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Sparse PCA: Optimal Rates and Adaptive Estimation

Abstract
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide
range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in
the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of
convergence for estimating the principal subspace which are sharp with respect to all the parameters, thus
providing a complete characterization of the difficulty of the estimation problem in term of the convergence
rate. The lower bound is obtained by calculating the local metric entropy and an application of Fano’s lemma.
The rate optimal estimator is constructed using aggregation, which, however, might not be computationally
feasible.

We then introduce an adaptive procedure for estimating the principal subspace which is fully data driven and
can be computed efficiently. It is shown that the estimator attains the optimal rates of convergence
simultaneously over a large collection of the parameter spaces. A key idea in our construction is a reduction
scheme which reduces the sparse PCA problem to a high-dimensional multivariate regression problem. This
method is potentially also useful for other related problems.
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SPARSE PCA: OPTIMAL RATES AND ADAPTIVE ESTIMATION

BY T. TONY CAI1, ZONGMING MA2 AND YIHONG WU3
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University of Illinois at Urbana-Champaign

Principal component analysis (PCA) is one of the most commonly used
statistical procedures with a wide range of applications. This paper considers
both minimax and adaptive estimation of the principal subspace in the high
dimensional setting. Under mild technical conditions, we first establish the
optimal rates of convergence for estimating the principal subspace which are
sharp with respect to all the parameters, thus providing a complete character-
ization of the difficulty of the estimation problem in term of the convergence
rate. The lower bound is obtained by calculating the local metric entropy and
an application of Fano’s lemma. The rate optimal estimator is constructed
using aggregation, which, however, might not be computationally feasible.

We then introduce an adaptive procedure for estimating the principal sub-
space which is fully data driven and can be computed efficiently. It is shown
that the estimator attains the optimal rates of convergence simultaneously
over a large collection of the parameter spaces. A key idea in our construc-
tion is a reduction scheme which reduces the sparse PCA problem to a high-
dimensional multivariate regression problem. This method is potentially also
useful for other related problems.

1. Introduction. Due to dramatic advances in science and technology, high-
dimensional data are now routinely collected in a wide range of fields including
genomics, signal processing, risk management and portfolio allocation. In many
applications, the signal of interest lies in a subspace of much lower dimension
and the between-sample variation is determined by a small number of factors. For
example, in spectroscopy, the variation of the infrared and ultraviolet spectra is
driven by the concentration levels of a small number of chemical components in the
system [53]. In financial econometrics, it is commonly believed that the variation
in asset returns is driven by a small number of common factors combined with
random noise [16].
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Principal component analysis (PCA) is one of the most commonly used tech-
niques in multivariate analysis for dimension reduction and feature extraction, and
is particularly well suited for the settings where the data is high-dimensional but
the signal has a low-dimensional structure. PCA has a wide array of applications,
ranging from image recognition to data compression to clustering. In the conven-
tional setting where the dimension of the data is relatively small compared with
the sample size, the principal eigenvectors of the covariance matrix is typically
estimated by the leading eigenvectors of the sample covariance matrix which are
consistent when the dimension p is fixed, and the sample size n increases [3].
However, in the high-dimensional setting where p can be much larger than n, this
approach leads to very poor estimates. At various levels of rigor and generality,
a series of papers [4, 9, 23, 26, 30, 39, 43] showed that the sample principal eigen-
vectors are no longer consistent estimates of their population counterparts. For
example, Baik and Silverstein [4] and Paul [43] showed that if p/n → γ ∈ (0,1)

as n → ∞, and the largest eigenvalue λ1 ≤ √
γ and is of unit multiplicity, then the

leading sample principal eigenvector v̂1 is asymptotically almost surely orthogonal
to the leading population eigenvector v1, that is, |v′

1v̂1| → 0 almost surely. Thus, in
this case, v̂1 is not useful at all as an estimate of v1. Even when λ1 >

√
γ , the angle

between v1 and v̂1 still does not converge to zero unless λ1 → ∞. In addition to be-
ing inconsistent, sample principal eigenvectors have nonzero loadings in all the co-
ordinates. This renders their interpretation difficult when the dimension p is large.

1.1. Sparse PCA. In view of the above negative results in the high-dimensio-
nal setting, a natural approach to principal component analysis in high dimensions
is to impose certain structural constraint on the leading eigenvectors. One of the
most popular assumptions is that the leading eigenvectors have a certain type of
sparsity. In this case, the problem is commonly referred to as sparse PCA in the
literature. The sparsity constraint reduces the effective number of parameters and
facilitates interpretation.

Various regularized estimators of the leading eigenvectors have been proposed
in the literature. See, for example, [18, 27, 28, 48, 52, 56, 60]. Theoretical analysis
has so far mainly focused on the rank-one case, that is, estimating the leading prin-
cipal eigenvector v1. In this case, Johnstone and Lu [26] showed that the classical
PCA performed on a selected subset of variables with the largest sample vari-
ances leads to a consistent estimator of v1 if the ordered coefficients of v1 have
rapid decay. Shen, Shen and Marron [47] and Yuan and Zhang [59] proposed other
consistent estimators when v1 has a bounded number of nonzero coefficients. Vu
and Lei [54] studied the rates of convergence of estimation under various spar-
sity assumptions on v1, and Lounici [35] further considers the minimax rates with
missing data. Amini and Wainwright [2] investigated the variable selection prop-
erty of the methods by [26] and [18] when v1 has k nonzero entries all of the same
magnitude. Berthet and Rigollet [5] considered minimax detection when v1 has
a bounded number of nonzeros.
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More recently, for estimating a fixed number r ≥ 1 of leading eigenvectors as
n,p → ∞, Birnbaum et al. [9] studied minimax rates of convergence and adaptive
estimation of the individual leading eigenvectors when the ordered coefficients of
each eigenvector have rapid decay. When r > 1 and some of the leading eigen-
values have multiplicity great than one, the individual leading eigenvectors can
be unidentifiable. On the other hand, the principal subspace spanned by them is
always uniquely defined. Ma [37] proposed a new method for estimating the prin-
cipal subspace and derived rates of convergence of the estimator under similar
conditions to those in [9].

1.2. Estimation of principal subspace. In this paper, we focus on the estima-
tion of the principal subspace. Both minimax and adaptive estimation are consid-
ered. Throughout the paper, let X be an n × p data matrix generated as

X = UDV′ + Z.(1)

Here U is the n × r random effects matrix with i.i.d. N(0,1) entries, D =
diag(λ

1/2
1 , . . . , λ

1/2
r ) with λ1 ≥ · · · ≥ λr > 0, V is p × r orthonormal and Z has

i.i.d. N(0, σ 2) entries which are independent of U. Equivalently, one can think
of X as an n × p matrix with rows independently drawn from the distribution
N(0,�), where the covariance matrix � is given by

� = Cov(Xi∗) = V�V′ + σ 2Ip.(2)

Here � = diag(λ1, . . . , λr) and V = [v1, . . . ,vr ] is p × r with orthonormal
columns. The r largest eigenvalues of � are λi + σ 2, i = 1, . . . , r , and the rest
are all equal to σ 2. The r leading eigenvectors of � are given by the columns of V.
Since the spectrum of � has r spikes, the covariance structure (2) is commonly
known as the spiked covariance matrix model [24] in the literature.

The goal of the present paper is to estimate the principal subspace span(V)

based on the observation X. Note that the principal subspace is uniquely identified
with the associated projection matrix VV′. In addition, any estimator could be re-
garded as the subspace spanned by the columns of a matrix V̂ with orthonormal
columns, hence uniquely identified with its projection matrix V̂V̂′. Thus, estimat-
ing span(V) is equivalent to estimating VV′. Let ‖ · ‖F denote the Frobenius norm.
In this paper we consider optimal and adaptive estimation of span(V) under the
loss function

L(V, V̂) = ∥∥VV′ − V̂V̂′∥∥2
F,(3)

which is a commonly used metric to gauge the distance between linear subspaces.
It also coincides with twice the sum of the squared sines of the principal angles
between the respective linear span.
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The difficulty of estimating span(V) depends on the joint sparsity of the
columns of V. Let ‖Vj∗‖ denote the Euclidean norm of the j th row of V. Or-
der the row norms in decreasing order as ‖V(1)∗‖ ≥ · · · ≥ ‖V(p)∗‖. We define the
weak �q radius of V as

‖V‖q,w � max
j∈[p] j‖V(j)∗‖q(4)

and let

O(p, r) = {
V ∈ R

p×r : V′V = Ir

}
(5)

denote the collection of p×r matrices with orthonormal columns. We consider the
following parameter spaces for � where the weak �q radius of V is constrained:

�q(s,p, r, λ) = {
� = V�V′ + Ip : 0 < λ ≤ λr ≤ · · · ≤ λ1 ≤ κλ,

(6)
V ∈ O(p, r),‖V‖q,w ≤ s

}
,

where q ∈ [0,2) and κ > 1 is a fixed constant. Note that in the rank-one case, our
structural assumption coincides with [26], (9), or [37], (3.5). In the special case of
q = 0, the union of the column supports of V is of size at most s. Weak �q -ball is
a commonly used model for sparsity. See, for example, Abramovich et al. [1] for
wavelet estimation and Cai and Zhou [15] for sparse covariance matrix estimation.
Group sparsity is also useful for high-dimensional regression, see, for example,
Lounici et al. [36].

Let q ∈ [0,2) and s > 0. Denote the weak-�q ball on O(p, r) by

Gq(s,p) = {
V ∈ O(p, r) :‖V‖q,w ≤ s

}
,(7)

which is the parameter space of V. In order for Gq(s,p) to be nontrivial, that is,
neither empty nor the whole O(p, r), the weak-�q radius must satisfy (see Sec-
tion 7.1 in the supplementary material [12] for a proof)

2 − q

2
r ≤ s ≤ rq/2p(2−q)/2.(8)

In particular, if q = 0, then we have 1 ≤ r ≤ s ≤ p. Throughout the paper, we
assume that (8) holds.

