < r ,

lim sup
n→∞

(
n

logn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(31)

4. Adaptation over smoothness and neighborhoods. In nonparametric
function estimation, it is common to fix a risk measure such as integrated squared
error or squared error at a given point and to construct estimators which adapt
across a range of smoothness classes. In our setting of shrinking neighborhoods,
it is natural to consider two different types of adaptation. One is to adapt to the
unknown smoothness of the underlying functions while the risk is measured over
a given sequence of shrinking neighborhoods as in Section 3. A more ambitious
and general adaptation goal is to adapt both to the unknown smoothness and the
shrinking neighborhood over which the risk is measured.

This latter approach is most appropriate when the goal is to construct spatially
adaptive estimators. It gives a more complete analysis with a multiresolution view
of risk which spans a whole range of local and global measures of risk. Ideally
we would like to construct an estimator which is “fully” adaptive—attaining the
best adaptive rates for all choices of neighborhood sizes. The benchmark for
such estimators is provided in Theorem 1. We shall show below that the BlockJS
estimator [Cai (1999)] is nearly fully adaptive. This BlockJS procedure can be
described as follows.

Expand the Gaussian process (2) in an orthonormal wavelet basis as in
Section 3.1. At each resolution levelj < J = [log2 n] divide the empirical wavelet
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coefficientsyj,k into nonoverlapping blocks of lengthL = logn. Denote by(jb)

the set of indices of the coefficients in thebth block at levelj , that is,

(jb) = {k : (b − 1)L + 1≤ k ≤ bL}.
Let S2

(jb) = ∑
k∈(jb) y

2
j,k denote the sum of squares for the block(jb) and let

λ∗ = 4.50524 be given as in Section 3, the root of the equationλ − logλ − 1= 2.
We then apply the James–Stein shrinkage rule to each block(jb) for j0 ≤ j < J ,

θ̂j,k =



(
1− λ∗Ln−1

S2
(jb)

)
+
yj,k, for k ∈ (jb), j < J ,

0, for j ≥ J .

(32)

The BlockJS estimator̂fn of the whole functionf is then given by

f̂n(x) =
2j0∑
k=1

ỹj0,kφj0,k(x) +
∞∑

j=j0

2j∑
k=1

θ̂j,kψj,k(x).(33)

THEOREM 4. Let f̂n be the BlockJS estimator given in (32) and (33) and
let 0 < x0 < 1 and cn = dnn

−1/(1+2α). Suppose the wavelet ψ is r-regular
with r > α.

(i) If lim supn→∞ dn · (logn)−1/(1+2α) < ∞, then

lim sup
n→∞

(
n

logn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(34)

(ii) If lim infn→∞ dn · (logn)−1/(1+2α) = ∞ and lim supn→∞ dn · [(logn) ×
(log logn)]−1 = 0, then

lim sup
n→∞

n2α/(1+2α) dn

(logn)(log logn)
sup

f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(35)

(iii) If lim infn→∞ dn · [(logn)(log logn)]−1 > 0, then

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(36)

This theorem shows that the BlockJS estimator adapts well to the unknown
smoothness across a wide range of shrinking neighborhoods. Just as in Section 3
the special choicecn = n−γ is particularly interesting. Although the results of the
following corollary are similar to those given in Corollary 3 it should be noted that
the BlockJS estimator does not depend on the size or location of the neighborhood.
Hence the BlockJS estimator exhibits very strong spatial and parameter space
adaptivity.
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COROLLARY 4. Let f̂n be the BlockJS estimator and let 0 < x0 < 1 and
cn = n−γ for some γ > 0. Suppose the wavelet ψ is r-regular with r ≥ 1−γ

2γ
. Then

for 0< α <
1−γ
2γ

,

lim sup
n→∞

n2α/(1+2α) sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞,(37)

and for 1−γ
2γ

≤ α < r ,

lim sup
n→∞

(
n

logn

)2α/(1+2α)

sup
f ∈F(α,M)

R(f̂n, f ;x0, cn) < ∞.(38)

5. Discussion. The theory of shrinking neighborhoods gives a multiresolution
view of the performance of function estimators. It also provides a useful
benchmark for the evaluation of spatially adaptive procedures. This theory can be
easily extended to more general settings. One possible extension is to consider
general weight functions. Letw(x) ≥ 0 be a compactly supported continuous
function satisfyingw(0) > 0 and

∫
w(x)dx = 1. For a decreasing sequence

cn → 0 and a fixedx0 ∈ (0,1) let

Wn(x) = 1

cn

w

(
x − x0

cn

)
.(39)

The performance of an estimator̂fn can then be evaluated with respect to the
weightWn:

R(f̂n, f ;Wn) ≡ Ef

∫
Wn(x)

(
f̂n(x) − f (x)

)2
dx.(40)

This risk can be viewed as a weighted risk concentrated around the pointx0, and
the shrinking neighborhoods considered earlier in this paper correspond to the
choice of uniform weightw(x) = 1

2I (−1≤ x ≤ 1).
Under the conditions given above,w(x) ≤ C1 for all x, w(x) ≥ C2 > 0 for

|x| ≤ a andw(x) = 0 for |x| ≥ b for some constantsC1, C2, a andb. It is then
easy to see that all the results given in the previous sections carry over to the risk
given in (40).

