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Abstract

A theory of superefliciency and adaptation is developed under flexible performance measures which give a
multiresolution view of risk and bridge the gap between pointwise and global estimation. This theory provides
a useful benchmark for the evaluation of spatially adaptive estimators and shows that the possible degree of
superefficiency for minimax rate optimal estimators critically depends on the size of the neighborhood over
which the risk is measured.

Wavelet procedures are given which adapt rate optimally for given shrinking neighborhoods including the
extreme cases of mean squared error at a point and mean integrated squared error over the whole interval.
These adaptive procedures are based on a new wavelet block thresholding scheme which combines both the
commonly used horizontal blocking of wavelet coeficients (at the same resolution level) and vertical blocking
of coefficients (across different resolution levels).

Keywords
adaptability, adaptive estimation, shrinking neighborhood, spatially adaptive, superefficiency, wavelets

Disciplines
Statistics and Probability

This journal article is available at ScholarlyCommons: http://repositoryupenn.edu/statistics_papers/250


http://repository.upenn.edu/statistics_papers/250?utm_source=repository.upenn.edu%2Fstatistics_papers%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages

The Annals of Satistics

2005, Vol. 33, No. 1, 184-213

DOI 10.1214/009053604000000832

© Institute of Mathematical Statistics, 2005

NONPARAMETRIC ESTIMATION OVER SHRINKING
NEIGHBORHOODS: SUPEREFFICIENCY AND ADAPTATION?

By T. ToNY CAI AND MARK G. Low
University of Pennsylvania

A theory of superefficiency and adaptation is developed under flexible
performance measures which give a multiresolution view of risk and bridge
the gap between pointwise and global estimation. This theory provides a
useful benchmark for the evaluation of spatially adaptive estimators and
shows that the possible degree of superefficiency for minimax rate optimal
estimators critically depends on the size of the neighborhood over which the
risk is measured.

Wavelet procedures are given which adapt rate optimally for given
shrinking neighborhoods including the extreme cases of mean squared error
at a point and mean integrated squared error over the whole interval. These
adaptive procedures are based on a hew wavelet block thresholding scheme
which combines both the commonly used horizontal blocking of wavelet
coefficients (at the same resolution level) and vertical blocking of coefficients
(across different resolution levels).

1. Introduction. Squared error loss at each point and integrated squared
error loss over an interval are two of the most common ways to evaluate the
performance of nonparametric function estimators. Integrated squared error is used
as a broad overall measure of loss whereas pointwise squared error loss gives a
highly localized measure of accuracy. Minimax theory for both these cases can be
found for example in Pinsker (1980), Ibragimov and Hasminski (1984), Donoho
and Liu (1991) and Donoho and Johnstone (1998), and there are a large number of
additional references in Efromovich (1999).

In nonparametric function estimation problems minimax risk provides a useful
uniform benchmark for the comparison of estimators. Such uniform bounds do
not, however, capture many aspects of these problems since in these infinite-
dimensional settings asymptotically minimax estimators can often be constructed
which are also superefficient at every parameter point. In fact, much recent work
on nonparametric function estimation can be viewed as attempts to construct
superefficient estimators with desirable properties. This is clear in the literature on
adaptive estimation where the connection between superefficiency and adaptation
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has been considered as, for example, in Beran (1999, 2000). In adaptive estimation
the goal is to construct estimators which are simultaneously asymptotically (near)
minimax over a collection of parameter spaces. Such estimators are optimal over
this range of spaces.

This theory of adaptive estimation depends strongly on how risk is measured.
When the performance is measured globally full adaptation can often be achieved.
In particular, Efromovich and Pinsker (1984) constructed fully adaptive estimators
over a range of Sobolev spaces. Recent results on rate adaptive estimators focus on
more general Besov spaces. See, for example, Donoho and Johnstone (1995), Cai
(1999) and Hardle, Kerkyacharian, Picard and Tsybakov (1998).

When the performance is measured at a point, it is often the case that full
adaptation is not possible and superefficient estimators must have inflated risk
at other parameter points. A penalty, usually a logarithmic factor, must be paid
for not knowing the smoothness. Important work in this area began with Lepski
(1990) where attention focused on a collection of Lipschitz classes. See also Brown
and Low (1996), Efromovich and Low (1994), Lepski and Spokoiny (1997) and
Cai (2003).

Since optimally adaptive estimators at each point typically pay a logarithmic
penalty compared to the minimax risk, they are not necessarily optimally globally
adaptive. This has led to the approach of a simultaneous pointwise and global
analysis. The goal is then to construct estimators which, for a range of parameter
spaces, are both minimax rate optimal for integrated squared error loss and pay
only a logarithmic penalty for squared error loss at each point. See, for example,
Cai (1999, 2002) and Efromovich (2002).

Pointwise mean squared error can be viewed as an extreme (although useful)
way of measuring local performance of an estimgfarThe focus in the present
paper is on a more flexible approach. Specifically we propose to evaluate the
performance of an estimatgy, (nearxg) by using an average mean squared error
over a neighborhood ofy:

xo+cn

~ 1 ~
1) R(fu f1x0,0) = 5 —Ey (fux) — f(x))?dx.

Cn X0—Cn

The choice ofc¢, allows for considerable flexibility when measuring local
performance. For fixed, by taking the limit as;, — 0 we can recover the usual
case of squared error loss &f, and by takingxg = % andc, = % we recover
the usual global risk. By evaluating the performance for a whole rangg ibfs
possible to give a multiresolution view of the risk. We show that this more flexible
approach to measuring local performance can be used to bridge the gap between
the pointwise and global theories.

In this paper we consider estimation over shrinking neighborhoods based on
observations from a Gaussian process

2) ZZ(mE/otf(x)dH%B*(r), 0<r<1
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where B*(¢) is a standard Brownian motion anfl is an unknown function.
This Gaussian process is a prototypical model for many nonparametric function
estimation problems such as nonparametric regression and density estimation.

In Section 2 it is shown that the size of the neighborhood as governed
by ¢, determines both the possible degree of superefficiency for minimax rate
optimal estimators as well as the cost of adaptation. For “small” neighborhoods
superefficient estimators cannot be minimax rate optimal and hence fully rate
adaptive estimation is not possible. In fact the penalty for superefficiency
determines the cost of adaptation. On the other hand, for “large” neighborhoods
there exist minimax rate optimal estimators which are superefficient at every
parameter point.

Adaptive estimation is considered in Sections 3 and 4. In Section 3 a procedure
is constructed which optimally adapts to smoothness over given shrinking
neighborhoods. This construction includes the extreme cases of mean squared
error at a point and mean integrated squared error over the whole interval.

The adaptive procedure used in Section 3 is based on block thresholding of
empirical wavelet coefficients, a technique which has been shown to be effective
for adaptive estimation. See, for example, Hall, Kerkycharian and Picard (1998)
and Cai (1999, 2002). Block thresholding in these papers is done by blocking
of wavelet coefficients only at the same resolution level. The adaptive procedure
proposed here is based on a new block thresholding scheme. It combines both the
commonly used horizontal blocking of wavelet coefficients (at the same resolution
level) and vertical blocking of coefficients (across different resolution levels).
Furthermore, it appears that vertical blocking is essential for the resulting estimator
to be optimally adaptive.