1.3. Optimal rates of convergence. Combining the upper and lower bound re-
sults developed in Section 2, we establish the following minimax rates of con-
vergence for estimating the principal subspace span(V) under the loss (3). We
focus here on the exact sparse case of q = 0; the optimal rates for the general
case of q ∈ (0,2) are given in Section 2. For two sequences of positive numbers
an and bn, we write an � bn when an ≥ cbn for some absolute constant c > 0 and
an � bn when bn � an. Finally, we write an � bn when both an � bn and an � bn

hold.
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THEOREM 1. Suppose we observe data X as in (1). Let λ
σ 2 �

√
logn

n
, s − r �

s ∧ log ep
s

and n � s log ep
s

∨ log λ
σ 2 . The minimax risk for estimating the principal

subspace span(V) under the loss (3) satisfies

inf
V̂

sup
�∈�0(s,p,r,λ)

E
∥∥V̂V̂′ − VV′∥∥2

F � λ/σ 2 + 1

n(λ/σ 2)2

(
r(s − r) + s log

ep

s

)
(9)

as long as the right-hand side of (9) does not exceed some absolute constant. Oth-
erwise, there exists no consistent estimator.

The rate of convergence in (9) depends optimally on all the parameters s,p, r, n

and λ. The result thus provides a precise characterization of the difficulty of the
principal subspace estimation problem in terms of the minimax rates over a wide
range of parameter values.

A key step in establishing the optimal rates of convergence is the derivation of
rate-sharp minimax lower bounds. It is highly nontrivial to obtain a lower bound
which depends optimally on all parameters, in particular the eigenvalues and the
rank. Our main technical tool for the lower bounds is based on local metric entropy
[7, 34, 58], instead of the usual methods based on explicit constructions of packing
sets together with Fano’s lemma used, for example, in [9, 43, 54]. Although the
method is abstract in nature, the advantage is that it only relies on the analytical
behavior of the metric entropy of the parameter space, thus allowing us to sidestep
constructing an explicit packing, which can be a challenging task due to the need
of fulfilling both the orthogonality and the weak-�q ball constraints.

We then construct an explicit estimator using an aggregation scheme, which
is shown to attain the same rates of convergence as those of the minimax lower
bounds. The matching lower and upper bounds together establish the optimal rates
of convergence. This aggregation method can potentially be useful for other high-
dimensional sparse PCA problems as well. Aggregation methods have been widely
used and well studied in statistics literature. See, for example, Juditsky and Ne-
mirovski [29], Yang [57], Nemirovski [41] and Rigollet and Tsybakov [45]. To the
best of our knowledge, this is the first application of the aggregation approach to
sparse PCA which yields optimality results.

1.4. Adaptive estimation. The rate-optimal aggregation estimator depends on
the model parameters that are usually unknown in practice and is unfortunately
not computationally feasible when p is large. We then propose an adaptive estima-
tion procedure that is fully data driven and easily implementable. The estimator is
shown to attain the optimal rate of convergence simultaneously over a large col-
lection of the parameter spaces defined in (6).

The proposed method is based on a reduction scheme. By a conditioning argu-
ment, the original sparse PCA problem is reduced to a high-dimensional regression
problem with orthogonal design and group sparsity on the regression coefficients.
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Then, we apply the model selection penalty idea from [8] to construct the final
estimator.

A key step in the reduction scheme is the construction of two new samples in
the form of (1), which share the same realization of the random effects U but have
independent copies of the noise matrix Z. This construction works because a com-
mon realization of U is critical in guaranteeing a sufficient signal-to-noise ratio
in the resulting regression problem. In contrast, splitting the original sample into
two halves fails to achieve this goal. On the other hand, the independence of the
noise components ensures that the regression problem has white noise structure.
The adaptivity and minimax optimality of the subspace estimator depend heavily
on those of the regression coefficient estimator. Thus, as a byproduct of the anal-
ysis, we also show that our estimator for regression coefficients is adaptively rate
optimal under group sparsity. To the best of our knowledge, the specific estimator
and its adaptive optimality is also new in the literature.

1.5. Other related work. The present paper is related to a fast growing liter-
ature on estimating sparse covariance/precision matrices as well as low-rank ma-
trices. Significant advances have been made on optimal estimation of the whole
covariance or precision matrix. Many regularization methods, including banding,
tapering, thresholding and penalization, have been proposed. In particular, Cai,
Zhang and Zhou [14] established the optimal rate of convergence for estimating
a class of bandable covariance matrices under the spectral norm. Cai and Yuan
[13] proposed a block thresholding procedure which is shown to be adaptively
rate-optimal over a wide range of collections of bandable covariance matrices.
Bickel and Levina [6] introduced a thresholding procedure and obtained rates of
convergence for sparse covariance matrix estimation. Cai and Zhou [15] estab-
lished the minimax rates of convergence for estimating sparse covariance matrices
under a range of matrix norms including the spectral norm. Cai, Liu and Zhou
[10] obtained the optimal rate of convergence for estimating the sparse precision
matrices.

Our work is also related to another active area of research, namely, the recov-
ery of low-rank matrices based on noisy observations. Negahban and Wainwright
[40] studied (near) low-rank matrix recovery by M-estimators under restricted
strong convexity based on the penalized nuclear norm minimization over matri-
ces. Koltchinskii, Lounici and Tsybakov [32] considered estimation of low-rank
matrices based on a trace regression model which includes matrix completion as
a special case. A nuclear norm penalized estimator was proposed and a general
sharp oracle inequality was established. See also Recht, Fazel and Parrilo [44] and
Rohde and Tsybakov [46].

1.6. Organization of the paper. The rest of the paper is organized as follows.
After introducing basic notation, Section 2 establishes the minimax rates of con-
vergence for estimating the principal subspace by obtaining matching minimax
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lower and upper bounds. An aggregation estimator is constructed and shown to be
rate optimal. Section 3 introduces an adaptive estimation procedure for the princi-
pal subspace which is fully data driven and easily computable. It is shown that this
estimator attains the optimal rates of convergence simultaneously over a large col-
lection of parameter spaces. Connections to other related problems are discussed
in Section 5. The proofs of the main results and key technical lemmas are given
in Section 6 and some additional technical arguments are contained in the supple-
mentary material [12].

2. Minimax rates for principal subspace estimation. We establish in this
section the minimax rates of convergence for estimating the principal subspace in
two steps. First, minimax lower bounds are obtained for the estimation problem
under the loss (3). Then an aggregation estimator is introduced and is shown to
attain the same rates as given in the lower bounds, under mild conditions on the
parameters. The matching lower and upper bounds thus establish the minimax rates
of convergence.

We begin by introducing some basic notation. Throughout the paper, for any
matrix X = (xij ) and any vector u, denote by ‖X‖ the spectral norm, ‖X‖F the
Frobenius norm and ‖u‖ the vector �2 norm. Moreover, the ith row of X is denoted
by Xi∗ and the j th column by X∗j . Let supp(X) = {i : Xi∗ �= 0} denote the row
support of X. For a positive integer p, [p] denotes the index set {1,2, . . . , p}. For
two subsets I and J of indices, denote by XIJ the |I |× |J | submatrices formed by
xij with (i, j) ∈ I × J . Let XI∗ = XI [p] and X∗J = X[n]J . For any square matrix
A = (aij ), we let Tr(A) = ∑

i aii be its trace. Define the inner product of matrices
B and C of the same size by 〈B,C〉 = Tr(B′C). For any matrix A, we use σi(A)

to denote its ith largest singular value. When A is positive semi-definite, σi(A)

is also the ith largest eigenvalue of A. Let span(A) denote the linear subspace
spanned by the columns of A. For any real numbers a and b, set a ∨b = max{a, b}
and a ∧ b = min{a, b}. For any set A, |A| denotes its cardinality. Let Sp−1 denote
the unit sphere in R

p . Let G(k, r) denote the Grassmannian manifold consisting
of all r-dimensional linear subspace of R

k . Let O(p) denote the collection of
all p × p orthogonal matrices. Throughout the paper, we use c and C to denote
generic absolute positive constants, though the actual value may vary at different
occasions. For any sequences {an} and {bn} of positive numbers, we write an � bn

when an ≥ cbn for some absolute constant c, and an � bn when an ≤ Cbn for some
absolute constant C. Finally, we write an � bn when both an � bn and an � bn

hold.

2.1. Lower bounds. We first establish the minimax lower bounds which are
instrumental in obtaining the optimal rates of convergence. In view of the upper
bounds to be given in Section 2.2 by an aggregation procedure, these lower bounds
are minimax rate optimal under mild conditions.
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Before proceeding to the precise statements, we introduce the following nota-
tion: let

h(λ) = λ2

λ + 1
,(10)

�(k,p, r, n,λ) = 1

nh(λ)

(
rk + k log

ep

k

)
(11)

and

�0(k,p, r, n,λ) = 1

nh(λ)

(
r(k − r) + k log

ep

k

)
.(12)

Define the effective dimension by

k∗
q(s,p, r, n,λ)�

⌈
xq(s,p, r, n,λ)

⌉
,(13)

where �a� denotes the smallest integer no less than a ∈R, and

xq(s,p, r, n,λ)� max
{

0 ≤ x ≤ p :x ≤ s

(
nh(λ)

r + log(ep/x)

)q/2}
.(14)

REMARK 1 (Effective dimension). The effective dimension k∗
q is a proxy

which captures the massiveness of the parameter set for the principle subspace
under the weak-�q constraint. In addition, the minimax estimation rate turns out
to be a strictly increasing function of k∗

q . In the exact sparse case, it is evident
from (13) that k∗

0 = s. Therefore in this case, the effective dimension coincides
with the row sparsity of V. For q ∈ (0,2), the effective dimension satisfies the
following properties (proved in Section 7.2 in the supplementary material [12]):

(1) k∗
q ≥ 1.