It is also possible to extend the theory in this paper to a Gaussian process
observed on the whole line. In this setting it is natural to consider a general weight
functionWn wherecn → 0 orcn → ∞. The latter choice corresponds to expanding
neighborhoods. Whencn → 0 it is easy to see that all the theory given in the
previous sections carries over to this setting. On the other hand, whencn → ∞
fully adaptive estimation is always possible and the block thresholding wavelet
estimator given in Section 4 can easily be extended to a wavelet expansion on the
real line.
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6. Proofs. Throughout this section,C denotes a generic positive constant
which may vary from place to place. The wavelet notation follows that given
in Section 3.1. The father waveletφ and mother waveletψ are always assumed
to have compact support with the length of the support denoted byNφ andNψ ,
respectively.

6.1. Preparatory results. The following elementary inequalities are useful for
the evaluation of the risk of wavelet estimators over shrinking neighborhoods in
terms of the wavelet coefficients.

LEMMA 1. For any 0≤ a < b ≤ 1, set

S1(a, b) ≡ {(j, k) : supp(ψj,k) ⊂ [a, b]} and

S2(a, b) ≡ {(j, k) : supp(ψj,k) ∩ [a, b] �= ∅}.
Then

∑
(j,k)∈S1(a,b)

θ2
j,k ≤

∫ b

a

(∑
j,k

θj,kψj,k(x)

)2

dx ≤ ∑
(j,k)∈S2(a,b)

θ2
j,k.(41)

PROOF. For anyf (x) = ∑
j,k θj,kψj,k(x) let h(x) = f (x)I[a,b](x) and note

that
∫ b
a f 2(x) dx = ∫ 1

0 h2(x) dx. Let

g1(x) = ∑
(j,k)∈S1(a,b)

θj,kψj,k(x) and g2(x) = ∑
(j,k)∈S2(a,b)

θj,kψj,k(x).

Then‖gi‖2
2 = ∑

(j,k)∈Si(a,b) θ
2
j,k for i = 1,2. It is also easy to see thatg2(x) =

h(x) for x ∈ [a, b] and so ‖g2‖2
2 ≥ ‖h‖2

2 and the second inequality in (41)
immediately follows.

We can also write

h(x) = ∑
j,k

θj,kψj,k(x)I[a,b](x) = g1(x) + ∑
(j,k)/∈S1(a,b)

θj,kψj,k(x)I[a,b](x).

Noting that supp(g1) ⊂ [a, b], it follows that∫ 1

0
g1(x)

∑
(j,k)/∈S1(a,b)

θj,kψj,k(x)I[a,b](x) dx

=
∫ 1

0
g1(x)

∑
(j,k)/∈S1(a,b)

θj,kψj,k(x) dx = 0,

and consequently

‖h‖2
2 = ‖g1‖2

2 +
∥∥∥∥∥

∑
(j,k)/∈S1(a,b)

θj,kψj,k(x)I[a,b](x)

∥∥∥∥∥
2

2

≥ ‖g1‖2
2 = ∑

(j,k)∈S1(a,b)

θ2
j,k
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and the first inequality in (41) also holds.�

The proofs of the main theorems also rely on bounds on the risk of wavelet block
thresholding estimators. Lemma 2 summarizes several useful risk upper bounds for
such estimators.

LEMMA 2. Let yi = θi + σzi where zi
i.i.d.∼ N(0,1), i = 1, . . . ,L, and let

θ̂i = (1− λLσ2

S2 )+yi where S2 = ∑
y2
i and λ ≥ 1. Then

L∑
i=1

E(θ̂i − θi)
2 ≤ min

{
L∑

i=1

θ2
i , λLσ 2

}
+ 2λe(−1/2)(λ−logλ−1)Lσ 2.(42)

In the special case of λ = 4.50524(the root of the equation λ − logλ − 3= 0),

L∑
i=1

E(θ̂i − θi)
2 ≤ min

{
L∑

i=1

θ2
i , λLσ 2

}
+ 2λe−Lσ 2.(43)

In addition, suppose λ = 4.50524and |θi | ≤ c for all i. Then

E(θ̂i − θi)
2 ≤ 8c2 + 2λe−Lσ 2.(44)

PROOF. Inequality (42) is a direct consequence of the oracle inequality given
in Theorem 1 of Cai (1999) and the bound on the tail probability of the chi-squared
distribution given in Lemma 2 of Cai (1999). Inequality (43) then follows directly
on evaluation of (42). For the proof of (44), it suffices to consider the case ofσ = 1.
In that case note that

E(θ̂i − θi)
2 = E

{(
1− λL

S2

)
yiI (S2 > λL) − θi

}2

≤ 2θ2
i + 2Ey2

i

(
1− λL

S2

)2

I (S2 > λL)

≤ 2θ2
i + 2Ey2

i I (S2 > λL).