The theory of adaptive estimation over given shrinking neighborhoods devel-
oped in Sections 2 and 3 provides a useful benchmark for the evaluation of es-
timators designed to be spatially adaptive. Spatially adaptive procedures should
however adapt not just to unknown smoothness but also to a whole range of shrink-
ing neighborhoods over which the risk is measured. This more complete analysis
incorporating a multi-resolution view of risk is given in Section 4. In that section
it is shown that a block thresholding estimator introduced in Cai (1999) exhibits,
from this point of view, good spatial adaptivity.

2. Superefficiency and adaptation. In nonparametric function estimation
problems minimax risk depends strongly on the parameter space. Typically the
parameter space is unknown and so attention is often focused on the construction of
adaptive estimators which simultaneously attain near minimaxity over a collection
of parameter spaces. The theory of adaptive estimators is closely connected to that
of superefficient estimators which in turn depend on how the risk is measured.

In this paper we shall develop the shrinking neighborhood theory for Holder
classes

B Fa.M={f:fPw) - rPm <Mix—-y**o<x<y<1},
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wherek is the greatest integer strictly less thanMinimax theory in this setup

is standard. In particular, under the risk measure (1) with observations from
the Gaussian process (2) the minimax rate of convergence erM) is of
ordern—2¢/(22+D) The theory for superefficiency and adaptation is however quite
interesting.

The focus in this section is on how the size of the shrinking neighborhood affects
the penalty for superefficient estimators. The connection between superefficient
estimation and adaptation is then made clear. Our interest in superefficiency is
mainly for the insight it provides for the question of adaptation and we show how
lower bounds derived for the penalty of superefficiency are directly applicable to
the minimum cost of adaptation.

2.1. Superefficiency. For a parameter spac& we call an estimatorf,
superefficient aff € # under a loss functiod., if the risk at f converges faster
than the minimax risk, namely

EfLu(fn: f)
inf » supreg EyLn(fa f)

As mentioned in the Introduction, for estimation under mean integrated squared
error (i.e.,xo = 3 andc, = 3) fully rate adaptive estimators exist and so there
are superefficient estimators which are also minimax rate optimal. In particular,
Brown, Low and Zhao (1997) give examples of estimating the whole function
under integrated squared error loss where an estimator is superefficient at every
parameter while also maintaining the minimax rate of convergence. On the other
hand, for estimation under pointwise mean squared et0&(0) Lepski (1990)
and Brown and Low (1996) showed that any superefficient estimator cannot be
minimax rate optimal ovelF («, M) and hence in this case fully rate optimal
adaptation is not possible. This case is similar to the superefficiency phenomenon
arising in regular parametric problems. See, for example, Le Cam (1953) and
Lehmann (1983).

As argued in the Introduction, integrated squared error and pointwise squared
error are two extremes of a whole range of risk measures, each of which sheds
light on the performance of a particular estimaffyr Shrinking neighborhoods
give a more general way to evaluate the performance of an estimator. We
begin by exploring the minimal cost of superefficiency for a specified shrinking
neighborhood and find the critical size of neighborhood which will allow for the
construction of superefficient estimators which are also minimax rate optimal.

For a given shrinking neighborhood af let A(fp) be the collection of
estimatorsf, based on the Gaussian observations (2) that are superefficient at
rate B, at the parameter poinf. More specifically, let

(4)

5) Afo) = {fn lim supn2/ W20 B R(Fo. fo: xo, cn) < oo}.

n—oo
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The following result then precisely gquantifies the minimum penalty of such
superefficient estimators.

THEOREM 1. FixO<xp<1,0<M < M, and set ¢, = d,n /112 | et

B, — oo and k)gLBn — 00 and suppose that fo € F(a, M’).

(i) Iflimsup, .., d, - (log B,)~Y+20) — 0, thenfor any f, € A(fo),

n 20/ (142a) R
(6) Iiminf( ) sup  R(fu, f;x0,¢cn) >0
n—oo \log B, feF(a,M) " "
and there exists some f,, € A( fp) satisfying
0\ 20/ (420 X
) lim sup( ) sup  R(fu, f; xo0, cn) < 00.
n— 00 |Og B, feF(a,M)

(i) If liminf,oood, - (logB,) Y20 -~ 0 and limsup, . d, X
(logB,)~1 =0, then for any f, € A(fo),

- dy R
(8) liminf n2/A+20 . 2 sup  R(fy, f:x0.¢n) >0
n—00 l0g By fer(a,m) " "

and there exists some f,, € A( fo) satisfying

. d, A
(9) limsupn®/+20__ sup  R(f,, f; x0, cn) < 00.
n—00 109 B,y feF(a,m)

(i) If Iiminfnﬁoobg—"Bn > 0, then there exists an estimator f, € A(fo)
satisfying
(10) lim supn®/+20)  sup  R(f,, f; x0, cn) < 00.
n—00 feF(a,M)

Note that the rate in the upper bound in case (iii) is sharp because it is also the
minimax rate of convergence.

Theorem 1 gives bounds on the maximum risk after prespecifying the degree of
superefficiency. For each of the three cases the proof of Theorem 1 constructs
specific wavelet block thresholding procedures which attain the lower bounds.
In other words, these wavelet procedures have minimal maximum risk given a
particular level of superefficiency at a specified function.

Alternatively, it is also useful to classify the existence of minimax superefficient
estimators in terms of a given neighborhood. The results can then be conveniently
summarized as follows.

Caske 1 (Small neighborhoods). When the size of the neighborhood is smaller
thanDn~=1/>+D (j.e., 0< d, < D) for some constanb, no minimax rate optimal
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estimator can be superefficient. In particular, whign= 0, which corresponds to
the usual pointwise risk atg, superefficient estimators cannot be minimax rate
optimal. In other words, minimax rate optimal estimators must have the same “flat”
rate of convergence at eveyyin the interior of F («, M).

CAsE 2 (Large neighborhoods). When the size of the neighborhood satisfies
liminf d,, = co there are superefficient estimators attaining the minimax rate. The
possible degree of superefficiency of a minimax rate optimal estimator however
depends on the size of the neighborhood as described in the following three cases.

CaseA. liminf,_, . d, =ococandlimsup_, ., oen g = 0. In this case a minimax
rate optimal estimator can be superefficienf@tbut the rate of convergence of its
risk at fo cannot be algebraically faster than the minimax rate.

Case B. 0 <liminf, oo iz < iMsup,_, o oz < A < oo. In this case an
estimator can have risk afy converging at an algebraic rate faster than the
minimax rate while maintaining the minimax convergence rate ¢\es, M).

CaseC. Iliminf,— |odﬁ = o0. In this case a minimax rate optimal estimator
can have its risk afp converging at a rate which is faster than any algebraic rate.
Hence an estimator can achieve a high degree of superefficiengyvaithout
paying a penalty in terms of its maximum risk oV, M).

An interesting consequence of these results is that for a prespecified shrinking
neighborhood of siza™" superefficient estimators which are also minimax rate
optimal exist forF («, M) if and only if 0 < @ < =-=. In particular, fory > 1 there
are no minimax superefficient estimators over any Holder d&ass M) and for
0 < y < 1 superefficient minimax rate optimal estimators exist only for the less
smooth function spaces.

