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VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION VIA
THE DIFFERENCE SEQUENCE METHOD

BY LAWRENCE D. BROWN1 AND M. LEVINE1,2

University of Pennsylvania and Purdue University

Consider a Gaussian nonparametric regression problem having both an
unknown mean function and unknown variance function. This article presents
a class of difference-based kernel estimators for the variance function. Op-
timal convergence rates that are uniform over broad functional classes and
bandwidths are fully characterized, and asymptotic normality is also estab-
lished. We also show that for suitable asymptotic formulations our estimators
achieve the minimax rate.

1. Introduction. Let us consider the nonparametric regression problem

yi = g(xi) + √
V (xi)εi, i = 1, . . . , n,(1)

where g(x) is an unknown mean function, the errors εi are i.i.d. with mean zero,
variance 1 and the finite fourth moment µ4 < ∞ while the design is fixed. We as-
sume that max{xi+1 − xi} = O(n−1) for ∀i = 0, . . . , n. Also, the usual convention
x0 = 0 and xn+1 = 1 applies. The problem we are interested in is estimating the
variance V (x) when the mean g(x) is unknown. In other words, the mean g(x)

plays the role of a nuisance parameter. The problem of variance estimation in non-
parametric regression was first seriously considered in the 1980s. The practical im-
portance of this problem has been also amply illustrated. It is needed to construct
a confidence band for any mean function estimate (see, e.g., Hart [24], Chapter
4). It is of interest in confidence interval determination for turbulence modeling
(Ruppert et al. [34]), financial time series (Härdle and Tsybakov [23], Fan and Yao
[18]), covariance structure estimation for nonstationary longitudinal data (see, e.g.,
Diggle and Verbyla [10]), estimating correlation structure of heteroscedastic spa-
tial data (Opsomer et al. [31]), nonparametric regression with lognormal errors as
discussed in Brown et al. [2] and Shen and Brown [36], and many other problems.

In what follows we describe in greater detail the history of a particular approach
to the problem. von Neumann [40, 41] and then Rice [33] considered the special,
homoscedastic situation in which V (x) ≡ σ 2 in the model (1) but σ 2 is unknown.
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2220 L. D. BROWN AND M. LEVINE

They proposed relatively simple estimators of the form

V̂ (x) = 1

2(n − 1)

n−1∑
i=1

(yi+1 − yi)
2.(2)

The next logical step was made in Gasser, Sroka and Jennen-Steinmetz [19], where
three neighboring points were used to estimate the variance,

V̂ (x) = 2

3(n − 2)

n−2∑
i=1

(
1

2
yi − yi+1 + 1

2
yi+2

)2

.(3)

A further general step was made in Hall, Kay and Titterington [21]. The follow-
ing definition is needed first.

DEFINITION 1.1. Let us consider a sequence of numbers {di}ri=0 such that

r∑
i=0

di = 0(4)

while
r∑

i=0

d2
i = 1.(5)

Such a sequence is called a difference sequence of order r .

For example, when r = 1, we have d0 = 1√
2
, d1 = −d0, which defines the first

difference �Y = Yi−Yi−1√
2

. The estimator of Hall, Kay and Titterington [21] can be
defined as

V̂ (x) = (n − r)−1
n−r∑
i=1

(
r∑

j=0

djyj+i

)2

.(6)

The conditions (4) and (5) are meant to insure the unbiasedness of the estimator (6)
when g is constant and also the identifiability of the sequence {di}.

A different direction was taken in Hall and Carroll [20] and Hall and Mar-
ron [22] where the variance was estimated by an average of squared residuals
from a fit to g; for other work on constant variance estimation, see also Buckley,
Eagleson and Silverman [5], Buckley and Eagleson [4] and Carter and Eagleson
[7].

The difference sequence idea introduced by Hall, Kay and Titterington [21] can
be modified for the case of a nonconstant variance function V (x). As a rule, the
average of squared differences of observations has to be localized in one way or
another—for example, by using the nearest neighbor average, a spline approach or
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local polynomial regression. The first to try to generalize it in this way were prob-
ably Müller and Stadtmüller [27]. It was further developed in Hall, Kay and Tit-
terington [21], Müller and Stadtmüller [28], Seifert, Gasser and Wolf [35], Dette,
Munk and Wagner [9], and many others. An interesting application of this type of
a variance function estimator for the purpose of testing the functional form of the
given regression model is given in Dette [8].