Now note that for fixedθi it is easy to check thatEy2
i I (S2 > λL) is increasing in

each|θj | for j �= i. Note also that if allθk other thanθi are fixed, then by Lemma
3

Ey2
i I (S2 > λL) = E

(
y2
i I (y2

i > λL − S2−i )|S2−i

)
(45)

is increasing in|θi |. HenceEy2
i I (S2 > λL) is maximized when allθj = c. When

all θj = c, Ey2
i I (S2 > λL) is the same for alli and hence

y2
i I (S2 > λL) = L−1ES2I (S2 > λL).
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In the proof of Proposition 1 in Cai (1999) it is shown that

ES2I (S2 > λL) ≤ 3‖θ‖2
2 + λL(λ−1eλ−1)−L/2.

Therefore,

Eθ(θ̂i − θi)
2 ≤ 8c2 + 2λe−(1/2)(λ−logλ−1)L. �

LEMMA 3. Let z ∼ N(0,1) and y = θ +z. Then for any c ≥ 0,Eθy
2I (|y| > c)

is an increasing function of |θ |.
PROOF. It suffices to considerθ ≥ 0. Let

f (θ) = √
2πEθy

2I (|y| > c) =
(∫ ∞

c
+

∫ −c

−∞

)
y2e−(1/2)(y−θ)2

dy

and

g(θ) = √
2πEθz

2I (|y| > c) =
(∫ ∞

c−θ
+

∫ −c−θ

−∞

)
z2e−(1/2)z2

dz.

Then

f ′(θ) =
(∫ ∞

c
+

∫ −c

−∞

)
y2(y − θ)e−(1/2)(y−θ)2

dy

=
(∫ ∞

c−θ
+

∫ −c−θ

−∞

)
(x3 + 2θx2 + θ2x)e−(1/2)x2

dx

and

g′(θ) = (c − θ)2e−(1/2)(c−θ)2 − (c + θ)2e−(1/2)(c+θ)2
.

Note that∫ −c−θ

−∞
(x3 + θ2x)e−(1/2)x2

dx = −
∫ ∞
c+θ

(x3 + θ2x)e−(1/2)x2
dx,

so forθ ≥ 0

f ′(θ) =
(∫ ∞

c−θ
+

∫ −c−θ

−∞

)
2θx2e−(1/2)x2

dx +
∫ c+θ

c−θ
(x3 + θ2x)e−(1/2)x2

dx ≥ 0,

and so the lemma follows.�

The following lemma is a result from standard wavelet theory. See, for example,
Daubechies (1992).

LEMMA 4. Suppose the wavelet ψ has compact support and is r-regular with
r > α. Then there exists a constant C > 0 such that for all f ∈ F(α,M) its wavelet
coefficients satisfy

|θj,k| ≤ C2−j ((1/2)+α) for all j ≥ j0 and 1≤ k ≤ 2j .(46)
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6.2. Proof of the main results.

PROOF OFTHEOREM 1. The proof of this theorem is divided into two parts.
In the first part lower bounds are given and in the second upper bounds. For the
lower bounds only the first two cases in the theorem need to be considered. Since
the proofs of these two cases are similar a proof of case (i) is given in detail and
then only the main changes needed for the proof of case (ii) are given.

Lower bounds.

CASE (i). Let g :R → R be a function satisfying:

(i) g(x) = λ > 0 for x ∈ [−1,1] andg is compactly supported in the interval
[−A,A];

(ii) |g(k)(x) − g(k)(y)| ≤ (M − M ′)|x − y|α−k,−∞ < x < y < ∞ wherek is
the greatest integer less than or equal toα;

(iii)
∫ A
−A g2(x) dx = 1.

For sufficiently largeA such a function is easy to construct.
Set

γn =
(

n

logBn

)α/(1+2α)

and βn =
(

n

logBn

)1/(1+2α)

and note that

βnγ
2
n = n

logBn

and βα
n γ −1

n = 1.

Let fn,θ : [0,1] → R be defined by

fn,θ (x) = θ · γ −1
n g

(
βn(x − x0)

) + f0(x) for θ = 0,1.