2.2. Superefficiency in global estimation. An interesting special case of the
results considered in the previous section is that of estimation under mean
integrated squared error which corresponds to the choicg ea‘% andc, = %

In this case the results of Theorem 1 show that an estimator can simultaneously
attain the minimax rate oveF («, M) and a high degree of superefficiency at
any specificfp in the interior of F(«, M). The following corollary of Theorem 1
precisely quantifies how superefficient the estimator can be while maintaining the
minimax rate of convergence oveéla, M).

COROLLARY 1. LetO< M’ <M and fp € F(a, M'). Suppose
(11) lim supnY A2 . (log B,) "t =

n—oo
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If £, isan estimator based on (2) satisfying

(12) lim SUpB, E ol fu = foll2 < oo,
n—
then
(13) limsupn®/+20 sup  E|| f, — 13 = oo.

n—00 feF(a,M)

Thus, a minimax rate optimal estimator cannot have risfaonverging faster
thane=2""“** forall D > 0.

Condition (11) is sharp. That is, there exist estimators which converge super-
fast at any fixedfy € F(«, M) with the rate ofe= P and yet still attain the
minimax rate uniformly over the clags(«, M).

THEOREMZ2. Let foe F(a, M) befixed. For any constant D > 0 there exists
an estimator which satisfies

. 1/(142a) ~
(14) limsupe®"""™ E || fu — fol3 < 00
n— oo
and
(15) limsupn®/A420 sup  E||f, — f15 < 0.
n— 00 feF(a,M)

The theorem guarantees the existence of such superefficient estimators. One
such estimator based on block thresholding of empirical wavelet coefficients is
given by (63) and (64) in Section 6.

2.3. Connection to adaptation. The results on superefficiency given in Sec-
tion 2.1 have direct implications for adaptation. Consider two function classes
F(a1, M) and F(ap, M) with O < a1 < a2 < 1. ThenF (a2, M) C F(o1, M) and
a fully rate adaptive estimatgf, over these classes would need to satisfy

(16) SUp  R(fy, f;x0, cn) = n—2%i/(2ai+D
feF(ai.M)

for bothi = 1 andi = 2. The risk off, for eachf € F (a2, M) must then converge
faster than the minimax risk over the larger parameter spdee, M). Hence such
estimators must be superefficient at egch F (a2, M) with respect taF (a1, M).

The results in Theorem 1 can then be applied to yield corresponding lower bounds
for adaptation over shrinking neighborhoods. These results are summarized in the
following corollary.
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COROLLARY 2. Consider two function classes F (a1, M1) and F(ap, M2)
with a1 < ap. Let 0 < xg < 1 and ¢, = d,n~ Y220 |f limsup, , . d, x
(logn)~t =0, then

(17) maxlimsupn/A249)inf  sup  R(f,, f; x0, cn) = 0.
i=1,2 n—oo fu fEF(ai M)

More specifically, suppose f, isany estimator satisfying

(18) limsupr”  sup  R(fa, f; X0, Cn) < 00
n—>00 feF (a2,M2)

201
1+201 "

(i) Iflimsup,_, . d, - (logn)~Y/+22) = 0, then
n )Zal/(l+2(¥1)

for somer >

sup  R(fu, f;x0,¢n) > 0.

(29) lim inf(
feF(a1,M1)

n—oQ

logn

(i) 1fliminf,_, o d, - (logn)~Y/1+20 5 0andlimsup,_, ., d, - (logn)~1 =0,
then

L. d o
(20) liminf n?22/A+20 2 qup  R(f,, f:x0,cp) > O.
n—0o0 097 feF (o, mp)

The results in this corollary state that it is impossible to adaptively attain the
minimax rates over the two function classes with different convergence rates
whenever the size of the neighborhood is “too small.” In Section 3 it is shown
that the lower bounds on the cost of adaptation given by (19) and (20) are in fact
sharp.

3. Adaptiveestimation. We now turn our attention to adaptive estimation and
the construction of adaptive estimators. In this section the focus is on adaptation
over smoothness classes for a given shrinking neighborhood. Wavelet thresholding
estimators are constructed which attain the bounds given by (19) and (20). In
Section 4 we shall consider adaptation to both smoothness and to the size of the
neighborhood.

3.1. Wavelet thresholding. Let ¢ andy be a pair of compactly supported
father and mother wavelets which generate an orthonormal basIs[6f 1]
through dilation and translation and where as is typigak chosen to satisfy
J¢=1. The support lengths o and andy are written asNy and Ny,
respectively.

Throughout this paper it is also assumed thais r-regular, meaning it has
vanishing moments andcontinuous derivatives. Under these assumptions let

G =222t —k),  Yut) =272yt — k).
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Then for some choice of the collection $;, . k=1,..., 2Jo: Vik,J = Jjo. k=
1,...,2/} with appropriate boundary corrections is an orthonormal basis of
L?[0,1]. See Cohen, Daubechies, Jawerth and Vial (1993), Daubechies (1994)
and Meyer (1991) for further details on wavelet bases on the unit intgdya].
For wavelets on the line, see Daubechies (1992) and Meyer (1992).

A function f: [0, 1] — R can then be expanded in this orthonormal series. Set

1 1
Eiok = /0 FOix®dr and 6, = /0 FOV @) dt,

wheret, « are the wavelet coefficients at the coarse level@gndare coefficients
at the detail levels.

Under the orthonormal wavelet basis, the Gaussian model (2) is equivalent to
the sequence model

(21) yjo,k = Ejo,k + n_l/zzjo,k’ l<k< 2j0,
(22) ik =0k +n"?z54, 1<k<2,j>jo

wherez j, » andz;  are i.i.d.N (0, 1) random variables. Reconstructions©tan
then be based on estimates of the wavelet coefficients.

One particularly effective technique for estimating the wavelet coefficients
is that based on block thresholding. Block thresholding estimates the wavelet
coefficients in groups rather than individually, making simultaneous decisions
to retain or to discard all the empirical coefficients within a block. It increases
estimation accuracy by using information about neighboring wavelet coefficients
balancing variance and bias along the curve. More details of such adaptive
smoothing can be found in Hall, Kerkyacharian and Picard (1998) and Cai
(1999, 2002). More standard term-by-term thresholding rules can be thought of
as a special case of block thresholding with block size one.

The block thresholding rules used in the above-mentioned papers are con-
structed by grouping wavelet coefficients only at the same resolution level. In our
context it is necessary to use block thresholding rules which employ vertical block-
ing of coefficients across different resolution levels as well as the commonly used
horizontal blocking of wavelet coefficients at the same resolution level. We thus
give below a generic description of a general block thresholding estimator which
possibly uses both horizontal and vertical blocking.

Let J > jo be some dividing resolution level. Group the wavelet coefficients
from level jp to level J into nonoverlapping blocks of length. Let B; be the set
of indices for coefficients in thih block and letS? = 3" ; )5, yjz’k be the sum of
squares for this block. The block thresholding estimator of the wavelet coefficients
has the form

(23) b= n(S?) - yjks for (j,k)e B, j < J,
" 0, forj > J,
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wheren(5?) is some thresholding function. For example, one can gi§8) =
1(5%> ) or

ALn~t
(24) n(s,?>=(1— 2 )
+

wherea is some thresholding constant. The shrinkage rule (24) is used throughout
this paper with a variety of values afand L.