(2) k∗
q = p if and only if s ≥ p( r+1

nh(λ)
)q/2, in which case the effective dimension

coincides with the ambient dimension.
(3) s �→ k∗

q is increasing. Moreover, there exists a function τq , such that
k∗
q(as,p, r, n,λ) ≤ k∗

q(s,p, r, n,λ)τq(a) for any a ≥ 1.
(4) k∗

q � s if and only if the assumption (16) holds.

See Figure 1 for a graphical illustration on the dependence of the effective dimen-
sion k∗

q on various parameters.

Without loss of generality, we assume unit noise variance (σ 2 = 1) from now
on. All results hold for a general σ by replacing λ with λ/σ 2. We consider the
lower bounds separately in two cases: 0 < q < 2 and q = 0.

THEOREM 2 (Lower bound: 0 < q < 2). Let p ∈ N, r ∈ [p] and k∗
q be defined

in (13). Let the observed matrix X be generated by model (1) with σ = 1. Assume
that

r ≤ s

2
∧ (

p + 1 − k∗
q

)
(15)
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(a) xq ∼ nh(λ) (b) xq ∼ r

(c) xq ∼ s (d) xq ∼ p

FIG. 1. Plots of xq against individual parameters [default values: p = 100, s = 30, r = 10,
nh(λ) = 30, q = 0.8]. The effective dimension is k∗

q = �xq�.

and that

nh(λ) ≥ C
2/q
0

(
r + log

ep

s

)
(16)

for some sufficiently large absolute constant C0. Then there exists a constant c de-
pending only on q and an absolute constant c0, such that the minimax risk for
estimating V over the parameter space � = �q(s,p, r, λ) satisfies

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F ≥ c�
(
k∗
q,p, r, n,λ

) ∧ c0,(17)

where � is defined in (11).

For the case of q = 0 we have the following lower bound:

THEOREM 3 (Lower bound: q = 0). Let p, s, r be integers such that 1 ≤ r ≤
s ≤ p. Let the observed matrix X be generated by model (1) with σ = 1. Then
the minimax risk for estimating V over the parameter space � = �0(s,p, r, λ)

satisfies
inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F
(18)

�
[

1

nh(λ)

(
r(s − r) + (s − r) log

e(p − r)

s − r

)]
∧ 1.
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2.2. Optimal estimation via aggregation. We now show that the lower bounds
given in Section 2.1 are indeed rate optimal under mild technical conditions. The
optimal estimator of V is constructed using sample splitting and aggregation. The
estimator is theoretically interesting but computationally intensive. We will con-
struct a data-driven and easily implementable estimator in Section 3 under stronger
conditions.

We first note that the loss function (3) satisfies

L(V, V̂) = 2r − 2
∥∥V̂′V

∥∥2
F = 2

∥∥(I − VV′)V̂V̂′∥∥2
F.(19)

Moreover, the loss function is invariant under orthogonal complement, that is,
L(V, V̂) = L(V⊥, V̂⊥), where [V,V⊥], [V̂, V̂⊥] are orthogonal matrices. There-
fore the loss (19) admits the following upper bound:

L(V, V̂) ≤ 2
(
r ∧ (p − r)

)
.(20)

For notational simplicity we assume that the sample size is 2n and we split
the sample equally according to X = [X(1)

X(2)

]
, where X(i) = U(i)DV′ + Z(i), i = 1,2.

Denote by S(i) = 1
n

X′
(i)X(i) the corresponding sample covariance matrix. The main

idea is to construct a family of estimators {V̂B} using the first sample, indexed by
the row support B ⊂ [p], where V̂B is the optimal estimator one would use if
one knew beforehand that supp(V) = B . Then we aggregate these estimators by
selection using the second sample.

Recall the effective dimension k∗
q defined in (13). For each B ⊂ [p] such that

|B| = k∗
q , we define V̂B ∈ O(p, r) as the r leading singular vectors of JBS(1)JB ,

where JB is the diagonal matrix given by

(JB)ii = 1{i∈B}.(21)

Given the collection of the V̂B ’s, we set

B∗ = argmax
B⊂[p]
|B|=k∗

q

Tr
(
V̂′

BS(2)V̂B

)
(22)

and define the aggregated estimator by

V̂∗ = VB∗ .(23)

It is natural to use the same sample covariance matrix to construct the V̂B ’s and
to select B∗. The main advantage of sample splitting is to decouple the selection
of the support and the computation of the estimator. Thus, conditioning on the first
sample, we can treat the candidate estimators as if they are deterministic, which
greatly facilitates the analysis. Sample splitting is commonly used in aggregation
based estimation, where a sequence of estimators is constructed from the first sam-
ple and the second sample is used to aggregate these candidates to produce a final
estimator.
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Estimator (23) requires knowledge of the value of q , the weak-�q radius s, the
rank r and the spike size λ. Moreover, it can be computationally intensive for large
values of p since in principle one needs to enumerate all

(p
k∗
q

)
possible column sup-

ports in order to obtain B∗. Nonetheless, the next theorem establishes its minimax
rate optimality:

THEOREM 4. Let q ∈ [0,2). Let k∗
q be defined in (13). Let V̂∗ be the aggre-

gated estimator defined in (23). Assume that

λ ≥ C0

√
logn

n
,(24)

nh(λ) ≥ C0k
∗
q

(
r + log

ep

k∗
q

)
(25)

and

n ≥ C0

(
k∗
q log

ep

k∗
q

∨ logλ

)
(26)

for some sufficiently large constant C0. Then there exists a constant C depending
only on κ and q such that for � = �q(s, r,p,λ),

sup
�∈�

E
∥∥V̂∗V̂′∗ − VV′∥∥2

F ≤ 2
(
r ∧ (p − r)

) ∧ C�
(
k∗
q,p, r, n,λ

)
,(27)

where �(k,p, r, n,λ) and k∗
q are defined in (11) and (13), respectively. Moreover,

if q = 0, then � in (27) can be replaced by �0 defined in (12) with k∗
0 = s, and

condition (25) can be dropped.

When q ∈ (0,2), under the conditions of Theorems 2 and 4, the lower and up-
per bounds together yield the minimax rates of convergence �(k∗

q,p, r, n,λ) given
in (11) with the optimal dependence on all the parameters, in particular the eigen-
values and the rank. When q = 0, the lower and upper bounds match under less
restrictive conditions, which will be discussed in more detail in Remark 2 below.

2.3. Comments. We conclude this section with a few important remarks.

REMARK 2 (Minimax rates in the exact sparse case). Comparing the lower
and upper bounds for q = 0 in Theorems 2 and 4, we see a sufficient condition for
the minimax rate to match (and hence coincide with �0) is

s − r � s ∧ log
ep

s
.(28)

To see this, suppose that s − r � s. Then there exists c ∈ (0,1), such that r ≤
(1 − c)s ≤ (1 − c)p. Then (s − r) log e(p−r)

s−r
≥ cs log ecp

s
� s log ep

s
and the lower
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bound in (18) agrees with �0. Now suppose that s −r � s and s −r � log ep
s

. Then
r � s and r(s − r) + s log ep

s
� r(s − r) � s(s − r). Since r �→ (s − r) log e(p−r)

s−r

is decreasing on [0, s], we have r(s − r)+ (s − r) log e(p−r)
s−r

� s(s − r). Hence the
lower bound in (18) also agrees with �0.

It is interesting to note that under the condition (28), the minimax rate for esti-
mating the r leading singular vectors depend on the r only through r(s − r), which
is the dimension of the Grassmannian manifold G(s, r). Therefore the dependence
on r is not monotonic, with the worst case happening at r = s

2 . However, it should
be noted that in order for the minimax rate to coincide with �0, it is necessary to
have r strictly bounded away from s, for example, in the regime of (28). When
r = s, the lower bound in Theorem 3 becomes zero. In this degenerate case, the
only uncertainty is in the support of V. The minimax rate is indeed much faster
than �0, because in this regime the support can be estimated accurately. See Sec-
tion 7.3 in the supplementary material [12].

REMARK 3. For q ∈ (0,2), the minimax rate � depends on the effective di-
mension k∗

q which is defined implicitly through equations (13)–(14). It is possible
to obtain an explicit formula of the minimax rate in some regime. For example,
if s ≥ p1−ε(

r+logp
nh(λ)

)q/2 for some constant ε ∈ (0,1), then the effective dimension

satisfies k∗
q ≤ p1−ε . Moreover, we have k∗

q � s( nh(λ)
r+logp

)q/2. Hence the minimax
rate is given by

�
(
k∗
q,p, r, n,λ

) � s

(
r + logp

nh(λ)

)1−q/2

.

An interesting side product of the proofs of Theorems 3 and 4 is the follow-
ing nonasymptotic minimax rate for the regular PCA problem without structural
assumptions on the principle subspaces. It is a classical result (see, e.g., [21, 49])
that when p ≤ n, the sample covariance matrix is not exact minimax optimal for
estimating the whole covariance matrix under certain losses (e.g., the Stein loss).
As shown in the next theorem, in the unstructured case, it turns out that the sample
version of the principle subspace is minimax rate optimal even in high dimensions.
For more details see Theorems 8 and 9 in Sections 6.1 and 6.2.

THEOREM 5. Let � = �0(p,p, r, λ). Let n ≥ C0(r + logλ) and λ ≥
C0

√
log(n)/n for some sufficiently large constant C0. Then for all r ∈ [p],

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F � r ∧ (p − r) ∧ r(p − r)

nh(λ)
,(29)

which can be attained by V̂ consisting of the r leading eigenvectors of the sample
covariance matrix S.
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Theorem 5 implies that, without structural assumptions on the principle sub-
space V, consistent estimators exist if and only nh(λ)

r(p−r)
→ ∞. Moreover, unless

nh(λ) exceeds a constant factor of p, even the optimal estimator is within a con-
stant factor of r ∧ (p − r), the upper bound of the loss function.