Another possible route to estimating the variance function V (x) is to use the
local average of the squared residuals from the estimation of g(x). One of the
first applications of this principle was in Hall and Carroll [20]. A closely related
estimator was also considered earlier in Carroll [6] and Matloff, Rose and Tai [26].
This approach has also been considered in Fan and Yao [18].

Some of the latest work in the area of variance estimation includes attempts
to derive methods that are suitable for the case where X ∈ Rd for d > 1; see,
for example, Spokoiny [38] for generalization of the residual-based method and
Munk, Bissantz, Wagner and Freitag [29] for generalization of the difference-
based method.

The present research describes a class of nonparametric variance estimators
based on difference sequences and local polynomial estimation, and investigates
their asymptotic behavior. Section 2 introduces the estimator class and investigates
its asymptotic rates of convergence as well as the choice of the optimal bandwidth.
Section 3 establishes the asymptotic normality of these estimators. Section 4 in-
vestigates the question of asymptotic minimaxity for our estimator class among all
possible variance estimators for nonparametric regression.

2. Variance function estimators. Consider the model (1). We begin with the
following formal definition.

DEFINITION 2.1. A pseudoresidual of order r is

�i ≡ �r,i =
r∑

j=0

djyj+i−�r/2�,(7)

where {dj } is a difference sequence satisfying (4)–(5) and i = � r
2� + 1, . . . , n +

� r
2� − r .

Let K(·) be a real-valued function such that K(u) ≥ 0 and is not identically
zero; K(u) is bounded [∃M > 0 such that K(u) ≤ M for ∀u]; K(u) is supported
on [−1,1] and

∫
K(u)du = 1. We use the notation σ 2

K = ∫
u2K(u)du and RK =∫

K2(u) du. Then, based on �r,i , we define a variance estimator V̂h(x) of order r

as the local polynomial regression estimator based on �2
r,i ,

V̂h(x) = â0,(8)
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where

(â0, â1, . . . , âp)

= arg min
a0,a1,...,ap

n+�r/2�−r∑
i=�r/2�+1

[�2
r,i − a0 − a1(x − xi) − · · · − ap(x − xi)

p]2

× K

(
x − xi

h

)
.

The value h in (8) is called the bandwidth and K is the weight function.
It should be clear that these estimators are unbiased under the assumption of

homoscedasticity V (x) ≡ σ 2 and constant mean g(x) ≡ µ. We begin with the de-
finition of the functional class that will be used in the asymptotic results to follow.

DEFINITION 2.2. Define the functional class Cγ as follows. Let C1 > 0,
C2 > 0. Let us denote γ ′ = γ − �γ � where �γ � denotes the greatest integer less
than γ . We say that the function f (x) belongs to the class Cγ if for all x, y ∈ (0,1)∣∣f �γ �(x) − f �γ �(y)

∣∣ ≤ C1|x − y|γ ′
,(9) ∣∣f (k)(x)

∣∣ ≤ C2,(10)

for k = 0, . . . , �γ � − 1. Note that Cγ depends on the choice of C1, C2, but for
our convenience we omit this dependence from the notation. There are also similar
types of dependence in the definitions that immediately follow.

DEFINITION 2.3. Let δ > 0. We say the function is in class C+
γ if it is in Cγ

and in addition

f (x) ≥ δ.(11)

These classes of functions are familiar in the literature, as in Fan [15, 16] and
are often referred to as Lipschitz balls.

DEFINITION 2.4. Define the pointwise risk of the variance estimator V̂h(x)

(its mean squared error at a point x) as

R(V (x), V̂h(x)) = E[V̂h(x) − V (x)]2.

DEFINITION 2.5. Define the global mean squared risk of the variance estima-
tor V̂h(x) as

R(V, V̂h) = E

(∫ 1

0

(
V̂h(x) − V (x)

)2
dx

)
.(12)

Then the globally optimal in the minimax sense bandwidth hopt is defined as

hn = arg min
{
sup{R(V, V̂h) :V ∈ Cγ , g ∈ Cβ} :h > 0

}
.
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Note that hn depends on n as well as C1, C2, β and γ . A similar definition applies
in the setting of Definition 2.4.