It is simple to check that forθ = 0 or 1,fn,θ ∈ F(α,M) for all n. Note also that
for sufficiently largen, sayn ≥ N0,

ρn = n

∫ 1

0
(fn,1 − fn,0)

2 = logBn.(47)

Write P n
θ for the probability measure associated with the process

Z∗
n(t) ≡

∫ t

0
fn,θ (x) dx + 1√

n
B∗(t), 0≤ t ≤ 1.

A sufficient statistic for the family of measures{P n
0 ,P n

1 } is then given by the log

likelihood ratioTn = ln
dP n

1
dP n

0
, and forn ≥ N0,

underP n
0 , Tn ∼ N

(
−ρn

2
, ρn

)
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and

underP n
1 , Tn ∼ N

(
ρn

2
, ρn

)
.

Now based on the Gaussian model(2) let f̂n be an estimator off . Decompose this
estimator into components

f̂n(x) = fn,0(x) + θ̂
(
fn,1(x) − fn,0(x)

) + ĥn(x),(48)

where ∫ x0+cn

x0−cn

ĥn(x)
(
fn,1(x) − fn,0(x)

)
dx = 0.(49)

Hence, forθ = 0 or 1,

1

2cn

∫ x0+cn

x0−cn

(
f̂n(x) − fn,θ (x)

)2
dx

≥ (θ̂ − θ)2 1

2cn

∫ x0+cn

x0−cn

(
fn,1(x) − fn,0(x)

)2
dx(50)

= (θ̂ − θ)2β−1
n γ −2

n

1

2cn

∫ βncn

−βncn

g2(x) dx.

It follows from the condition lim supn→∞ dn · (logBn)
−1/(1+2α) = 0 that for

sufficiently largen, sayn ≥ N1,

dn ≤ (logBn)
1/(1+2α),

in which caseβncn ≤ 1. So

1

2cn

∫ x0+cn

x0−cn

(
f̂n(x) − fn,θ (x)

)2
dx ≥ (θ̂ − θ)2λ2

(
logBn

n

)2α/(1+2α)

.(51)

If assumption (5) of the theorem holds, there exist aC1 < ∞ andN2 such that for
all n ≥ N2,

R(f̂n, fn,0;x0, cn) ≤ C1n
−2α/(1+2α)B−1

n .

Hence

Efn,0(θ̂ − 0)2 ≤ C1λ
−2B−1

n (logBn)
−2α/(1+2α).

SinceTn is sufficient for{P n
0 ,P n

1 } apply Theorem 1 of Brown and Low (1996)
with I = eρn = Bn for n ≥ N0.

Let N = max(N0,N1,N2). Theorem 1, equation (2.4), of Brown and Low
(1996) then yields forn ≥ N

Efn,1(θ̂ − 1)2 ≥ 1− 2C
1/2
1 λ−1(logBn)

−α/(1+2α).(52)

Combining (51) and (52) yields (6).
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CASE (ii). Let the functiong be constructed similarly as in the proof of case
(i), except that in Condition (ii),M − M ′ is replaced by(M − M ′)( d

A
)(1/2)+α . Set

γn =
(

d

A

)1/2( n

logBn

)α/(1+2α)

and

βn = A

d

(
n

logBn

)1/(1+2α)

.

Since lim infn→∞ dn ·(logBn)
−1/(1+2α) > 0, there exist constantsd > 0 andN > 0

such that for alln > N ,

dn ≥ d(logBn)
1/(1+2α).

Hence, forn > N ,

βnγ
2
n = n

logBn

, βα
n γ −1

n =
(

A

d

)(1/2)+α

and βncn ≥ A.

In this case (50) yields

1

2cn

∫ x0+cn

x0−cn

(
f̂n(x) − fn,θ (x)

)2
dx ≥ 1

2
(θ̂ − θ)2n−2α/(1+2α) · logBn

dn

.

The remaining steps are the same as in the proof of Case (i) and hence are omitted.

We now turn to the proof of upper bounds, where the three cases need to
be treated separately. Note, however, that in each case we may assume without
loss of generality thatf0 ≡ 0 since we can always recenter the estimate at any
givenf0. Let {φ,ψ} be a pair of compactly supported father and mother wavelets
generating an orthonormal basis inL2[0,1] where the support lengths ofφ andψ

are denoted byNφ andNψ , respectively. We assume that bothφ andψ haver > α

vanishing moments,
∫

xkφ(x) dx = 0 for k = 1, . . . , r and
∫

xkψ(x) dx = 0 for
k = 0,1, . . . , r . For example, Coiflets of order greater thanα have this property.
See Daubechies (1992).

Upper bounds.