In the structured case, we can also investigate when regular PCA is rate optimal.
It is intuitive to expect that regular PCA is strictly suboptimal if the principal eigen-
vectors are highly sparse, since the procedure ignores the structure of the problem.
Indeed, Theorem 5, together with Theorems 2–4, reveals the precise regime where
regular PCA is minimax rate optimal: under the conditions of Theorem 9, reg-
ular PCA achieves minimax rate if and only if the effective dimension k∗

q � p.
In view of definition (13), this is equivalent to that the weak-�q radius satisfies
s � p( r

nh(λ)
)q/2. In the exact sparse case (q = 0), this condition reduces to that the

sparsity s � p.
In the special case of r = 1, a similar combinatorial procedure to (22)–(23) has

been proposed in [54]. Using Mendelson’s results on empirical processes [38], this
procedure requires no sample splitting but can only be shown to attain a conver-
gence rate that is suboptimal in λ [54], Theorem 2.2: with λ → ∞ and all the
other parameters fixed, the upper bound in [54] does not vanish. In contrast, the
optimal rate � decays at the rate λ−(1−q/2) when k∗

q < p and λ−1 when k∗
q = p.

Comparing with the analysis in [54], the proof of Theorem 4 is more elementary.
By exploring the structure of the difference between the sample covariance matrix
and the true covariance matrix, we obtained an upper bound that is optimal in all
parameters.

3. Adaptive estimation. The aggregation estimator constructed in Sec-
tion 2.2 has been shown to be rate optimal. However, it depends on the unknown
parameters and is computationally infeasible when p is large. We construct in this
section an adaptive estimation procedure for principal subspaces which is fully
data driven and easily computable. Furthermore, it is shown that the estimator at-
tains the optimal rate of convergence simultaneously over a large collection of the
parameter spaces defined in (6).

A key idea in our construction is a reduction scheme which reduces the sparse
PCA problem to a high-dimensional multivariate regression problem. This method
is potentially applicable to other sparsity patterns of the leading eigenvectors. We
first introduce the general reduction scheme in Section 3.1 which transforms the
principal subspace estimation problem to a high-dimensional multivariate regres-
sion problem. The specialization of this general method under weak-�q constraint
will be detailed in Section 3.2.

3.1. A general reduction scheme. The general reduction scheme involves four
steps, which are introduced in order below. The procedure used in step 2 for ini-
tial estimation will be specified in Section 3.2 for weak-�q constrained parameter
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spaces. For ease of exposition, we regard the rank r as given in the statement be-
low. Data-based choice of r will be discussed at the end of Section 3.2.

Step 1: Sample generation. Given the data matrix X in (1) with σ = 1, we gen-
erate an n×p random matrix Z̃ with i.i.d. N(0,1) entries which are independent of
U and Z, and form two samples Xi = X + (−1)iZ̃, i = 0,1. Let Zi = Z + (−1)iZ̃
for i = 0,1, then Z0 and Z1 are independent, and their entries are i.i.d. N(0,2)

distributed. Then the two samples X0 and X1 can be equivalently written as

Xi = UDV′ + Zi , i = 0,1.(30)

Let Si = 1
n
(Xi )′Xi , i = 0,1, be the sample covariance matrices for the two sam-

ples.
Step 2: Initial estimation. We use the sample X0 to compute an initial estima-

tor V0. A specific procedure for computing the initial estimator V0 will be given
in Section 3.2.

Step 3: Reduction to regression. Form(
X1)′X0V0 = VA + (

Z1)′B,(31)

where B = X0V0 and A = DU′B. We now “whiten” the matrix in (31) as follows.
Note that B = X0V0 can be explicitly computed after step 2. Let its singular value
decomposition be B = LCR′, where L ∈ R

n×r ,C ∈ R
r×r and R ∈ R

p×r . Post-
multiply both sides of (31) by 1√

2
RC−1 to obtain

Y = � + E,(32)

where Y = 1√
2
(X1)′X0V0RC−1, � = 1√

2
VARC−1 and E = 1√

2
(Z1)′L. We shall

treat (32) as a regression problem, where Y is the observed matrix, � is the signal
matrix of interest and E is the additive noise matrix. Equivalently, we think of �
as the coefficient matrix, and the design matrix is X = Ip . The reason why this is
plausible will be detailed in Section 3.2.

Given Y, we propose the following method for computing �̂. Define

tk = r +
√

2rβ log
ep

k
+ β log

ep

k
.(33)

Fix an arbitrary δ ∈ (0,1). With slight abuse of notation, define

pen(�) = pen
(∣∣supp(�)

∣∣), where pen(k) = (1 + δ)2
k∑

i=1

ti .(34)

Then the estimator for � is defined as

�̂ = argmin
�∈Rp×r

‖Y − �‖2
F + pen(�).(35)

Such a penalized least squares approach has been widely used in orthogonal re-
gression with various choices of the penalty functions. See, for example, Birgé
and Massart [8] and Abramovich et al. [1].
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REMARK 4. The penalized least squares estimator �̂ in (35) can be easily
computed. Recall (32) and write the ith row of the matrix Y as yi and so Y =
[y1, . . . ,yp]′. Let y(i) denote the row in Y with the ith largest �2 norm, that is,
‖y(1)‖ ≥ ‖y(2)‖ ≥ · · · ≥ ‖y(p)‖. Define

k̂ = argmin
k∈[p]

{
(1 + δ)2

k∑
i=1

ti +
p∑

i=k+1

‖y(i)‖2

}
.(36)

In case of multiple minimizers, k̂ is chosen to be the smallest one. It is also clear
that k̂ is easy to compute. With k̂, the estimator �̂ is given by �̂ = [θ̂1, . . . , θ̂p]′
where

θ̂ i = yi · 1{‖yi‖2>(1+δ)2t
k̂
}.

Note that k̂ can be equivalently defined as argmink∈[p]
∑k

i=1[(1 + δ)2ti −
‖y(i)‖2]. Therefore ‖y

(k̂)
‖2 > (1 + δ)2t

k̂
and ‖y

(k̂+1)
‖2 ≤ (1 + δ)2t

k̂+1. Since tk is

strictly decreasing in k, we obtain that ‖y(1)‖2 ≥ · · · ≥ ‖y
(k̂)

‖2 > (1 + δ)2t
k̂

≥
‖y

(k̂+1)
‖2 ≥ · · · . Thus, | supp(�̂)| = k̂.

Step 4: Final estimation. Last but not least, we obtain the estimator V̂ for V
by orthonormalizing the columns of �̂. The orthonormalization can be completed
by the Gram–Schmidt procedure or QR factorization. The estimated subspace is
span(V̂) = span(�̂).

An important feature of the above reduction scheme is that the two samples
X0 and X1 share the same realization of random factors U and their only difference
is in the noise matrices Z0 and Z1. This is critical for maintaining the right level
of signal-to-noise ratio in the regression problem (32). In contrast, splitting the
original sample into two halves as in Section 2.2 does not achieve this goal here.
Since our analysis relies on the independence of Z0 and Z1, the normality of the
noise is crucial to this scheme.

3.2. Sparse PCA and regression with group sparsity. We now apply the gen-
eral reduction scheme to the principal subspace estimation problem with the
parameter spaces defined in (6). In what follows, we first introduce and study
a specific estimator for the initial estimation step. Then we derive properties of the
proposed estimator for the regression with group sparsity problem. Furthermore,
we show that the general reduction scheme paired with the two specific estimators
leads to a final estimator which adaptively achieves the optimal rates of estimation
over a large collection of the parameter spaces of interest. For clarity of exposition,
we regard the rank r as given when introducing the estimators. Data-driven choice
of r is discussed at the end of this subsection.
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Initial estimation. Let pn � p ∨ n. We construct the initial estimator V0 via
the diagonal thresholding method [26] as follows:

(1) Define the set of features

J = {
j : s0

jj ≥ 2(1 + α
√

logpn/n)
}
,(37)

where {s0
jj }pj=1 are the diagonal elements of S0 = 1

n
(X0)′X0, and α > 0 is a tuning

parameter.
(2) Compute the first r eigenvectors {v̂J

1 , . . . , v̂J
r } of the submatrix S0

JJ .
(3) Define V0 ∈ O(p, r), where

V0
J∗ = [

v̂J
1 , . . . , v̂J

r

]
, V0

J c∗ = 0.(38)

The following result, proved in Section 7.5 in the supplementary material [12],
gives sufficient conditions on the model parameters and the choice of α to guar-
antee that the initial estimator V0 is reasonably close to V, which suffices for the
initialization of our scheme.

PROPOSITION 1. Suppose that logn ≥ M0 logλ for some constant M0 > 0.
Suppose that

n
(
λ2 ∧ 1

) ≥ C0(r + logp)2/logp(39)

and

s2
(

log(p ∨ n)

nλ2

)1−q/2

< κ−2(2 − q)q/C0(40)

for a sufficiently large constant C0 > 0. If V0 is defined in (38) with a sufficiently
large α ≥ √

10(1 + 1/M0) in (37), then uniformly over � = �q(s,p, r, λ), we
have ∣∣supp

(
V0)∣∣ ≤ k∗

q and σr

(
V′V0) ≥ 1/2(41)

hold with probability at least 1 − C/[nh(λ)], where k∗
q is defined in (13).

We note that condition (40) is critical in establishing the second claim in (41),
which ensures that V0 is a reasonable estimator of V. Such a condition is needed
for diagonal thresholding to work even when r = 1. See, for example, condition C3
in [42], page 95. Theorem 4.1 of [9] showed that diagonal thresholding could be
suboptimal even under a stronger condition than (40).