REMARK 2.6. In the special case where γ = 2 and β = 1, the finite sample
performance of this estimator has been investigated in Levine [25] together with
the possible choice of bandwidth. A version of K-fold cross-validation has been
recommended as the most suitable method. When utilized, it produces a variance
estimator that in typical cases is not very sensitive to the choice of the mean func-
tion g(x).

THEOREM 2.7. Consider the nonparametric regression problem described
by (1), with estimator as described in (8). Fix C1, C2, γ > 0 and β > γ/(4γ + 2)

to define functional classes Cγ and Cβ according to the definition (2.2). Assume
p > �γ �. Then the optimal bandwidth is hn � n−1/(2γ+1). Let 0 < a ≤ a < ∞.
Then there are constants B and B such that

Bn−2γ /(2γ+1) + o
(
n−2γ /(2γ+1))

(13)
≤ R(V, V̂ ) ≤ Bn−2γ /(2γ+1) + o

(
n−2γ /(2γ+1))

for all h satisfying a ≤ n1/(2γ+1)h ≤ a, uniformly for g ∈ Cβ , V ∈ Cγ .

Theorem 2.7 refers to properties of the integrated mean square error. Related
results also hold for minimax risk at a point. The main results are stated in the
following theorem.

THEOREM 2.8. Consider the setting of Theorem 2.7. Let x0 ∈ (0,1). Assume
p > �γ �. Then the optimal bandwidth is hn(x) � n−1/(2γ+1). Let 0 < a ≤ a < ∞.
Then there are constants B and B such that

Bn−2γ /(2γ+1) + o
(
n−2γ /(2γ+1)) ≤ R(V (x0), V̂hn(x0))

(14)
≤ Bn−2γ /(2γ+1) + o

(
n−2γ /(2γ+1))

for all h(x) satisfying a ≤ n1/(2γ+1)h ≤ a, uniformly for g ∈ Cβ , V ∈ Cγ .

The proof of these theorems can be found in the Appendix. The minimax rates
obtained in (13) and (14) will be shown in Theorems 4.1 and 4.2 to be optimal in
the setting of Theorem 2.7. At this point, the following remarks may be helpful.

REMARK 2.9. If one assumes that β = γ /(4γ + 2) in the definition of the
functional class Cβ , the conclusions of Theorems 2.7 and 2.8 remain valid, but the
constants B and B appearing in them become dependent on β . If β < γ/(4γ +
2), the conclusion (14) does not hold. For more details, see comments preceding
Theorem 4.2 and the Appendix.
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REMARK 2.10. Müller and Stadtmüller [28] considered the general quadratic
form based estimator similar to our (8) and derived convergence rates for its mean
squared error. They also were the first to point out an error in the paper by Hall
and Carroll [20] (see Müller and Stadtmüller [28], pages 214 and 221). They use
a slightly different (more restrictive) definition of the classes Cγ and Cβ and only
establish rates of convergence and error terms on those rates for fixed functions
V and g within the classes Cγ and Cβ . Our results resemble these but we also
establish the rates of convergence uniformly over the functional classes Cβ and Cγ

and therefore our bounds are of the minimax type.

REMARK 2.11. It is important to notice that the asymptotic mean squared
risks in Theorems 2.7 and 2.8 can be further reduced by proper choice of the dif-
ference sequence {dj }. The proof in the Appendix supplemented with material in
Hall, Kay and Titterington [21] shows that the asymptotic variance of our estima-
tors will be affected by the choice of the difference sequence, but the choice of
this sequence does not affect the bias in asymptotic calculations. The effect on the
asymptotic variance is to multiply it by a constant proportional to

C = 2

(
1 + 2

r∑
k=1

(
r−1−k∑
j=0

djdj+k

)2)
.(15)

For any given value of r there is a difference sequence that minimizes this constant.
A computational algorithm for these sequences is given in Hall, Kay and Tittering-
ton [21]. The resulting minimal constant as a function of r is Cmin = (2r + 1)/r .