3.2. Adaptive estimation on given neighborhoods. The lower bound on the

performance of an adaptive estimator over a collection of Holder claséesM)

has been given in Corollary 2 of Section 2.3. For neighborhoods ayith "’%

an estimator is given in Section 4 which adapts both to smoothness and to the
size of neighborhood while attaining the bounds of Corollary 2. In this section,
an estimator designed for neighborhoods with> '03” is given. It is a wavelet

estimator based on a block thresholding scheme. Using the same notation as in
Section 3.1, let/, J, andJ* be the smallest integers satisfying

2/ >, 2/«>c¢-t and 2" >c¢ tlogn,
respectively. Then in the casg > '0%
We setJ, = jo whenJ, < jo and let

H; ={(j,k):Suppyrjx) N[xo— cu, xo+cal #2} and H*= ] H;j.
Jy=j<J*

considered here, it follows that* < J.

Then
Nl//’ |f]<.]*,

CardH;) < ; .
AH)) = Ny2c,, if j>J,,

and CardH*) =< logn whereNy, is the length of the support af.

The estimator we propose, a hybrid estimator of soft thresholding, vertical block
thresholding and horizontal block thresholding, can be described in four steps as
follows.

1. For empirical coefficienty; , between levelsip and J, apply term-by-term
soft thresholding rule. The soft thresholding rule is also applied to coefficients
at levels betweerny, and J* where(j, k) ¢ H*, in which case the support of
the corresponding wavelet basis functipn, has empty intersection with the
interval [xg — ¢,,, x0 + ¢cp].

2. Group all the empirical coefficients x with (j, k) € H* into a single vertical
block and denote byf =2 (j.keH* yj%k the sum of squared coefficients in the
vertical block. Apply a single James—Stein shrinkage rule of the form (24) to
the coefficients in this block.
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3. At each resolution level* < j < J, divide the empirical wavelet coefficients
yj.k into nonoverlapping blocks of length = logn. Denote by(jb) the set
of indices of the coefficients in théth block at Ievelj, that is, (jb) =
{(k:(b—1)L+1<k<bL}, and IetS(jb) 2_ke(jb) yj , denote the sum of
squares for the blockjb). Then apply the James—Stein shrinkage rule to each
block (jb) for J* < j < J.

4. Forj > J, estimate alb; ; by O.

More precisely, each coefficiedf ; is estimated by

sgn(y;.«)(lyjxl —v2n~tlogn),

if jo<j<J"and(j, k)¢ H*,

. CaLnt) L .
(25) Ok = <1 §Z )erj,kv if (j,k) e H*,

-1
(1-2B2) yuue W07 <)< d andke b,
+

0, ifj>J,

where A, = 4.50524 is a constant satisfying. — logi, — 1 = 2. Define the
wavelet estimator of by

2J0 oo 2J
(26) fn(x)— Zyjo k¢]o k(x) + Z ZQJ kw] k(x)
Jj=jok=1

with éj,k given in (25). This estimator attains the lower bounds in Corollary 2

at least whenc, > '03”. For smaller neighborhoods, the estimator given by
(32) and (33) in Section 4 also attains the lower bounds. These results are

summarized in the following theorem.

THEOREM3. Whenc, > '0,?”, let £, bethe estimator given by (25) and (26)
where the wavelet v is r-regular with r > o, whereas if ¢, < 'Ofl’" let f, bethe
BlockJS estimator given in (32) and (33).Let 0 < xg < 1 and ¢, = d,n~Y 1420,

(i) 1flimsup,_, o d, - (logn)~Y+20) < oo, then

20/ (14-20) R
(27) Iimsup( ) sup  R(fn, fi X0, cn) < 00.
n—oo \logn feF(a.M)
| (ii) II Ié)mlr?f,HOO - (logn) Y+ — oo and limsup,_, dy X
(logn) then
200/ (1420) 1 dn

(28) lim supn sup  R(fn, f;x0,cn) < 00.
n—00 Iogn feF (o, M)
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(iii) 1fliminf,_ o d, - (logn)~1 > 0, then

(29) lim Supnz"/(HZ") sup R(fn’ f; X0, Cn) <.
n—oo feF(a,M)

In view of Theorem 1, the estimator given in (25) and (26) attains the adaptive
minimax rate for estimating’ over the neighborhoofkg — ¢,;, xo + ¢ 1.

A particularly interesting choice ot,, ¢, = n~7, is summarized in the
following corollary which shows that fully rate optimal adaptation can be achieved
over F(a, M) ifandonlyif 0 <« < 12_—)]’

COROLLARY 3. Let f, be the estimator given in (25) and (26) and let
¢, =n~Y for some 0 < y < 1. Suppose the wavelet v is chosen to be r-regular
with r > 12_—yy.Thenfor O<a< lz_—yy,

(30) lim supn®/+20)  sup  R(fy, f; x0, cn) < 00,
n—00 feF(a,M)
andfor 2 <o <r,
2a/(14+2a) R
(31) Iimsup(I ) sup  R(fu, f;xo0,cn) < 00.
n—oo \10gn feF(a,M)

4. Adaptation over smoothness and neighborhoods. In nonparametric
function estimation, it is common to fix a risk measure such as integrated squared
error or squared error at a given point and to construct estimators which adapt
across a range of smoothness classes. In our setting of shrinking neighborhoods,
it is natural to consider two different types of adaptation. One is to adapt to the
unknown smoothness of the underlying functions while the risk is measured over
a given sequence of shrinking neighborhoods as in Section 3. A more ambitious
and general adaptation goal is to adapt both to the unknown smoothness and the
shrinking neighborhood over which the risk is measured.

This latter approach is most appropriate when the goal is to construct spatially
adaptive estimators. It gives a more complete analysis with a multiresolution view
of risk which spans a whole range of local and global measures of risk. Ideally
we would like to construct an estimator which is “fully” adaptive—attaining the
best adaptive rates for all choices of neighborhood sizes. The benchmark for
such estimators is provided in Theorem 1. We shall show below that the BlockJS
estimator [Cai (1999)] is nearly fully adaptive. This BlockJS procedure can be
described as follows.

Expand the Gaussian process (2) in an orthonormal wavelet basis as in
Section 3.1. At each resolution levek J = [log, n] divide the empirical wavelet
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coefficientsy; x into nonoverlapping blocks of length = logn. Denote by(jb)
the set of indices of the coefficients in theh block at levelj, that is,

(Jjb)y={k:(b-1DL+1<k=<bL}.

Let S(zjb) = D ke(jb) yjz’k denote the sum of squares for the blagi) and let

A« = 4.50524 be given as in Section 3, the root of the equatienlogr — 1= 2.
We then apply the James—Stein shrinkage rule to each lpl@ggkor jo < j < J,

)L,kLn_1
5. — (1— 5 )y,-,k, fork e (jb), j < J,
k= G 7+

0, for j > J.

(32)

The BlockJS estimatof, of the whole functionf is then given by

2Jo oo 2/
(33) Fa) =3 Fioktjok )+ >S54 4 (x).
k=1 j=jok=1

THEOREM 4. Let f,, be the BlockJS estimator given in (32) and (33) and
let 0 < xp <1 and ¢, = d,n Y20 gyppose the wavelet v is r-regular
withr > a.