REMARK 5. When M0 in Proposition 1 is unknown, we replace it by

M̂0 = logn/ log
(
σ1

(
S0) − 2

)
,(42)

where σ1(S0) is the largest eigenvalue of S0. This estimate works because
σ1(S0) − 2 is an over-estimate of λ with high probability [39, 43], since the noise
variance here is two. The estimator (42) allows us to choose α in (37) without
explicit knowledge of M0.
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Orthogonal regression with group sparsity. We first explain why we can
treat (32) as a regression problem. When we condition on the values of U and Z0,
the matrix X0 becomes deterministic. Thus, as deterministic functions of X0, the
matrices V0,B,L,C and R are also deterministic. Furthermore, A and hence �, as
deterministic functions of U and B, are also deterministic. On the other hand, Z1 is
independent of both U and Z0 and hence is independent of X0, B and L. Thus, the
conditional distribution of Z1 on (U,Z0) always has i.i.d. N(0,2) entries, and so
the conditional distribution of E has i.i.d. standard normal entries. Therefore, when
we condition on the values of U and Z0, problem (32) indeed reduces to a standard
multivariate regression problem with orthogonal design and white noise.

When the sparsity of V is specified as in (6), we need to consider the following
parameter space for �:

Fq

(
s′,p

) = {
� :‖�‖q,w ≤ s′}(43)

with q ∈ [0,2). The parameter s′ is typically different from s in (6), as it also de-
pends on the other model parameters as well as the realization of U and Z0. How-
ever, this will not cause any difficulty in practice, because the estimator proposed
in (35) and the associated theorem below remain valid for all values of s′ > 0.
In the literature of high-dimensional regression, (43) is usually referred to as the
group sparsity constraint on the regression coefficients �.

For the estimator �̂ in (35), we have following upper bound on its risk. By the
lower bounds in [36] for q = 0, the rates in Theorem 6 are optimal.

THEOREM 6. Consider the regression problem

Y = � + E,

where � ∈ R
p×r is deterministic and E has i.i.d. N(0,1) entries. Let the param-

eter space Fq(s
′,p) be defined in (43) for some q ∈ [0,2) and s ′ > 0. If β > 2

in (33) and δ ∈ (0,1) in (34), then there is a positive constant C that depends only
on q , β and δ, such that the estimator in (35) satisfies

sup
�∈Fq (s′,p)

E‖�̂ − �‖2
F ≤ Ck′

(
r + log

ep

k′
)
,

where

k′ � min
{
k ∈ [p] : tq/2

k k ≥ s′}(44)

for tk defined in (33), and if the set in (44) is empty, we set k′ = p.

Adaptation. With the above preparation, we are now ready to show that if we
start with a proper initial estimator V0 [such as that in (38)] and estimate � by (35),
then the estimator V̂ resulting from orthonormalizing the columns of �̂ achieves
the optimal rates of convergence. We state the theorem in a slightly more general
format. In particular, it holds for the initial estimator in (38) under the conditions
of Proposition 1.
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THEOREM 7 (Adaptation). Let λ ≥ C0 for some sufficiently large constant C0.
Let � = �q(s,p, r, λ) satisfy the conditions in Theorem 4. Suppose that there
exists an initial estimator V0 which satisfies (41) with probability at least 1 −
C′/(nh(λ)). Then the estimator V̂ obtained by orthonormalizing �̂ in (35) with
β > 2 in (33) and δ ∈ (0,1) in (34) satisfies

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F ≤ 2
(
r ∧ (p − r)

) ∧ C�
(
k∗
q,p, r, n,λ

)
,

where k∗
q is defined in (13), and C > 0 is a constant depending only on q,β and δ.

We note that the assumption λ > C0 is imposed to ensure that the “whitening”
procedure in step 3 of the reduction scheme can be performed.

It is interesting to compare the statement of Theorem 7 to the minimax lower
bound in Theorems 2–3 as well as the performance of the combinatorial aggre-
gation estimator V̂∗ established in Theorem 4. For any parameter space � =
�q(s,p, r, λ) such that the conditions of Proposition 1 hold, we could use the
V0 in (38), and the resulting V̂ is guaranteed to achieve the optimal rates of con-
vergence on �, which matches the performance of the aggregation estimator for
any q > 0. Moreover, in this case both V0 and V̂ can be efficiently computed.
Hence V̂ can be used in practice while V̂∗ is computationally intensive. However,
in the exact sparse case of q = 0, the upper bound in Theorem 7 depends on the
rank r linearly through sr , while the true minimax rate in Theorem 3 depends on r

quadratically through r(s − r), which is smaller than rs if s − r is small. The sub-
optimality of V̂ in this specific regime is partially due to the fact that our reduction
scheme transforms the problem into a regression problem without taking account
of the orthogonality structure of the parameter space.

REMARK 6. Theorem 7 shows that any estimator V0 satisfying (41) can be
used to produce an adaptive estimator. So the task of constructing adaptive optimal
estimators is reduced to constructing a “reasonable” estimator.

Consistent estimator of r . Last but not least, we discuss how to construct
a consistent estimator of r based on data. To this end, recall the definition of the
set J in (37), and the matrix S0

JJ . We propose to estimate r by

r̂ = max
{
l :σl

(
S0

JJ

)
> 2(1 + δ|J |)

}
,(45)

where for any m > 0 and M0 in the conditions of Proposition 1, we define

δm = 2(
√

m/n + tm) + (
√

m/n + tm)2

with t2
m = 2

n
((m + 1) log(ep) + (1 + 2/M0) logn). Here, we regard M0 as known.

Otherwise, we could always replace it with the estimator (42) proposed in Re-
mark 5. Note that the estimator (45) could be easily integrated with the diagonal
thresholding method for computing V0. In particular, r̂ can be computed after we
select the set J in (37).

For this estimator, we have the following result.
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PROPOSITION 2. Under the condition of Proposition 1, r̂ = r holds with prob-
ability at least 1 − C[nh(λ)]−1.

Under the conditions of Proposition 1 and Theorem 7, Proposition 2 implies
that the conclusion in Theorem 7 still holds if we replace r by r̂ .

4. Numerical experiments. In this section, we report simulation results com-
paring the adaptive method proposed in Section 3 with the iterative thresholding
method proposed in Ma [37].

In all the results reported here, the sample size n = 1000 and the ambient di-
mension p = 2000. We focus on the case of exact sparsity, that is, q = 0. The
sparsity parameter s takes value in {40,80,120,160,200}, and the rank r takes
value in {1,5,10,20}. For each (s, r) combination, the V matrix is obtained from
orthonormalizing an p × r matrix M where Mi∗ have i.i.d. N(0, i4) entries for
i = 1, . . . , s and Mi∗ = 0 for all i > s. We set the variances of different rows to
be different so that the ordered norms of the nonzero rows in V also exhibit fast
decay. When r = 1, the spike size λ1 = 20. When r > 1, the λi ’s take r equispaced
values such that λr = 10 and λ1 = 20.

When implementing the method in Section 3, we take α = 3 in (37), β = 2.1
in (33) and δ = 0.05 in (34) in all the simulations reported here. In addition, we
made a slight modification to the proposed method to obtain better numerical re-
sults. We first run the method to obtain an estimator, denoted by V̂1. Then we
switch the roles of X0 and X1 and run the proposed procedure again to obtain
a second estimator V̂2. Finally, we use the r leading eigenvectors of V̂1V̂′

1 + V̂2V̂′
2

as the columns of the final estimator V̂. By Theorem 10 in Section 7.11 in the
supplementary material [12], we have∥∥V̂V̂′ − VV

∥∥
F ≤ ∥∥V̂1V̂′

1 + V̂2V̂′
2 − 2VV′∥∥

F ≤ ∑
i=1,2

∥∥V̂iV̂′
i − VV

∥∥
F.

Here, the first inequality holds because σr(V̂1V̂′
1 + V̂2V̂′

2) ≥ σr(V̂1V̂′
1) = 1 and

σr+1(2VV′) = 0, while the second is by the triangle inequality. By the last display,
the theoretical results in Section 3, which apply to both V̂1 and V̂2, also apply
to the final estimator V̂. When implementing the iterative thresholding method in
Ma [37], we set all tuning parameters at their recommended values.

Table 1 summarizes the average squared Frobenius losses of the proposed
method (RegSPCA) and the iterative thresholding method (ITSPCA) over 50 repe-
titions for each (s, r) combination. Table 1 shows that for all values of the sparsity
parameter, RegSPCA outperformed ITSPCA when r = 5,10 or 20, while ITSPCA
led to smaller average losses when r = 1. This demonstrates the competitiveness of
RegSPCA in the group sparse setting considered in the present paper. On the other
hand, we note that ITSPCA was not designed specifically for handling the group
sparsity structure which is the case when r > 1, and hence its underperformance is
not unexpected.
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TABLE 1
Average loss ‖V̂V̂′ − VV′‖2

F over 50 repetitions for each (s, r) combinations

s

r Method 40 80 120 160 200

1 RegSPCA 0.0236 0.0660 0.0892 0.1074 0.1754
ITSPCA 0.0117 0.0366 0.0483 0.0619 0.0712

5 RegSPCA 0.0348 0.0718 0.1134 0.1470 0.1992
ITSPCA 0.0520 0.1209 0.1848 0.2368 0.3042

10 RegSPCA 0.0544 0.1247 0.1777 0.2394 0.3052
ITSPCA 0.0914 0.2284 0.3535 0.4866 0.6313

20 RegSPCA 0.0640 0.1826 0.2904 0.4030 0.5083
ITSPCA 0.1185 0.3740 0.6449 0.9045 1.1715

5. Discussions. We have focused in the present paper on the estimation of the
principal subspace span(V) under the loss (3). The minimax rates of convergence
are established and a computationally efficient adaptive estimator is constructed.