CASE (i). Let jn be the largest integer satisfying 2jn ≤ ( n
logBn

)1/(1+2α). For

j ≥ 0 and 1≤ k ≤ 2j let φj,k(t) = 2j/2φ(2j t − k). Thenx0 ∈ supp(φjn,k) for
somek. Write

ỹn ≡ 2jn/2
∫

φjn,k(t) dZ∗
n(t)

= 2jn/2
∫

f (t)φjn,k(t) dt + 2jn/2n−1/2
∫

φjn,k(t) dW(t)

≡ f̄ + z.
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Herez is a Gaussian random variable with mean 0 and varianceσ 2
n = 2jnn−1, and

f̄ can be regarded as the “mean value” off on the support ofφjn,k . Set

δn = sgn(ỹn)
(|ỹn| − σn(2 logBn)

1/2)
+

and letf̂n be an estimator off with

f̂n(x) ≡ δn for all x ∈ [x0 − cn, x0 + cn].
We show below thatf̂n satisfies bothf̂n ∈ �(f0) and (7). First, it is easy to verify
directly that

E(δn − f̄ )2 ≤ min
(
2(f̄ )2, σ 2

n (1+ 2 logBn)
) + σ 2

nB−1
n

and hence

R(f̂n, f ;x0, cn)

= 1

2cn

Ef

∫ x0+cn

x0−cn

(
δn − f (x)

)2
dx

(53)

≤ 1

2cn

∫ x0+cn

x0−cn

(
f̄ − f (x)

)2
dx

+ min
(
2(f̄ )2, σ 2

n (1+ 2 logBn)
) + σ 2

nB−1
n .

Now for f0 ≡ 0 the zero function on[0,1] the first two terms in (53) are both 0.
Hence

R(f̂n, f0;x0, cn) ≤ n−2α/(1+2α)B−1
n (logBn)

−1/(1+2α)

and it follows thatf̂n ∈ �(f0). It follows from the vanishing moments property
of φ that for allf ∈ F(α,M) and for allx ∈ [x0 − cn, x0 + cn],

|f (x) − f̄ | ≤ C(M,φ)2−αjn,(54)

whereC(M,φ) is a constant depending onM andφ only. Now (7) follows by
applying (54) to (53):

R(f̂n, f ;x0, cn) ≤ C

(
logBn

n

)2α/(1+2α)(
1+ o(1)

)
.

CASE (ii). In the second case, a wavelet procedure based on block threshold-
ing is used. LetJ1 andJ2 be the largest integers satisfying

2J1 ≤ d−1
n n1/(1+2α) and 2J2 ≤ d−1

n logBnn
1/(1+2α).

Let

Hj = {(j, k) : supp(ψj,k) ∩ [x0 − cn, x0 + cn] �= ∅} and H∗ = ⋃
J1≤j≤J2

Hj .



SUPEREFFICIENCY AND ADAPTATION 205

Then it is easy to check that forj ≥ J1 the cardinality of the index setsHj is of
order 2j cn and soLn ≡ Card(H∗) = bn logBn with b∗ ≤ bn ≤ b∗ for some positive
constantsb∗ andb∗. Denote byS2 the sum of all the squared empirical wavelet
coefficientsyj,k with indices inH∗. Applying a block thresholding rule to the
coefficients,

θ̂j,k =
(

1− λLnn
−1

S2

)
+
yj,k for all (j, k) ∈ H∗.

Then it follows from Lemma 2 that∑
(j,k)∈H∗

E(θ̂j,k − θj,k)
2

(55)

≤ min

( ∑
(j,k)∈H∗

θ2
j,k, λLnn

−1

)
+ 2n−1e−(1/2)(λ−logλ−1)Ln.

Let the thresholding constantλ be chosen such that
1
2(λ − logλ − 1)b∗ = 1.

Then the second term in the right-hand side of (55) is bounded from above
by 2n−1B−1

n . Applying Lemma 1, we have

R(f̂n, f ;x0, cn)

≤ 1

2cn

∑
(j,k)∈H∗

E(θ̂j,k − θj,k)
2 + 1

2cn

∑
j>J2

∑
(j,k)∈Hj

θ2
j,k

(56)

≤ 1

2cn

min

( ∑
(j,k)∈H∗

θ2
j,k, λLnn

−1

)

+ n−2/(1+2α)B−1
n (logBn)

−1/(1+2α) + 1

2cn

∑
j>J2

∑
(j,k)∈Hj

θ2
j,k.

Forf = f0 ≡ 0, the first and the third terms in (56) are both 0, hence

R(f̂n, f0;x0, cn) ≤ n−2α/(1+2α)B−1
n (logBn)

−1/(1+2α)

and sof̂n ∈ �(f0). Forf ∈ F(α,M), it follows from Lemma 4 that

|θj,k| ≤ C2−j ((1/2)+α)(57)

with the constantC not depending onf . Hence

1

2cn

∑
j>J2

∑
(j,k)∈Hj

θ2
j,k ≤ 1

2cn

∑
j>J2

C2j cn2−j (1+2α)

(58)
= Cn−2α/(1+2α)d−1

n logBn.