(i) Iflimsup,_, o d, - (logn)~Y/1+20) < oo, then

n o\ 2e/(1+20) .
(34) lim Sup( ) sup  R(fn, f; x0,cp) < 00.
n— oo |Ogn feF(a,M)

(i) If liminf, o0 d, - (logn)~Y 12 = o0 and limsup, . ., d, - [(logn) x
(loglogn)]~1 =0, then

d, o
35) limsupn/(+2) 2 sup  R(fy,, f;x0,cn) < 00.
(35) moap (logn)(loglogn) feF(a?M) Jus "

(iii) Ifliminf,_ o d, - [(logn)(loglogn)]~1 > 0, then

(36) lim supn®/+20)  sup  R(f,, f; x0, cn) < 00.
n—00 FeF(aM)

This theorem shows that the BlockJS estimator adapts well to the unknown
smoothness across a wide range of shrinking neighborhoods. Just as in Section 3
the special choice, =n~" is particularly interesting. Although the results of the
following corollary are similar to those given in Corollary 3 it should be noted that
the BlockJS estimator does not depend on the size or location of the neighborhood.
Hence the BlockJS estimator exhibits very strong spatial and parameter space
adaptivity.
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COROLLARY 4. Let f,, be the BlockJS estimator and let 0 < xg < 1 and
¢y, =n"7 for some y > 0. Suppose the wavelet + is r-regular with r > 1{—)}’ Then

for O<a < ¥

2y
(37) lim supn®/+20)  sup  R(f,, f; x0, ¢n) < 00,
n—00 feF(a,M)
and for 12_—yy <a<r,
n 0\ 20/ (1420) R
(38) Iimsup<I ) sup  R(fu, f;xo0,cn) < 00.
n— 00 ogn feF(a,M)

5. Discussion. The theory of shrinking neighborhoods gives a multiresolution
view of the performance of function estimators. It also provides a useful
benchmark for the evaluation of spatially adaptive procedures. This theory can be
easily extended to more general settings. One possible extension is to consider
general weight functions. Leb(x) > 0 be a compactly supported continuous
function satisfyingw(0) > 0 and [ w(x)dx = 1. For a decreasing sequence
¢, — 0 and a fixedeg € (0, 1) let

(39) Wn(x)ziw(x_x()).

Cn Cn

The performance of an estimatgj, can then be evaluated with respect to the
weight W,,:

(40) R(fy. f1 W) = Ef / W, () (fo ) — £(x))2dx.

This risk can be viewed as a weighted risk concentrated around thexgogmd
the shrinking neighborhoods considered earlier in this paper correspond to the
choice of uniform weightv (x) = %I(—l <x<1.

Under the conditions given above,(x) < Cq for all x, w(x) > C> > 0 for
|x] <a andw(x) = 0 for |x| > b for some constant€y, C», a andb. It is then
easy to see that all the results given in the previous sections carry over to the risk
given in (40).

It is also possible to extend the theory in this paper to a Gaussian process
observed on the whole line. In this setting it is natural to consider a general weight
functionW,, wherec,, — 0 orc¢,, — oo. The latter choice corresponds to expanding
neighborhoods. When, — 0 it is easy to see that all the theory given in the
previous sections carries over to this setting. On the other hand, whenoo
fully adaptive estimation is always possible and the block thresholding wavelet
estimator given in Section 4 can easily be extended to a wavelet expansion on the
real line.
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6. Proofs. Throughout this sectionC denotes a generic positive constant
which may vary from place to place. The wavelet notation follows that given
in Section 3.1. The father wavel¢tand mother waveleyr are always assumed
to have compact support with the length of the support denotedlognd Ny, ,
respectively.

6.1. Preparatory results. The following elementary inequalities are useful for
the evaluation of the risk of wavelet estimators over shrinking neighborhoods in
terms of the wavelet coefficients.

LEMMA 1. ForanyO<a<b <1, set
Si(a,b) ={(j, k) :suppyj«) C la,b]} and

S2(a, D) ={(j, k) :suppyjx) Nla, b] # o}
Then

2
b
(41) Yoo 0% sf (Zej,kwj,k(x)) dx< Y. 0%
(J,k)eSa(a,b) @ \jk (J,k)eSa(a,b)

PROOR  For any f(x) = > x 0jx¥jk(x) let h(x) = f(x)I[4,p)(x) @and note

that [ f2(x)dx = [} h?(x)dx. Let
gixr)= > Ouvia) and gax)= > Ojvja).
(J,k)€S1(a,b) (J,k)€S2(a,b)

Then |gill3 = X kyesia.b) Qﬁk for i = 1,2. It is also easy to see thgh(x) =

h(x) for x € [a,b] and so|g2/3 > [|h|3 and the second inequality in (41)
immediately follows.
We can also write

h(x) =Y 0 k¥ ap() =g1(x)+ D> 0ja¥jx() Iap(x).
J:k (J,k)¢S1(a,b)
Noting that supgg1) C [a, ], it follows that

1
/O g1 Y 0k i p () dx

(J.k)¢S1(a,b)

1
:/0 g1(x) D Oixvjix(x)dx =0,

(j.k)¢S1(a.b)
and consequently
2

2 2
>lallz= Y. 05,
2 (j,k)eS1(a,b)

IRE=lgl5+| > 0jx¥jk()ap(x)

(Jj.k)¢S1(a,b)
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and the first inequality in (41) also holdsJ

The proofs of the main theorems also rely on bounds on the risk of wavelet block
thresholding estimators. Lemma 2 summarizes several useful risk upper bounds for
such estimators.

LEMMA 2. Let y; =6, + oz where z; % N©,1),i = 1,...,L, and let

6 =(1— kggz)m where $2=3"y? and A > 1. Then

1

L L
42) > E@ —-6)%< min[ZG?, /\L(;Z] + 2200 DL G2
i=1 i=1
In the special case of A = 4.50524(the root of the equation A — logi — 3= 0),
L R L
(43) Y E@ —6)%< min{Z@,?,xLaz} +2e Lo,
i=1 i=1

In addition, suppose . = 4.50524and |0;| < ¢ for all i. Then
(44) E@®; —6;)? <8c% +2ne Lo

PROOF Inequality (42) is a direct consequence of the oracle inequality given
in Theorem 1 of Cai (1999) and the bound on the tail probability of the chi-squared
distribution given in Lemma 2 of Cai (1999). Inequality (43) then follows directly

on evaluation of (42). For the proof of (44), it suffices to consider the case-of.
In that case note that

5 2 AL 2 ?
E(@, —9[) :E{(l— F)y,[(S >)\.L) —9,‘}

ALN\?
<207 + 2Eyl~2<1 - F) 1(5?> L)

< 20% + 2Ey?1(S% > AL).

Now note that for fixed); it is easy to check thafyl?l(S2 > AL) is increasing in
each|g;| for j #i. Note also that if alb; other tharp; are fixed, then by Lemma
3

(45) Ey?I(S%> L) = E(y?I(y? > AL — §2,)|5%))

is increasing ind;|. HenceEy?21(S? > AL) is maximized when al); = c. When
all 6; = c, Ey?1(5? > AL) is the same for all and hence

y2I1(8? > AL) =L YES?I(S? > AL).
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In the proof of Proposition 1 in Cai (1999) it is shown that
ES?I(S? > AL) < 3|05+ AL(A"1er " 7L/2,

Therefore,

Eg(6; — 61)% < 8¢2 + 2pe~(1/20—l0gh=DL O

LEMMA 3. Letz~ N(0,1)andy =6+z. Thenforanyc > 0, Egy2I(|y| > ¢)
isan increasing function of |6].