Both the current paper and Ma [37] consider the problem of sparse subspace
estimation under the spiked model, but they differ in several important ways. First,
in addition to the sparsity constraint on the leading eigenvectors, the current paper
requires them to share support. This extra assumption is motivated by real data
applications. For instance, if the observed vectors are the leading Fourier coeffi-
cients of random functions with a common covariance kernel, then we expect the
leading eigenvectors to have large coefficients only at low frequency coordinates
so that the resulting leading eigen-functions in the time domain are smooth. Sec-
ond, Ma [37] focused on the error upper bounds of an adaptive estimator with the
subspace rank r assumed to be a fixed constant. Whether the dependence of the
bounds on r is optimal was not studied. The current paper conducts an investiga-
tion on the dependence of the minimax rates on key model parameters, including
r which can grow with n and p. Last but not least, we have focused exclusively on
the subspace span(V) which is natural when the spikes are of the same order, while
Ma [37] considered estimating subspaces spanned by the first few rather than all
columns of V. The optimal rates of the latter estimation problem is of most in-
terest when the spikes scale at different rates with n and p, which we leave as an
interesting problem for future research.

A problem closely related to principal subspace estimation is the estimation of
the whole covariance matrix � under the same structural assumption (6). Both
minimax estimation and adaptive estimation are of significant interest. Results on
minimax rates under the spectral norm loss L(�̂,�) = ‖�̂ − �‖2 can be found
in [11].

It is interesting to extend the aggregation method in Section 2.2 to other settings
beyond sparsity or weak �q constraints. In the exact sparse case (q = 0), note that
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the rate-optimal estimator in (27) is constructed by choosing the best estimator
from a collection of estimators, each of which is designed for a specific sparsity
pattern. Theorem 4 can now be interpreted as an oracle inequality for the average
risk, which is within a constant factor of the oracle risk r(k−r)

nh(λ)
plus the excess risk

1
nh(λ)

log
(p
k

)
. One immediate generalization of Theorem 4 is that we can also con-

struct aggregated estimators if it is known that the true principle subspace belongs
to a collection of N subspaces. Then the excess risk does not exceed 1

nh(λ)
logN .

It should be noted that our analysis in this paper relies on the normality of the
model, which allows us to express the sample in the form of (1). In particular the
adaptive procedure requires the independence of Z0 and Z1, which is a conse-
quence of the normality of the noise. It is unclear whether the same results hold
for all noise distributions with sub-Gaussian tails. It is an interesting problem to
study the robustness of the adaptive procedure and to extend the results to other
noise distributions.

6. Proofs. In this section we prove Theorems 3, 4 and 7. The proofs of the
other results, together with those of the key lemmas and some additional technical
arguments, are given in the supplementary material [12].

6.1. Proof of Theorem 3. We first give a lower bound on the oracle risk where
we know beforehand the row support of V. This corresponds to a k-dimensional
unstructured PCA problem, where the goal is to estimate the r leading singular
vectors of the covariance matrix. In view of the upper bound in Theorem 9, the
rates are minimax optimal.

THEOREM 8 (Oracle risk: lower bound). Let � = �0(k, k, r, λ). Then

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F � r ∧ (k − r) ∧ r(k − r)

nh(λ)
.(46)

To prove Theorem 8, we use a minimax lower bound due to Yang and Bar-
ron [58], Section 7, via local metric entropy, which in turn relies on an argument
by Birgé [7]. For completeness, we state the result in Proposition 3 and provide
a short proof in Section 7.8 in the supplementary material [12]. The method of
local metric entropy in an 1√

n
-neighborhood dates back to Le Cam [34]. The ad-

vantage of this method is that it only relies on the analytical behavior of the metric
entropy of the parameter space, thus allowing us to sidestep constructing explicit
packing set in the parameter space.

PROPOSITION 3. Let (�,ρ) be a totally bounded metric space and {Pθ : θ ∈
�} a collection of probability measures. For any E ⊂ �, denote by N (E, ε) the
ε-covering number of E, that is, the minimal number of balls of radius ε whose
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union contains E. Denote by M(E, ε) the ε-packing number of E, that is, the
maximal number of points in E whose pairwise distance is at least ε. Put

A� sup
θ �=θ ′

D(Pθ ||Pθ ′)

ρ2(θ, θ ′)
.(47)

If there exist 0 < c0 < c1 < ∞ and d ≥ 1 such that(
c0

ε

)d

≤ N (�, ε) ≤
(

c1

ε

)d

(48)

for all 0 < ε < ε0. Then

inf
θ̂

sup
θ∈�

Eθ

[
ρ2(θ̂ (X), θ

)] ≥ c2
0

840c2
1

(
d

A
∧ ε2

0

)
.(49)

We also need the following result regarding the metric entropy of the Grass-
mannian manifold G(k, r) due to Szarek [50].

LEMMA 1. For any V ∈ O(k, r), identifying the subspace span(V) with its
projection matrix VV′, define the metric on G(k, r) by ρ(VV′,UU′) = ‖VV′ −
UU′‖F. Then for any ε ∈ (0,

√
2(r ∧ (k − r))],(

c0

ε

)r(k−r)

≤ N
(
G(k, r), ε

) ≤
(

c1

ε

)r(k−r)

,(50)

where c0, c1 are absolute constants. Moreover, for any V ∈ O(k, r) and any
α ∈ (0,1),

M
(
B(V, ε), αε

) ≥
(

c0

αc1

)r(k−r)

.(51)

PROOF. Note that ρ(VV′,UU′) = √
2‖(I − VV′)UU′‖F, in view of (19). This

metric is unitarily invariant; see ρ′
α in [50], Remark 5, page 175. Applying [50],

Proposition 8, page 169, with α(·) = ‖·‖ gives (50). By the proof of equation (158)
in the supplementary material [12] for any ε ∈ (0,

√
2(r ∧ (k − r))] and any α ∈

(0,1), there exists V∗ ∈ O(k, r) such that M(B(V∗, ε), αε) ≥ (
c0
αc1

)r(k−r). Now
for any V ∈ O(k, r), there exists T ∈ O(p), such that V = TV∗. Then (51) holds
since the metric d is unitarily invariant. �

PROOF OF THEOREM 8. For the purpose of lower bound, we consider the
special case of λ1 = · · · = λr = λ, that is, � = λVV′ + Ik . Note that the Kullback–
Leibler divergence between normal distributions is given by D(N(0,�1)||N(0,
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�0)) = 1
2(Tr(�−1

0 �1 − Ik) − log det�−1
0 �1). Then for any U,V ∈ O(k, r), we

have

D
(
N

(
0, λVV′ + Ik

)n||N(
0, λUU′ + Ik

)n)
= n

2
Tr

(
− λ

λ + 1
VV′ + λUU′ − λ2

λ + 1
VV′UU′

)
(52)

= nλ2

2(λ + 1)

(
r − ∥∥U′V

∥∥2
F

) = nh(λ)

2

∥∥VV′ − UU′∥∥2
F,

where the first and second inequalities are by the matrix inversion lemma and
the fact that Tr(VV′) = Tr(V′V) = r , respectively. In view of (47), we have
A = nh(λ)/2. Applying Proposition 3 with ε0 = √

2(r ∧ (k − r)) yields the de-
sired (46). �

PROOF OF THEOREM 3. Let � = �0(s,p, r, λ). By definition (13), k∗
0 co-

incides with s. In view of the fact that (a ∧ b) + (c ∧ d) ≥ (a ∧ c)(b + d), it is
sufficient to prove the following inequalities separately:

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F � r ∧ (s − r) ∧ r(s − r)

nh(λ)
,(53)

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F � 1 ∧ s − r

nh(λ)
log

e(p − r)

s − r
.(54)

Inequality (53) follows from an oracle argument: consider the following sub-
collection: {

V =
[

V1
0

]
: V1 ∈ O(s, r)

}
.

Split the data matrix according to X = [X1,X2], where X1 consists of the first
s columns. Let � = diag(λ1, . . . , λs). Then the rows of X1 and X2 are i.i.d. ac-
cording to N (0,V1�V′

1 + Is) and N(0, Ip−s), respectively. Therefore a sufficient
statistic for estimating V is X1. This reduces the problem to an s-dimensional un-
constrained PCA problem. Applying the lower bound in Theorem 8 yields (53).

Inequality (54) follows from existing results on rank-one estimation (e.g.,
[9, 54]). To make the argument rigorous, we focus on the special case where
{v2, . . . ,vr} are fixed to be standard basis. Denote the following sub-collection:{

V =
[

v1 0
0 Ir−1

]
: v1 ∈ S

p−r ,
∣∣supp(v1)

∣∣ ≤ s − r + 1
}

,(55)

which is well defined since s ≤ p by definition. Let X = [X1,X2], where X1 de-
notes the first p − r + 1 columns of X. Then X1 and X2 consists of n independent
samples from N(0, Ip−r+1 + λv1v′

1) and N(0, Ir−1), respectively. Restricted on
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the subset (55), the minimax estimation error of V is equal to the minimax estima-
tion error of v1 based on X1. This is equivalent to replacing the ambient dimen-
sion p by p − r + 1 and estimating only the leading singular vector v1, which is
(s − r + 1)-sparse, under the loss ‖v1v′

1 − v̂1v̂′
1‖2

F. Applying the minimax lower
bound from [54], Theorem 2.14 (see also [9], Theorem 2), we have

inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F ≥ inf
V̂

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

(56)

� 1 ∧ (s − r)

nh(λ)
log

e(p − r)

s − r
,

completing the proof of Theorem 3. �

6.2. Proof of Theorem 4. We first state a few technical lemmas (proved in Sec-
tion 7.10 in the supplementary material [12]) and an oracle upper bound (proved in
Section 7.9 in the supplementary material [12]), which, in view of the lower bound
in Theorem 8, gives the optimal rates of the regular PCA problem. Some of the
proofs are relegated to the supplementary material [12].

LEMMA 2. Let a, b, c > 0. Then ax2 ≤ bx + c implies that x2 ≤ b2

a2 + 2c
a

.

PROOF. Since |x − b
2a

| ≤
√

b2+4ac
2a

, we have x2 ≤ b2+b2+4ac
2a2 . �

LEMMA 3. Let � = Ip + VDV′. For any T ∈ O(p, r), we have

λr

2

∥∥VV′ − TT′∥∥2
F ≤ 〈

�,VV′ − TT′〉 ≤ λ1

2

∥∥VV′ − TT′∥∥2
F.(57)

LEMMA 4. Let K ∈ R
p×p be symmetric such that Tr(K) = 0 and ‖K‖F = 1.