3. Asymptotic normality. As a next step, we establish that the estimator (8)
is asymptotically normal. We recall that the local polynomial regression estimator
V̂h(x) can be represented as

V̂h(x) =
n+�r/2�−r∑
i=�r/2�+1

Kn;h,x(xi)�
2
r,i ,(16)

where Kn;h,x(xi) = Kn,x(
x−xi

h
). Here Kn,x(

x−xi

h
) can be thought of as a centered

and rescaled nonnegative local kernel function whose shape depends on the loca-
tion of design points xi , the point of estimation x and the number of observations n.
We know that Kn,x(

x−xi

h
) satisfies discrete moment conditions,

n+�r/2�−r∑
i=�r/2�+1

Kn,x

(
x − xi

h

)
= 1,(17)

n+�r/2�−r∑
i=�r/2�+1

(x − xi)
qKn,x

(
x − xi

h

)
= 0(18)
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for any q = 1, . . . , p. We also need the fact that the support of Kn(·) is contained
in that of K(·); in other words, Kn(·) = 0 whenever |xi − x| > h. For more details
see, for example, Fan and Gijbels [17]. Now we can state the following result.

THEOREM 3.1. Consider the nonparametric regression problem described
by (1), with estimator as described in (8). We assume that the functions g(x) and
V (x) are continuous for any x ∈ [0,1] and V is bounded away from zero. Assume
µ4+ν = E(εi)

4+ν < ∞ for some ν > 0. Then, as h → 0, n → ∞ and nh → ∞,
we find that

√
nh

(
V̂h(x) − V (x) − O(h2γ )

)
(19)

is asymptotically normal with mean zero and variance σ 2 where 0 < σ 2 < ∞.

PROOF. To prove this result, we rely on the CLT for partial sums of a gener-
alized linear process

Xn =
n∑

i=1

aniξi,(20)

where ξi is a mixing sequence. This and several similar results were established
in Peligrad and Utev [32]. Thus, the estimator (8) can be easily represented in
the form (20) with Kn;h,x(xi) as ani . What remains is to verify the conditions of
Theorem 2.2(c) in Peligrad and Utev [32].

• The first condition is

max
1≤i≤n

|ani | → 0(21)

as n → ∞ and it is immediately satisfied since

Kn;h,x(xi) = O((nh)−1)(22)

uniformly for all x ∈ [0,1].
• The second condition is

sup
n

n∑
i=1

a2
ni < ∞.(23)

It can be verified by using the Cauchy–Schwarz inequality and (22).
• To establish uniform integrability of ξ2

i ≡ �4
r,i , we use a simple criterion men-

tioned in Shiryaev [37] that requires existence of the nonnegative, monotonically
increasing function G(t), defined for t ≥ 0, such that

lim
t→∞

G(t)

t
= ∞
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and

sup
i

E[G(�4
r,i)] < ∞.

It is enough to choose G(t) = tν for small ν > to have this condition satisfied.
Finally, the remaining three conditions of Peligrad and Utev [32] are trivially
satisfied. �

4. Asymptotic minimaxity and related issues. Lower bounds on the asymp-
totic minimax rate for estimating a nonparametric variance in formulations related
to that in (1) have occasionally been studied in earlier literature. Two papers seem
particularly relevant. Munk and Ruymgaart [30] study a different, but related prob-
lem. Their paper contains a lower bound on the asymptotic minimax risk for their
setting. In particular, their setting involves a problem with random design, rather
than the fixed design case in (1). Their proof uses the Van Trees inequality and
relies heavily on the fact that their (Xi, Yi) pairs are independent and identically
distributed. While it may well be possible to do so, it is not immediately evident
how to modify their argument to apply to the setting (1).

Hall and Carroll [20] consider a setting similar to ours. Their equation (2.13)
claims (in our notation) that there is a constant K > 0, possibly depending on C1,
C2, β such that for any estimator Ṽ

sup{R(V (x0), Ṽ (x0)) :V ∈ Cγ , g ∈ Cβ}
(24)

≥ K max
{
n−2γ /(2γ+1), n−4β/(2β+1)}.