ProoFR It suffices to conside# > 0. Let
o0 —c _ 2
f(Q)ZVZJTEeyZI(|y|>c):(/ _|_/ )yze 1/2)(y—0) dy
4 —00
and
o] —c—0
8(0) = V21 Eg?1(Jy| > ¢) = (/ +/ )Zze—<1/2>z2 dz.
c—6 —00
Then
0 —C B 2
7o) = (/ +/ )yz(y_g)e (1/2)(y—0) dy
c —00

00 —c—0 2
= (/ —I—/ )(x3 +20x% + 0%x)e~ HDX" gy
c—0 —00

and
gl(e) — (C _ 0)26_(1/2)(C_0)2 . (C + 9)26_(1/2)(C+0)2.

Note that

—c—0 00
/ (x3+92x)e_(1/2)x2 dx = —f (x3+92x)e_(1/2)"2 dx,
c+6

—0o0

sofor6 >0
0 —c—0 2 c+6 2
£(0) = (/ +/ >29x2e—<1/2>x dx +/ (x3 4 6%x)e~ V2 gx > 0,
c—0 —00 c—0
and so the lemma follows.J

The following lemma is a result from standard wavelet theory. See, for example,
Daubechies (1992).

LEMMA 4. Suppose the wavelet  has compact support and is r-regular with
r > a. Thenthere existsa constant C > O suchthat for all f € F(a, M) itswavelet
coefficients satisfy

(46) 16;4] < C27/ (/2% forall j > joand 1<k <2/.
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6.2. Proof of the main results.

PROOF OFTHEOREM 1. The proof of this theorem is divided into two parts.
In the first part lower bounds are given and in the second upper bounds. For the
lower bounds only the first two cases in the theorem need to be considered. Since
the proofs of these two cases are similar a proof of case (i) is given in detail and
then only the main changes needed for the proof of case (ii) are given.

Lower bounds.

Case(i). Letg:R — R be a function satisfying:

(i) g(x)=x>0forx e[-1,1] andg is compactly supported in the interval
[—A, Al
(i) 1% x)—g® )| <M —M)x —y|** —00 <x <y < oo wherek is
the greatest integer less than or equat to
(i) [*, g?(x)dx=1

For sufficiently largeA such a function is easy to construct.

Set
n o/ (14+20) n 1/(14+2a)
= and B, =
Y (Ioan) P <Ioan>

and note that
and g%y t=1

v = log B,

Let f,.0:(0, 1] — R be defined by

Frno () =0y, g(B.(x — x0)) + fo(x) foro =0, 1.

It is simple to check that fof =0 or 1, f,, o € F(«a, M) for all n. Note also that
for sufficiently largen, sayn > N,

1
(47) Pn = n/O (fn,l - fn,0)2 = Iog B,.

Write Py for the probability measure associated with the process

4 1
Z;‘(I)E/O fn,g(x)a’x—l—ﬁB*(t), 0<t<1.

A sufficient statistic for the family of measur¢gy, P;'} is then given by the log

likelihood ratio7,, = In 421 and forn > No,

dP” '

underpy, T, ~ N(—%", p,,)
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and

2

Now based on the Gaussian mod@l let f, be an estimator of . Decompose this
estimator into components

underP;, T, ~ N(ﬁ, pn).

(48) Fa(¥) = fu.000) +0(Fu,1(x) — fFu,0(0)) + hn(x),
where
xo+cn A
(49) / o () (fa1(0) — fo.0(x)) dx =
X0—Cn

Hence, for® =0or 1,

l xo+cp ~
= / TR = o) da

ch X0—Cn
X0+cn

1
(50) = (- 05 f (fu1(0) — fu.0(0))2dx

X0—Cn
lgncn

—@G-0) ﬁ—lyn‘zz / 2(x) dx.
ncn

It follows from the condition limsup, .. d, - (logB,)~Y1*+2) = 0 that for
sufficiently largen, sayn > Ny,

dy < (log B,,)Y/ 422
in which cases,c, < 1. So

(51) L (Fux) = fuo())2dx > (6 — )22

ch X0—Cn

If assumption (5) of the theorem holds, there exiélia< oo and N2 such that for
all n > No,

xo+cn . (Iog Bn)Za/(1+2a)

R(ﬁ’lv fn,0§ X0, Cn) < Cln_za/(l—l-Za) Bn_l
Hence
Ef, 40 — 0% < C1272B, *(log B,,) =2/ (420

SinceT, is sufficient for{ Py, P;'} apply Theorem 1 of Brown and Low (1996)
with [ = e = B, for n > Nj.

Let N = max(No, N1, N2). Theorem 1, equation (2.4), of Brown and Low
(1996) then yields fon > N

1/2

(52) Ey, 1(9 —1)°>1— 2C, N 1(|Og B,) "%/ (+2)

Combining (51) and (52) yields (6).
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CAsek (ii). Let the functiong be constructed similarly as in the proof of case
(i), except that in Condition (i) — M’ is replaced byM — M")(4)1/2+e_ Set

d\ 12 n o/(1+20)
n=(5) (ogz) o
A log B,

A n 1/(1+2)
Pn = d (Iog B, > :

Since liminf,_, o0 d, - (Iog B,) ~Y/1+20 - 0, there exist constants> 0 andN > 0
such that for alh > N,

dy = d(log B,)"/ 2,

Hence, fom > N,

1/2)+a
2 n o, ,—1 A)
=, =|— and > A.
In this case (50) yields
1 Xoten 2 1. _ log B,
o [ = fuo @) dx 2 50 — 072/ 295
2Cn X0—Cn 2 d}’l

The remaining steps are the same as in the proof of Case (i) and hence are omitted.

We now turn to the proof of upper bounds, where the three cases need to
be treated separately. Note, however, that in each case we may assume without
loss of generality thaifp = O since we can always recenter the estimate at any
given fo. Let{¢, ¥} be a pair of compactly supported father and mother wavelets
generating an orthonormal basisfiA[0, 1] where the support lengths gfand
are denoted by, and Ny, respectively. We assume that bgtlandy, haver > o
vanishing momentsf x*¢(x)dx =0 fork =1,...,r and [ x*y (x) dx = 0 for
k=0,1,...,r. For example, Coiflets of order greater tharmave this property.

See Daubechies (1992).

Upper bounds.