Let Z be n × p consisting of independent standard normal entries. Then for any
t > 0, we have

P
(

1√
n

∣∣〈Z′Z,K
〉∣∣ ≥ 2t + 2t2

√
n

)
≤ 2 exp

(−t2).(58)

LEMMA 5. Let X1, . . . ,XN be i.i.d. such that

P
(|X1| ≥ at + bt2) ≤ c exp

(−t2),(59)

where a, b, c > 0. Then

E max
i∈[N] |Xi |2 ≤ (

2a2 + 8b2) log(ecN) + 2b2 log2(cN).(60)

4Note that [54], Theorem 2.1, for q = 0 only applies to the regime where s − r ≤ (p − r)/e. This
does not affect the rate of the lower bound (56) because the minimax rate is a nondecreasing function
of the sparsity s. Therefore if s − r > (p − r)/e, we can use the lower bound for s − r = (p − r)/e
to obtain (56), since s − r ≤ p − r by definition.
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LEMMA 6. Let E be a symmetric positive definite matrix. Let F be a symmetric
matrix. Then |〈E,F〉| ≤ ‖F‖Tr(E).

PROOF. This is a special case of von Neumann’s trace inequality. �

LEMMA 7. Let � ∈ Fq(s,p) and k ∈ [p], where Fq(s,p) is defined in (43).
Let ‖�(i)∗‖ denote its ith largest row norm. Then∑

i>k

‖�(i)∗‖2 ≤ q

2 − q
k(s/k)2/q .(61)

PROOF. By the definition of Fq(s,p) in (43), we have∑
i>k

‖�(i)∗‖2 ≤ sq/2
∑
i>k

i−2/q ≤ sq/2
∫ ∞
k

x−2/q dx = q

2 − q
k(s/k)2/q .

�

THEOREM 9 (Oracle risk: upper bound). Let p = k and r ∈ [k]. Let n ≥
C0(r + logλ) and λ ≥ C0

√
log (n)/n for some sufficiently large constant C0. Let

V̂ ∈ O(k, r) be formed by the r leading singular vectors of the sample covariance
matrix S. Let � = �0(k, k, r, λ, κ). Then

sup
�∈�

E
∥∥V̂V̂′ − VV′∥∥2

F � r ∧ (k − r) ∧ r(k − r)

nh(λ)
.(62)

PROOF OF THEOREM 4. Before delving into the details, we give an outline of
the proof as follows:

(1) We find a good sparse approximation of the true singular vectors which lies
in the weak-�q ball defined by (43).

(2) We decompose the risk into a summation of three terms, namely the ap-
proximation error, oracle risk and excess risk, the first two of which are upper
bounded in Lemma 7 and Theorem 9, respectively.

(3) The excess risk is controlled by a careful concentration-of-measure analy-
sis, which forms the core of the proof.

We also remark that by (8), (13) and condition (25), we have

k∗
q ≥ r.(63)

To see this, first note that k∗
0 ≥ r by (8) directly. When q ∈ (0,2), if k∗

q = p, then
k∗
q ≥ r . Otherwise, we have

k∗
q ≥ s

(
nh(λ)

r + log(ep/k∗
q)

)q/2

≥ s
(
C0k

∗
q

)q/2 ≥ C
q/2
0 s ≥ r.

Here the first inequality comes from (13), the second is due to condition (25), the
third holds since k∗

q ≥ 1 and the last holds for sufficiently large C0 in view of (8).
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Step 1: Sparse approximation . Fix V ∈ O(p, r) ∩ Fq(s,p). We assume that
q > 0. Note that this step is superfluous if q = 0 since V is already sparse. Let
k = k∗

q be defined in (13). Let B(k) = {B ⊂ [p] : |B| = k}. Let A ∈ B(k) denote the
collection of row indices of V corresponding to the k largest row norm. Put

�̃ = JA�JA + JAc = JAV�V′JA + Ip,(64)

where JA is the diagonal matrix defined in (21). Denote the SVD of JAV�V′JA

by Ṽ�̃Ṽ′, where �̃ = diag(λ̃1, . . . , λ̃r ,0, . . . ,0) and Ṽ ∈ O(p, r)∩F0(s,p), since
supp(Ṽ) = A. Now we claim that Ṽ is in fact the r leading singular vectors of �̃.
To this end, note that the singular values of �̃ are {1 + λ̃1, . . . ,1 + λ̃r ,1}. In view
of (64), it is sufficient to show that the r th largest singular value of �̃ is separated
from one, that is, σr(�̃) > 1. By Weyl’s theorem ([22], Theorem 4.3.1),

σr(�̃) ≥ σr(�) − ‖� − �̃‖ ≥ 1 + λr − ‖� − �̃‖F.

Put U = JAV. Then

‖�̃ − �‖F = ∥∥V�V′ − U�U′∥∥
F

≤ ∥∥(V − U)�V′∥∥
F + ∥∥U�(V − U)′

∥∥
F ≤ 2λ1‖V − U‖F

≤ 2λ1

√
q

2 − q
k(s/k)2/q(65)

≤ 2λ1

√
q

2 − q
�(k,p, r, n,λ)(66)

≤ λr

2
,(67)

where (65) follows from applying Lemma 7, (66) follows from the choice of k = k∗
q

in (13), and (67) is implied by the assumption (25). Therefore

σr(�̃) ≥ 1 + λr

2
,(68)

which implies that Ṽ indeed corresponds to the r leading singular vectors of �̃.
Hence we obtain the SVD of (64) as �̃ = Ṽ�̃Ṽ′ + Ip . Using Theorem 10 in the
supplementary material [12] we show that Ṽ provides a good sparse approximation
of V,

∥∥VV′ − ṼṼ′∥∥2
F ≤ 2‖� − �̃‖2

F

(σr(�̃) − 1)2
≤ 32qκ2

2 − q
�(k,p, r, n,λ),(69)

where the last inequality follows from (65) and (68). If q = 0, then we define
Ṽ = V.
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Step 2: Risk decomposition. By definition of the maximizer B∗ in (22), 〈S(2),

VAV′
A − V∗V′∗〉 ≤ 0. In view of Lemma 3, we have

λr

2

∥∥V̂∗V̂′∗ − VV′∥∥2
F

≤ 〈
�,VV′ − V̂∗V̂′∗

〉
= 〈

�,VV′ − ṼṼ′〉 + 〈
�, ṼṼ′ − V̂AV̂′

A

〉 + 〈
�, V̂AV̂′

A − V̂∗V̂′∗
〉

≤ 〈
�,VV′ − ṼṼ′〉 + 〈

�, ṼṼ′ − V̂AV̂′
A

〉 + 〈
� − S(2), V̂AV̂′

A − V̂∗V̂′∗
〉

= 〈
�,VV′ − ṼṼ′〉 + 〈

�̃, ṼṼ′ − V̂AV̂′
A

〉 + 〈
� − S(2), V̂AV̂′

A − V̂∗V̂′∗
〉

(70)

≤ λ1

2

∥∥VV′ − ṼṼ′∥∥2
F︸ ︷︷ ︸

approximation error

+ λ1

2

∥∥ṼṼ′ − V̂AV̂′
A

∥∥2
F︸ ︷︷ ︸

oracle risk
(71)

+ 〈
� − S(2), V̂AV̂′

A − V̂∗V̂′∗
〉︸ ︷︷ ︸

excess risk

,

where (70) follows from that supp(Ṽ) = supp(V̂A) = A, and (71) follows from
Lemma 3.

Note that the expected oracle risk is upper bounded by Theorem 9 because the
conditions of Theorem 4 imply those of Theorem 9. The sparse approximation
error can be upper bounded by (69). Moreover, in the exact sparse case (q = 0),
we have Ṽ = V and the approximation error is zero.

Step 3: Excess risk. The hard part is to control the third term (the worst-case
fluctuation) in (71). To this end, we decompose the sample covariance matrix as

S(2) = 1

n
X′

(2)X(2) = 1

n

(
VDU′

(2) + Z′
(2)

)(
U(2)DV′ + Z(2)

)
.

Then

� − S(2) = G + H,(72)

where

G � VD
(

1

n
U′

(2)U(2) − Ir

)
DV′,(73)

H � Ip − 1

n
Z′

(2)Z(2) − 1

n
VDU′

(2)Z(2) − 1

n
Z′

(2)U(2)DV′.(74)

We first deal the inner product with G: write 〈G, V̂AV̂′
A−V̂∗V̂′∗〉 = 〈G, V̂AV̂′

A−
VV′〉 − 〈G, V̂∗V̂′∗ − VV′〉. Note that〈

G,VV′ − V̂AV̂′
A

〉 = 〈
D
(

1

n
U′

(2)U(2) − Ir

)
D,V′(VV′ − V̂AV̂′

A

)
V
〉

=
〈
D
(

1

n
U′

(2)U(2) − Ir

)
D, Ir − V′V̂AV̂′

AV
〉
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≤
∥∥∥∥D

(
1

n
U′

(2)U(2) − Ir

)
D
∥∥∥∥Tr

(
Ir − V′V̂AV̂′

AV
)

(75)

≤ λ1

2

∥∥∥∥1

n
U′

(2)U(2) − Ir

∥∥∥∥∥∥VV′ − V̂AV̂′
A

∥∥2
F,(76)

where (76) is due to (19) and (75) is a consequence of Lemma 6, in view of the fact
that Ir −V′V̂AV̂′

AV is symmetric positive semi-definite while D( 1
n

U′
(2)U(2) − Ir )D

is symmetric. Similarly, we have〈
G, V̂∗V̂′∗ − VV′〉 ≤ λ1

2

∥∥∥∥1

n
U′

(2)U(2) − Ir

∥∥∥∥∥∥VV′ − V̂∗V̂′∗
∥∥2

F.(77)