Now (9) follows from (56) and (58).
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CASE (iii). Finally, we turn to the third case where we will use the same
notation as in Case (ii). LetJ2 and J3 be the largest integers satisfying 2J2 ≤
d−1
n logBnn

1/(1+2α) and 2J3 ≤ n1/(1+2α), respectively. (Ifdn < logBn, choose
J3 = J2.) Denote byLj the cardinality of the index setsHj . Then, forj ≥ J2,
there exist positive constantsb∗ andb∗ such thatb∗2j cn ≤ Lj ≤ b∗2j cn. Denote
by S2

j the sum of all the squared empirical wavelet coefficientsyj,k at levelj with
(j, k) ∈ Hj . Applying a block thresholding rule to the coefficients level by level,

θ̂j,k =
(

1− λLjn
−1

S2
j

)
+
yj,k for all J2 ≤ j ≤ J3 and(j, k) ∈ Hj .

Then again it follows from Lemma 2 that∑
(j,k)∈Hj

E(θ̂j,k − θj,k)
2

(59)

≤ min

( ∑
(j,k)∈Hj

θ2
j,k, λLjn

−1

)
+ 2n−1e−(1/2)(λ−logλ−1)Lj .

Write LJ2 = bn logBn with b∗ ≤ bn ≤ b∗. We choose the thresholding constantλ

such that
1
2(λ − logλ − 1)b∗ = 1.

Then the second term on the right-hand side of (59) is bounded from above
by 2n−1B−1

n for j = J2 and

J3∑
j=J2

4n−1e−(1/2)(λ−logλ−1)Lj ≤ 4n−1B−1
n .(60)

Lemma 1 yields

R(f̂n, f ;x0, cn)

≤ 1

2cn

J3∑
j=J2

∑
(j,k)∈Hj

E(θ̂j,k − θj,k)
2 + 1

2cn

∑
j>J3

∑
(j,k)∈Hj

θ2
j,k

(61)

≤ 1

2cn

J3∑
j=J2

min

( ∑
(j,k)∈Hj

θ2
j,k, λLjn

−1

)

+ 2n−2α/(1+2α)B−1
n d−1

n + 1

2cn

∑
j>J3

∑
(j,k)∈Hj

θ2
j,k.

Once again forf = f0 ≡ 0, the first and the third terms in (61) are both 0, hence

R(f̂n, f0;x0, cn) ≤ 2n−2α/(1+2α)B−1
n d−1

n
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and sof̂n ∈ �(f0). The coefficient bound (57) yields

1

2cn

∑
j>J3

∑
(j,k)∈Hj

θ2
j,k ≤ 1

2cn

∑
j>J3

∑
(j,k)∈Hj

Ccn2−2αj = Cn−2α/(1+2α).(62)

Now (10) follows from (61) and (62). �

PROOF OFTHEOREM 2. As in the proof of Theorem 1 it suffices to consider
f0 ≡ 0. Expand the Gaussian process (2) in an orthonormal wavelet basis as in
Section 3.1. Suppose the waveletψ is chosen to ber-regular withr > α. LetJ ′ be
the largest integer satisfying 2J ′

< n1/(1+2α). Then the total numberL′ of wavelet
coefficients up to (and including) the levelJ ′ is less than 2n1/(1+2α) and larger than
or equal ton1/(1+2α). Group all the empirical wavelet coefficientsỹj0,k andyj,k

up to the levelJ ′ into a single block and apply a James–Stein type rule to the
coefficients. More specifically, denote the sum of the squared empirical coefficients
up to the levelJ ′ by

S2 =
2j0∑
k=1

ỹ2
j0,k

+
J ′∑

j=j0

2j∑
k=1

y2
j,k

and define the estimator of the wavelet coefficients by

ξ̂j0,k =
(

1− λL′n−1

S2

)
+
ỹj0,k for 1≤ k ≤ 2j0,

θ̂j,k =
(

1− λL′n−1

S2

)
+
yj,k for j ≤ J ′,1≤ k ≤ 2j ,(63)

θ̂j,k = 0 otherwise,

where λ is a constant satisfyingλ − logλ − 1 = 2D. The corresponding
estimatorf̂n of f is the wavelet series witĥξj0,k andθ̂j,k as coefficients:

f̂n(x) =
2j0∑
k=1

ξ̂j0,kφj0,k(x) +
∞∑

j=j0

2j∑
k=1

θ̂j,kψj,k(x).(64)

It follows from (42) in Lemma 2 that

∑
k

E
(
ξ̂j0,k − ξj0,k

)2 +
J ′∑

j=j0

∑
k

E(θ̂j,k − θj,k)
2

≤ min

(∑
k

ξ2
j0,k

+
J ′∑

j=j0

∑
k

θ2
j,k, λL′n−1

)
+ 2n−1e−(1/2)(λ−logλ−1)L′

≤ min

(∑
k

ξ2
j0,k

+
J ′∑

j=j0

∑
k

θ2
j,k,2λn−2α/(1+2α)