Cask (i). Let j, be the largest integer satisfying 2< (m%)l/(lﬁo‘). For

j>0and 1<k <2/ let ¢, x(t) = 2//2¢(2/t — k). Thenxg € supp¢;, x) for
somek. Write

5, = 20n/2 f ¢ 1 (D dZE(D)

:2'j"/2/f(l’)¢jn’k(t)dt+2‘/.’1/2”_1/2/¢jnvk(t)dW(t)

f+z.
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I—jerez is a Gaussian random variable with mean 0 and varia;ﬁce 2/np=1 and
f can be regarded as the “mean value’fobn the support o, . Set

8n = SYNFn) (|Fn] — 0u(2l0g B,)"?)
and let fn be an estimator of with
fn(x)E(Sn for all x € [xg — ¢u, x0 + ¢l

We show below thaf, satisfies bothf, € A(fo) and (7). First, it is easy to verify
directly that

E@, — H?<min(2(/)%, 021+ 2l0ogB,)) + 02B; .

and hence
R(fn, f; X0, Cn)
1 xo0+cn
= —E; (5, — f(x))?dx
Cn X0—Cn
(53)
1 /x0+(fn (f_‘ f( ))zd
< — — f(x X
N ch X0—Cn

+min(2(f)?, 02(1+ 2logB,)) + 028, L.

Now for fp = 0 the zero function ofi0, 1] the first two terms in (53) are both 0.
Hence

R(fu. fo: X0, ¢p) < n~2¢/1+20 g—1(jog B,)~1/(1+20)

and it follows thatf, € A(fo). It follows from the vanishing moments property
of ¢ that for all f € F(«, M) and for allx € [xg — ¢;, x0 + ¢n],

(54) |f(x) = fI < C(M, ¢)2~%n,

whereC (M, ¢) is a constant depending ol and ¢ only. Now (7) follows by
applying (54) to (53):

IO Bn 20[/(1"-2(1)
g ) (1+o(D)).

n

R(fy. fixaren =
CASE (ii). Inthe second case, a wavelet procedure based on block threshold-
ing is used. Let/; andJ2 be the largest integers satisfying
2 <q Lyt A+20  and 22 < d-tlog B,nY/ A+,
Let

Hj ={(j,k):SUPYj1) N[xo—cu, X0+ cal #2} and Ho= |J H;.
Ji<j=sJ2
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Then it is easy to check that fgr> J; the cardinality of the index set§; is of
order 2¢, and soL, = Card H,) = b, log B, with b, < b, < b* for some posmve
constants, andb*. Denote byS? the sum of all the squared empirical wavelet
coefficientsy; ; with indices in H,. Applying a block thresholding rule to the
coefficients,

. AL,n~t
Gj,k=<1—#)+yj,k forall (j, k) € H,.
Then it follows from Lemma 2 that
Y. E@jx—06,0)?
(J.k)€H;
(55)
< min( > 9]2’,(, ALnn_1> + 2n Lo~ (1/D0G~l0gA=DLy
(j.k)eH,
Let the thresholding constahtbe chosen such that
S(r—logr — Db, =1.
Then the second term in the right-hand side of (55) is bounded from above
by 22~1B; 1. Applying Lemma 1, we have

R(fl’lv f;XO’ Cl’l)

1
=5 Z E(ij_Jk)‘i‘_Z Z 9

C, .
" (j.k)eH, " j>J(j,k)EH;

1 ) .
52—m|n<( > 071> ALnn 1)

Cn Jjk)eH,

(56)

> (j, k)eH;

For f = fo =0, the first and the third terms in (56) are both 0, hence
R(fa. fo: X0, cn) <n~ 23420 B L(log B,) 1/ +20)

and sofn € A(fp). For f € F(a, M), it follows from Lemma 4 that

(57) 104 < Cc2-i(1/D+a)

with the constan€ not depending orf. Hence

—Z Z ejk—z

]>]2(j k)eH i,

0,21 (A+2)

(58) 20/ (14-2 1
= Cn~2/A+20 4 110g B,

Now (9) follows from (56) and (58).
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CaAskE (iii). Finally, we turn to the third case where we will use the same
notation as in Case (ii). Lef, and J3 be the largest integers satisfying22<
d-tlog B,nY 420 and 23 < p1/1+20) respectively. (Ifd, < logB,, choose
J3 = J,.) Denote byL ; the cardinality of the index setd;. Then, forj > Jo,
there exist positive constanks andb* such that,2/c, < L; < b*2/c,. Denote
by $2 the sum of all the squared empirical wavelet coefficients at level j with
(j, k) € H;. Applying a block thresholding rule to the coefficients level by level,

5 ( ALjn~t
Jk=\+= 2
5
Then again it follows from Lemma 2 that
Z E(éj,k - 9j,1<)2

(Jj.k)eH;

) Vjk forall /< j<Jsand(j, k) € H;.
+

(59)

< min( Y 0% ALjn—l> + 2171~ (1/2(—logA-DL;
(j,k)eH;

Write L, = b, log B, with b, < b, < b*. We choose the thresholding constant
such that

3L —logr — Db, = 1.

Then the second term on the right-hand side of (59) is bounded from above
by 2. =B for j = J, and

J3
(60) Z an~ —(1/2)(r—logrA—-1)L; <4n~ n—l'
Jj=J2
Lemma 1 yields

R(fl‘lv f x07 C}’l)

<—Z TR S D

" j=J2 (j.k)EH " j>J3(jk)eH;

< Z mm( > o2 k,)\.le’l_l>

" j=a (J.k)eH,

(61)

nji>Js(j, k)eH;

Once again forf = fo = 0, the first and the third terms in (61) are both 0, hence
R(fu. fo: x0, ) < 20~ 2/ A2 g1 o1
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and soﬁ, € A(fo). The coefficient bound (57) yields
1 — / —
(62) 2— YOX Gus5o 2 Y Cen2 M=o,

Jj>J3(j.k)eH; " j>J3(j,k)€H;
Now (10) follows from (61) and (62).

PROOF OFTHEOREM 2. As in the proof of Theorem 1 it suffices to consider
fo=0. Expand the Gaussian process (2) in an orthonormal wavelet basis as in
Section 3.1. Suppose the wavelets chosen to be-regular withr > «. Let J’ be
the largest integer satisfying 2< n/(+20) Then the total numbet’ of wavelet
coefficients up to (and including) the lev&lis less than 2/(1+2%) and larger than
or equal ton 3420 Group all the empirical wavelet coefficienfs, » andy; «
up to the level/’ into a single block and apply a James—Stein type rule to the
coefficients. More specifically, denote the sum of the squared empirical coefficients
up to the level/’ by

2/0 J' 2
~ 2
=2 ikt Do 2 Vik
k=1 j=jok=1
and define the estimator of the wavelet coefficients by
. AL\ ,
gjo,k:(l_T) y]09k f0r1§k§2]°,
+
R AL/n1 ) .
(63) 9j’k:(1_ 52 )+yj,k forj<J,\1l<k<2/,
6ix=0 otherwise

where A is a constant satisfying. — logh — 1 = 2D. The corresponding
estimatorf, of f is the wavelet series wity, » and6d;  as coefficients:

2Jo oo 2/
(64) falx) = Zsjommk(x) + 3309 ().
Jj=jok=1

It follows from (42) in Lemma 2 that

J/
Y E(jpk—Eiok) + Y Y E@jk — 012
k

j=jo k

< mm(Z gjo « Z 291 i AL’n_l) + 25~ Lo~ (1/2)(i—logr—-1)L’

j=jo k

<m|n<Zgjok+ Z 292 . 2\n —2a/(1+2a)) L on 1, _Dnl/(l+20t)

j=jo k
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Hence
Efllfu— £15
J 1)
=Y EGpx—Eon)’+ 2 D E@ix— 0,07+ Y 0%
k j=jo k j=J+1 k
(65) J,
< min(Zéjzo,k +> Z@ik, 2kn_2“/(1+2“))
k J=Jo k
(0.0]
+2n L PR N N2
j=r+1 k

Now for fo=0, all§;, x =0 and alld; y =0 so

; 2 _1 _ppl/ai2e
Epllfu — folls<2n""e " .