Note that n−2γ /(2γ+1) = o(n−4β/(2β+1)) for β < γ/(2γ + 2). It thus follows from
(14) in our Theorem 2.8 that for any γ /(4γ + 2) < β < γ/(2γ + 2) and n suffi-
ciently large

sup{R(V (x0), V̂hn(x0)) :V ∈ Cγ , g ∈ Cβ}
(25)

� K max
{
n−2γ /(2γ+1), n−4β/(2β+1)},

where hn is yet again the optimal bandwidth. This contradicts the assertion in Hall
and Carroll [20], and shows that their assertion (2.13) is in error—as is the argu-
ment supporting it that follows (C.3) of their article. For a similar commentary see
also Müller and Stadtmüller [28]. Because of this contradiction it is necessary to
give an independent statement and proof of a lower bound for the minimax risk.
That is the goal of this section, where we treat the case in which β ≥ γ /(4γ + 2).
The minimax lower bound for the case in which β < γ/(4γ +2) requires different
methods which are more sophisticated. That case, as well as some further general-
izations, have been treated in Wang, Brown, Cai and Levine [42] as a sequel to the
present paper. That paper proves ratewise sharp lower and upper bounds for the
case where β < γ/(4γ + 2).
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We have treated both mean squared error at a point (in Theorem 2.8) and inte-
grated mean squared error (in Theorem 2.7). Correspondingly, we provide state-
ments of lower bounds on the minimax rate for each of these cases. The local
version of the lower bound result for the minimax risk is obtained under the as-
sumption of normality of errors εi . See Section 2 for the definition of R and other
quantities that appear in the following statements.

THEOREM 4.1. Consider the nonparametric regression problem described
by (1). Fix C1, C2, β and γ to define functional classes Cγ , Cβ according to (2.2).
Also assume that εi ∼ N(0,1) and independent. Then there is a constant K > 0
such that

inf
{
sup{R(V, Ṽ ) :V ∈ C+

γ , g ∈ Cβ} : Ṽ
} ≥ Kn−2γ /(2γ+1)(26)

where the inf is taken over all possible estimators of the variance function V .

Our argument relies on the so-called “two-point” argument, introduced and ex-
tensively analyzed in Donoho and Liu [11, 12].

THEOREM 4.2. Consider the nonparametric regression problem described
by (1). Fix C1, C2, β and γ to define functional classes Cγ , Cβ according to (2.2).
Also assume that εi ∼ N(0,1) and independent. Then there is a constant K > 0
such that

inf
{
sup{R(V (x0)), Ṽ (x0)) :V ∈ Cγ , g ∈ Cβ} : Ṽ

} ≥ Kn−2γ /(2γ+1)(27)

where the inf is taken over all possible estimators of the variance function V .

PROOF. It is easier to begin with the proof of Theorem 4.2 and then proceed to
the proof of Theorem 4.1. We will use a two-point modulus-of-continuity argument
to establish the lower bound. Such an argument was pioneered by Donoho and
Liu [11, 12] for a different though related problem. See also Hall and Carroll [20]
and Fan [16].

We assume without loss of generality that g ≡ 0. Define the function

h(t) =



2 − |t |γ , if 0 ≤ |t | ≤ 1,
(2 − |t |)γ , if 1 < |t | ≤ 2,
0, if |t | > 2.

(28)

Assume (for convenience only) that C1 > 2. Let d be a constant satisfying 0 <

d < C2 and let

fδ,l(x) = d + lδh

(
x − x0

δ1/γ

)
.(29)
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Then fε,±1 ∈ Cγ for δ > 0 sufficiently small. Let H denote the Hellinger distance
between densities, that is, for any two probability densities m1, m2 dominated by
a measure µ(dz),

H 2(m1,m2) =
∫ (√

m1(z) − √
m2(z)

)2
µ(dz).(30)

Here are two basic facts about this metric that will be used below. If Z = {Zj : j −
1, . . . , n} where the Zj are independent with densities {mkj : j = 1, . . . , n},
k = 1,2 and mk = 
jmkj denotes the product density, then

H 2(m1,m2) ≤ ∑
j

H 2(m1j ,m2j );(31)

and if mi are univariate normal densities with mean 0 and variance σ 2
i , i = 1,2,

then

H 2(m1,m2) ≤ 2
(

σ 2
1

σ 2
2

− 1
)2

.(32)

For more details see Brown and Low [3] and Brown et al. [1].
It follows that if mk, k = 1,2, are the joint densities of the observations

{xi, Yi, i = 1, . . . , n} of (1) with g ≡ 0 and fk = fδ,(−1)k then

H 2(m1,m2) ≤ ∑
i

2
(

fδ,−1(xi)

fδ,1(xi)
− 1

)2

(33)

≤ 8
∑
i

δ2h2
(

xi − x0

δ1/γ

)
= O

(
nγ (2γ+1)/γ )

.