)
+ 2n−1e−Dn1/(1+2α)

.
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Hence

Ef ‖f̂n − f ‖2
2

= ∑
k

E
(
ξ̂j0,k − ξj0,k

)2 +
J ′∑

j=j0

∑
k

E(θ̂j,k − θj,k)
2 +

∞∑
j=J ′+1

∑
k

θ2
j,k

(65)

≤ min

(∑
k

ξ2
j0,k

+
J ′∑

j=j0

∑
k

θ2
j,k,2λn−2α/(1+2α)

)

+ 2n−1e−Dn1/(1+2α) +
∞∑

j=J ′+1

∑
k

θ2
j,k.

Now for f0 ≡ 0, all ξj0,k = 0 and allθj,k = 0 so

Ef0‖f̂n − f0‖2
2 ≤ 2n−1e−Dn1/(1+2α)

.

Thus, withBn = neDn1/(1+2α)
,

lim sup
n→∞

BnEf0‖f̂n − f0‖2
2 < ∞ and lim

n→∞n1/(1+2α)(logBn)
−1 = D.

On the other hand, the estimator attains the optimal rate uniformly overF(α,M).
This can be seen easily from (46) and (65):

sup
f ∈F(α,M)

Ef ‖f̂n − f ‖2
2

≤ 2λn−2α/(1+2α) + 2n−1e−Dn1/(1+2α) +
∞∑

j=J ′+1

2j∑
k=1

C22−j (1+2α)

≤ 2(λ + C2)n−2α/(1+2α)(1+ o(1)
)
. �

PROOF OF THEOREM 3. We assumeJ ∗ < J in the following proof. In the
special case ofJ ∗ ≥ J the estimator is the BlockJS estimator. The proof for this
case follows from that of Theorem 4. Denote byIn(x) = I (x ∈ [x0 − cn, x0 + cn]).
Then

R(f̂n, f ;x0, cn)

= E

{
1

2cn

∫ 1

0

[∑
k

(
ỹj0,k − ξj0,k

)
φj0,k(x)

+
∞∑

j=j0

∑
k

(θ̂j,k − θj,k)ψj,k(x)

]2

In(x) dx

}
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≤ 2j0E

{
1

cn

∫ 1

0

∑
k

(
ỹj0,k − ξj0,k

)2
φ2

j0,k
(x)In(x) dx

}

+ E

{
1

cn

∫ 1

0

[ ∞∑
j=j0

∑
k

(θ̂j,k − θj,k)ψj,k(x)

]2

In(x) dx

}

≤ Cn−1 + E

{
1

cn

∫ 1

0

[ ∞∑
j=j0

∑
k

(θ̂j,k − θj,k)ψj,k(x)

]2

In(x) dx

}
.

Hence

R(f̂n, f ;x0, cn)

≤ Cn−1 + 2‖ψ‖∞E

(
J∗∑

j=j0

∑
(j,k)∈Hj

2j/2|θ̂j,k − θj,k|
)2

+ E

{
2

cn

∫ 1

0

( ∑
j>J∗

∑
k

(θ̂j,k − θj,k)ψj,k(x)In(x)

)2

dx

}
(66)

≤ Cn−1 + 2‖ψ‖∞
(

J∗∑
j=j0

∑
(j,k)∈Hj

2j/2(E(θ̂j,k − θj,k)
2)1/2

)2

+ 2

cn

∑
j>J∗

∑
(j,k)∈Hj

E(θ̂j,k − θj,k)
2.

The last inequality follows from Lemma 1 and the elementary inequality

E

(
n∑

i=1

Xi

)2

≤
(

n∑
i=1

(EX2
i )

1/2

)2

.

We now consider the three cases separately. The main tool is the risk bounds
(43) and (44) given in Lemma 2. Note that withσ 2 = n−1 andL = logn the second
term on the right-hand side of (43) and (44) is 2λn−2, which is negligible in the
following risk calculations, and we will absorb this term into the first term,Cn−1,
in the calculations below. Note that

J ∗−1∑
j=J∗

∑
(j,k)∈Hj

E(θ̂j,k − θj,k)
2 ≤ C min

(
(logn)n−1,

∑
(j,k)∈Hj

θ2
j,k

)
+ O(n−2).

In case (i), letJ0 be the smallest integer satisfying 2J0 ≥ ( n
logn

)1/(1+2α). Then
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J0 < J∗. It follows from Lemmas 2 and 4 that

R(f̂n, f ;x0, cn)

≤ C

(
J0−1∑
j=j0

2j/2(logn)1/2n−(1/2) +
J∗−1∑
j=J0

2j/22−j ((1/2)+α)

)2

+ Cc−1
n

∞∑
j=J∗

2j cn2−j (1+2α)

≤ C

(
logn

n

)2α/(1+2α)

.