. 1/(1+2
Thus, withB, = nePr’

; P o2 i 1/ (14+200) -1_
I|{ln_)solianEf0”fn foll5 <00 and nﬂ)ryon (logB,)" "= D.

On the other hand, the estimator attains the optimal rate uniformly ©weri).
This can be seen easily from (46) and (65):

sup Efllfu—fI3
feF(a,M)

2J
< 220/ (1420) + znflefDnl/(Hz“) + i Z C22—j(1+2a)
j=J'+1k=1
<20+ CHn~2/AF20 (1 4 (). O
PROOF OFTHEOREM 3. We assumé&* < J in the following proof. In the
special case of * > J the estimator is the BlockJS estimator. The proof for this

case follows from that of Theorem 4. Denote hyx) = I (x € [xo — ¢, X0+ ¢u]).
Then

R(fu, £ X0, cn)
1 /1 -
-t { Z /0 |:Xk:(yjo,k - é:J'ka)¢j0’k(x)

00 2
+ Z Z(éj,k - ej,k)‘ﬂj,k(x):| In(X)dx}

j=jo k



SUPEREFFICIENCY AND ADAPTATION 209

- 1
fzjoEi;/(; Xk:yjok g]ok ¢O,k(x)1n(x)dx}

2
{ / [ZZ(e,k j,kwj,k(x)} Mx)dx}

j=jo k

2
~Cn _1+E{ / [Z > 6k - j,k)wj,k(x)} In(x)dx}.

j=jo k

Hence

R(fn, f3 %0, ¢n)

Ty 2
<Cn1+2||z/f||ooE<Z > 2f/2|9j,k—ej,k|)

J=Jjo(j,k)eH;

2
(66) {c / (Z S 6 — ,-,kwj,k(xﬂn(x)) dx}

Jj>Jx

Js 2
an‘1+2||¢||00<2 3 21/2(E(9,-,k—0,-,k>2)1/2)

J=jo (j.k)eH;

2 .
+=Y > E@jx-6;0%

> Ui (jk)EH,

The last inequality follows from Lemma 1 and the elementary inequality

n 2 n 2
E(ZX,-) < (Z(Exf)l/z) .
i=1

i=1

We now consider the three cases separately. The main tool is the risk bounds
(43) and (44) given in Lemma 2. Note that with = n~1 andL = logn the second
term on the right-hand side of (43) and (44) is22, which is negligible in the
following risk calculations, and we will absorb this term into the first tefn; 1,
in the calculations below. Note that

J*—1

'Y E@ik—00°<C min((logn)nl, > eﬁk) +0m™2).

J=Js (jk)eH; (j.k)eH;

In case (i), let/g be the smallest integer satisfyinde2- (@)1/(“2“). Then
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Jo < J,. It follows from Lemmas 2 and 4 that
R(fn’ f’ xO, Cn)
Jo—1 J—1 2
< c( 3" 2/2(ogn)t2n =2 + 3 21/22—j<<1/2>+a))
J=Jo j=Jo
OO . .
+Ccyt Y 2,27 )
j:-]*

<C .

n

In case (ii), Lemmas 2 and 4 yield that

Jo—1 2
R(fu. f3x0. ) < C( 3 2f/2<logn>1/2n‘<1/2>)

J=Jo
m . .
+ Cc;Ylognynt + Cc;t Z 2 ¢, 271142
Jj=J*

< 109" _2u/@i2a).

n
In case (jii) letJ; be the smallest integer satisfyingt2- nl/(1+20 We have

Jo—1 2
R(fu, f3x0.Cn) < C( > 2//2(Iogn)1/2n—<1/2)) + Cc; Y(logn)n=t
j=Jjo

C

o0
i (IOgn)n_l + Ccn_1 Z 2 ¢, 271 (A+22)

L J]_Z—l 2J
+Cc,
=7 logn

< Cn72a/(1+2a). |

j=n

PROOF OFTHEOREM 4. Let f,(x) be the BlockJS estimator given in (33).
Denotel,(x) = I(x € [xg — ¢y, x0 + ¢,]). Similarly as in (66), in the proof of
Theorem 3, for any” > jp,

2
R(fn,f;xo,cn>ECn—1+2||x/f||oo(Z > 2”2(E(éj,k—0j,k>2)”2)
J=T (j.k)eH;
(67)

2 .
+C—Z > E@x— 050

nj>T (j,k)eH;
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Denote byJ;,i =0, 1, 2, 3, 4, the smallest integers satisfying

1/(1+2a) 1/(1+2a)
2.]0 > ( I’l ) 211 > n / o
~ \logn ’ - d,
1/ (2
22 >n1/(1+2a>< dn ) e
- logn
1/(1+2
2J3 - n /( o) |Og”l’ 2J4 > nl/(l—i—ZOl)‘
> —n >
Then for allj < J,
Nw, |f j < J]_,
CardH;) < , )
a ’)_{NI/,ZJcn, if j > Jq.

Note that for all levelsj < J3, the coefficients of wavelet basis functiots x
whose support has nonempty intersection with the intdesgd- ¢, xo + ¢, ] are
in at mostN,, + 1 blocks because the number of such coefficients is less than
Ny logn.

We will consider the three cases separately. Again, with=n"1 and L =
logn, the second term on the right-hand side of (44) and (43).is 2, which is
negligible and thus will be absorbed into e~ term in the calculations below.

(i) ChooseT = J1 in (67). In this case/y < J;. It then follows from Lemmas
2 and 4 that

R(fﬂ’ f;x()v Cl’l)

Jo—1 J1-1 2
< Cn_l-l-C( Z 2j/2(logn)l/2n—(l/2) + Z 2j/22—j((1/2)+¢¥))
Jj=Jo j=Jo

o0
+c;1 Z 2Jcn2—1(1+2a)
Jj=J

IOgn 2a/(1420)
_c( ) .

n

(i) ChooseT = J1 in (67). Lemmas 2 and 4 yield that
R(fu, f3x0. ¢n)

J1—1 2 Jo—1
<Ccn 14 C( Z 2J/2(|Ogn)1/2n_(1/2)> + Cc;1 Z (logn)n—!
Jj=Jo J=

o8}
+Cept Y 2,27
j=J2
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<Cn 4 Clognn—Za/(1+2a)

n

+ C(Jz _ Jl) —20(/(1+ZOC) + C IOgnn—Za/(1+2a)
n n
=C (IOQH)(:ZOQ logn) n~2/1520(1 4 o(1)).
n

(i) ChooseT = J3in (67). In this case we have
R(fn, fixo0,¢cn)

J1—1 2 J3—
<Cnl4 C( > 21/2(Iogn)1/2n_1/2) +Cc;t Z (logn)n~t
Jj=Jo J=J1

ot Z 00 (Iogn)n +Ce;t Z 2J ¢, 271 (A2
Jj=J3 j=Ja

S Cn_l + Clognn—zd/(l-‘rZC()

n

n

= Cn~2/AH20(1 4 9(1)). 0
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