For this setting the Hellinger modulus-of-continuity, ω(·) (Donoho and Liu [12],
equation (1.1)), is defined as the inverse function corresponding to the value
H(m1,m2). Hence it satisfies

ω−1(γ ) = O
(
n1/2γ (2γ+1)/2γ )

.(34)

Equation (27) then follows, as established in Donoho and Liu [12]. Although this
completes the proof of Theorem 4.2, we also provide a sketch of the argument
based on (34). See Donoho and Liu [12] and references cited therein for more
details. �

PROOF OF THEOREM 4.1. We omit this proof for the sake of brevity. It begins
from the result in Theorem 4.2 and then follows along the lines first described in
detail in Donoho, Liu and MacGibbon [13]. This theorem can be also viewed as
a consequence of the general results on the global convergence of nonparametric
estimators by Stone [39] and Efromovich [14] that do not require normality of
errors εi . �
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APPENDIX

PROOFS OF THEOREMS 2.7 AND 2.8. Fix r and functional classes Cγ

and Cβ . For the sake of brevity, we write �i ≡ �r,i . Our main tools in this
proof are the representation (16) of the variance estimator V̂h(x) and the prop-
erties (17)–(18). We also use the property

n+�r/2�−r∑
i=�r/2�−1

(Kn;h,x(xi))
2 = O

(
1

nh

)
.(35)

(35) follows from (22) and the Cauchy–Schwarz inequality. Here and later, O is
uniform for all V ∈ Cγ , g ∈ Cβ and {h} = {hn}. Now,

E(�2
i ) = Var(�i) + (E(�i))

2,(36)

where

Var(�i) = ∑
d2
j Var

(
yj+i−�r/2�

) = V (xi) + O

((
1

n

)γ )
(37)

and

E(�i) = O

((
1

n

)β)
(38)

since
∑

dj = 0,
∑

d2
j = 1 and xi+r−�r/2� − xi−�r/2� = O( 1

n
). This provides an

asymptotic bound on the bias as

Bias V̂h(x) =
n+�r/2�−r∑
i=�r/2�+1

(
V (xi) − V (x)

)
Kn;h,x(xi) + O(n−γ ) + O(n−β)

(39)
= O(hγ ) + O(n−γ ) + O(n−β).

The last step in (39) is a very minor variation of the technique employed in Wang,
Brown, Cai and Levine [42] (see pages 10–11).

Next, we need to use the fact that �i and �j are independent if |i − j | ≥ r + 1.
Hence,

Var V̂h(x) = Var

(n+�r/2�−r∑
i=�r/2�+1

Kn;h,x(xi)�
2
i

)

=
n+�r/2�−r∑
i=�r/2�+1

i+r∑
j=i−r

Kn;h,x(xi)Kn;h,x(xj )Cov(�2
i ,�

2
j )

≤
n+�r/2�−r∑
i=�r/2�+1

i+r∑
j=i−r

4−1(
(Kn;h,x(xi))

2 + (Kn;h,x(xj ))
2)

× (Var�2
i + Var�2

j )
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It is easy to see that

�2
i =

(
r∑

j=0

djyj+i−�r/2�
)2

=
(

r∑
j=0

dj

√
V

(
xj+i−�r/2�

)
εi+j−�r/2� + O(n−β)

)2

,

and this means, in turn, that

Var�2
i ≤ C2

2 Var

(
r∑

j=0

dj εi+j−�r/2� + O(n−β)

)2

≤ C2
2(r + 1)µ4 + O(n−2β) + O(n−4β) = O(1).

Hence,

Var V̂h(x) ≤ O(1)

n+�r/2�−r∑
i=�r/2�+1

i+r∑
j=i−r

(
(Kn;h,x(xi))

2 + (Kn;h,x(xj ))
2)

(40)

= O

(
1

nh

)
.

Combining the bounds in (39) and (40) yields the assertion of the theorem since
2β > γ/(2γ + 1). �
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