In case (ii), Lemmas 2 and 4 yield that

R(f̂n, f ;x0, cn) ≤ C

(
J∗−1∑
j=j0

2j/2(logn)1/2n−(1/2)

)2

+ Cc−1
n (logn)n−1 + Cc−1

n

∞∑
j=J ∗

2j cn2−j (1+2α)

≤ C
logn

dn

n−2α/(1+2α).

In case (iii) letJ1 be the smallest integer satisfying 2J1 ≥ n1/(1+2α). We have

R(f̂n, f ;x0, cn) ≤ C

(
J∗−1∑
j=j0

2j/2(logn)1/2n−(1/2)

)2

+ Cc−1
n (logn)n−1

+ Cc−1
n

J1−1∑
j=J ∗

2j cn

logn
(logn)n−1 + Cc−1

n

∞∑
j=J1

2j cn2−j (1+2α)

≤ Cn−2α/(1+2α). �

PROOF OFTHEOREM 4. Let f̂n(x) be the BlockJS estimator given in (33).
DenoteIn(x) = I (x ∈ [x0 − cn, x0 + cn]). Similarly as in (66), in the proof of
Theorem 3, for anyT ≥ j0,

R(f̂n, f ;x0, cn) ≤ Cn−1 + 2‖ψ‖∞
( ∑

j≤T

∑
(j,k)∈Hj

2j/2(E(θ̂j,k − θj,k)
2)1/2

)2

(67)

+ 2

cn

∑
j>T

∑
(j,k)∈Hj

E(θ̂j,k − θj,k)
2.
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Denote byJi , i = 0,1,2,3,4, the smallest integers satisfying

2J0 ≥
(

n

logn

)1/(1+2α)

, 2J1 ≥ n1/(1+2α)

dn

,

2J2 ≥ n1/(1+2α)

(
dn

logn

)1/(2α)

,

2J3 ≥ n1/(1+2α) logn

dn

, 2J4 ≥ n1/(1+2α).

Then for allj ≤ J1,

Card(Hj ) ≤
{

Nψ, if j < J1,

Nψ2j cn, if j ≥ J1.

Note that for all levelsj ≤ J3, the coefficients of wavelet basis functionsψj,k

whose support has nonempty intersection with the interval[x0 − cn, x0 + cn] are
in at mostNψ + 1 blocks because the number of such coefficients is less than
Nψ logn.

We will consider the three cases separately. Again, withσ 2 = n−1 and L =
logn, the second term on the right-hand side of (44) and (43) is 2λn−2, which is
negligible and thus will be absorbed into theCn−1 term in the calculations below.

(i) ChooseT = J1 in (67). In this caseJ0 < J1. It then follows from Lemmas
2 and 4 that

R(f̂n, f ;x0, cn)

≤ Cn−1 + C

(
J0−1∑
j=j0

2j/2(logn)1/2n−(1/2) +
J1−1∑
j=J0

2j/22−j ((1/2)+α)

)2

+ c−1
n

∞∑
j=J1

2j cn2−j (1+2α)

≤ C

(
logn

n

)2α/(1+2α)

.

(ii) ChooseT = J1 in (67). Lemmas 2 and 4 yield that

R(f̂n, f ;x0, cn)

≤ Cn−1 + C

(
J1−1∑
j=j0

2j/2(logn)1/2n−(1/2)

)2

+ Cc−1
n

J2−1∑
j=J1

(logn)n−1

+ Cc−1
n

∞∑
j=J2

2j cn2−j (1+2α)
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≤ Cn−1 + C
logn

dn

n−2α/(1+2α)

+ C(J2 − J1)
logn

dn

n−2α/(1+2α) + C
logn

dn

n−2α/(1+2α)

= C
(logn)(log logn)

dn

n−2α/(1+2α)(1+ o(1)
)
.

(iii) ChooseT = J3 in (67). In this case we have

R(f̂n, f ;x0, cn)

≤ Cn−1 + C

(
J1−1∑
j=j0

2j/2(logn)1/2n−1/2

)2

+ Cc−1
n

J3−1∑
j=J1

(logn)n−1

+ Cc−1
n

J4−1∑
j=J3

2j cn

logn
(logn)n−1 + Cc−1

n

∞∑
j=J4

2j cn2−j (1+2α)

≤ Cn−1 + C
logn

dn

n−2α/(1+2α)

+ C(J3 − J1)
logn

dn

n−2α/(1+2α) + Cn−2α/(1+2α) + Cn−2α/(1+2α)

= Cn−2α/(1+2α)(1+ o(1)
)
. �
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