Combining (76) and (77), we arrive at∣∣〈G, V̂AV̂′
A − V̂∗V̂′∗

〉∣∣ ≤ 2λ1

∥∥∥∥1

n
U′

(2)U(2) − Ir

∥∥∥∥∥∥V̂AV̂′
A − V̂∗V̂′∗

∥∥2
F.(78)

Next we control the inner product with H: recall that A = supp(Ṽ) is fixed. We
define a collection of p × p symmetric matrices indexed by B ∈ B(k) as follows:

KB �
∥∥V̂AV̂′

A − V̂BV̂′
B

∥∥−1
F

(
V̂AV̂′

A − V̂BV̂′
B

)
,(79)

which has zero trace and unit Frobenius norm. Recall that V̂∗ = V̂B∗ . Then〈
H, V̂AV̂′

A − V̂∗V̂′∗
〉 = ∥∥V̂AV̂′

A − V̂∗V̂′∗
∥∥

F〈H,KB∗〉
(80)

≤ ∥∥V̂AV̂′
A − V̂∗V̂′∗

∥∥
F max

B∈B(k)

∣∣〈H,KB〉∣∣︸ ︷︷ ︸
�T

Assembling (72), (78) and (80), we can upper bound the excess risk by〈
� − S(2), V̂AV̂′

A − V̂∗V̂′∗
〉

= 〈
G, V̂AV̂′

A − V̂∗V̂′∗
〉 + 〈

H, V̂AV̂′
A − V̂∗V̂′∗

〉
(81)

≤ 2λ1

∥∥∥∥1

n
U′

(2)U(2) − Ir

∥∥∥∥∥∥V̂AV̂′
A − V̂∗V̂′∗

∥∥2
F + T

∥∥V̂AV̂′
A − V̂∗V̂′∗

∥∥
F.

Now we combine the risk decomposition (71) with the upper bounds above to
control the risk of our aggregated estimator V̂∗: to simplify notation, denote

δ = ∥∥V̂∗V̂′∗ − VV′∥∥
F, � = ∥∥VV′ − ṼṼ′∥∥

F,

R = ∥∥ṼṼ′ − V̂AV̂′
A

∥∥
F, M =

∥∥∥∥1

n
U′

(2)U(2) − Ir

∥∥∥∥.
Assembling (71) and (81), we have(

λr

2
− 6λ1M

)
δ2 ≤ T δ + (

�2 + R2)(λ1

2
+ 6λ1M

)
+ T (R + �).(82)
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Introduce the event E = {M ≤ 1
24κ

}. By assumption (26), r ≤ c′′n for a sufficiently
small constant c′′. Then there exists a constant c′ > 0 only depending on κ , such

that 1
24κ

≥ 2(
√

r
n
+ t)+ (

√
r
n
+ t)2, where t =

√
log(c′nh(λ))

n
. Applying Proposition 4

in the supplementary material [12] yields

P
(
Ec) ≤ 1

c′nh(λ)
.(83)

Conditioning on the event E and using Lemma 2, we have

δ2 ≤ 32T 2

λ2
r

+ 3λ1(�
2 + R2) + 4T (R + �)

λr

.(84)

Recall from (19) that the loss function is upper bounded by r ∧ (p − r). Taking ex-
pectation on both sides of (84), and using (83) together with the Cauchy–Schwarz
inequality, we have

E
∥∥V̂∗V̂′∗ − VV′∥∥2

F

≤ 32ET 2

λ2
r

+ 3κ
(
�2 + ER2) + 4E[T (R + �)]

λr

+ rP
(
Ec)(85)

≤ 20ET 2

λ2
r

+ (3κ + 8)
(
�2 + ER2) + r

c′nh(λ)
.(86)

In view of the oracle upper bound in Theorem 9, we have

ER2 ≤ C

(
r ∧ (k − r) ∧ (k − r)r

nh(λ)

)
.(87)

By (69), if q > 0, the approximation is upper bounded by

�2 ≤ 32qκ2

2 − q
�(k,p, r, n,λ).(88)

If q = 0, then � = 0. To control the right-hand side of (86), it boils down to upper
bound ET 2. In the sequel we shall prove that

ET 2 ≤ C(1 + λ1)
k

n
log

ep

k
(89)

for some absolutely constant C. Plugging (87), (88) and (89) into (86), we arrive
at

E
∥∥V̂∗V̂′∗ − VV′∥∥2

F

≤ C

h(λ)

k

n
log

ep

k
+ 32qκ2

2 − q
�(k,p, r, n,λ) + r ∧ (k − r)r

nh(λ)
+ r

c′nh(λ)
(90)

≤ C′�(k,p, r, n,λ),(91)
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where the constant C′ only depends on κ . In the special case of q = 0, the approx-
imation error is � = 0, which implies that the second term in (90) is zero. Hence
we have the following stronger result:

E
∥∥V̂∗V̂′∗ − VV′∥∥2

F ≤ C

h(λ)

k

n
log

ep

k
+ r ∧ (k − r)r

nh(λ)
+ r

c′nh(λ)
(92)

≤ C′�0(s,p, r, n,λ),

where �0 is defined in (12). Then (91) and (92) imply the statement of the theorem
for q > 0 and q = 0, respectively.

To finish the proof of the theorem, it remains to establish (89). To this end,
recall that KB is symmetric and Tr(KB) = 0. By the definitions of T and H in
(80) and (74), respectively, we have

T ≤ T1 + 2T2,(93)

where we define

T1 �
1

n
max

B∈B(k)

∣∣〈Z′
(2)Z(2),KB

〉∣∣(94)

T2 �
1

n
max

B∈B(k)

∣∣〈VDU′
(2)Z(2),KB

〉∣∣ = 1

n
max

B∈B(k)

∣∣〈Z′
(2)U(2)DV′,KB

〉∣∣.(95)

We shall prove that

ET 2
1 ≤ 24k

n
log

ep

k
+ 32k2

n2 log2 ep

k
+ 62

n
.(96)

ET 2
2 ≤ λ1

(
40k

n
log

ep

k
+ 24k2

n2 log2 ep

k
+ 103

n
+ 17k

n2

)
.(97)

Assembling (93) with (96)–(95) and using the fact that (a + b)2 ≤ 2(a2 + b2), we
arrive at

ET 2 ≤ ET 2
1 + 8ET 2

2

≤ 1500(1 + λ1)

(
k

n
log

ep

k
+ k2

n2 log2 ep

k

)
(98)

≤ 3000(1 + λ1)
k

n
log

ep

k
,(99)

where we used k
n

log p
k

≤ 1 implied by the assumption (26).
It then remains to establish (96)–(97). Note that the collection {KB :B ∈ B(k)}

belongs to the σ -algebra generated by the first sample X(1), which is independent
of (Z(2),U(2)). By conditioning on X(1), we can treat {KB :B ∈ B(k)} as fixed
matrices.
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�

PROOF OF (96). For each fixed B ∈ B(k), KB ⊥⊥ Z(2). Applying Lemma 4,
we have

P
(

1√
n

∣∣〈Z′Z,KB

〉∣∣ ≥ 2t + 2t2
√

n

)
≤ 2 exp

(−t2).
Applying Lemma 5 with N = |B(k)| = (p

k

) ≤ (
ep
k

)k , a = 2, b = 2√
n

and c = 2, we
have

ET 2
1 ≤ 1

n

(
8 log(2eN) + 8

n

(
log2(2N) + 2 log(2eN)

))
(100)

= 24

n
log(2eN) + 8

n2 log2(2N),(101)

which implies (96). �

PROOF OF (97). Fix B ∈ B(k). Since U(2) ⊥⊥ Z(2), conditioned on the real-
ization of U(2), 〈VDU′

(2)Z(2),KB〉 = 〈KBVDU′
(2),Z′

(2)〉 is distributed according to

N(0,‖KBVDU′
(2)‖2

F). Therefore〈
VDU′

(2)Z(2),KB

〉 (d)= ∥∥KBVDU′
(2)

∥∥
FW

for some W ∼ N(0,1) independent of U(2).
Using the fact that ‖AB‖F ≤ ‖A‖F‖B‖, we have∥∥KBVDU′

(2)

∥∥
F ≤ ‖KB‖F‖V‖‖D‖∥∥U′

(2)

∥∥‖ ≤ √
λ1‖U(2)‖.

Consequently, 〈VDU′
(2)Z(2),KB〉 is stochastically dominated by

√
λ1‖U(2)‖|W |.

Since U(2) is an n × r standard Gaussian matrix, Lemma 10 in the supplementary
material [12] yields

P
(‖U(2)‖ ≥ √

n + √
r + t

) ≤ exp
(
− t2

2

)
, t > 0.(102)

Applying the union bound yields

P
(‖U(2)‖|W | ≥ √

2(
√

n + √
r)t + 2t2)

≤ P
((‖U(2)‖ − √

n − √
r
)|W | ≥ 2t2) + P

(|W | ≥ √
2t

)
≤ P

(‖U(2)‖ ≥ √
n + √

r + √
2t

) + 2P
(|W | ≥ √

2t
)

≤ 3 exp
(−t2),

which the last inequality follows from (102) and the Chernoff bound P(W ≥√
2t) ≤ 1

2 exp(−t). Therefore,

P
( 〈VDU′

(2)Z(2),KB〉√
λ1

≥ √
2(

√
n + √

r)t + 2t2
)

≤ 3 exp
(−t2).
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Applying Lemma 5 with N = (p
k

)
yields

ET 2
2 ≤ 4λ1

n2

((
8 + (

√
n + √

r)2) log(3eN) + 2 log2(3N)
)
,

which, in view of r ≤ k, implies the desired (97). �

6.3. Proof of Theorem 7. We prove the theorem in three steps. First, we verify
that the “whitening” procedure in step 3 of the reduction scheme can be performed.
Next, we investigate the signal-to-noise ratio of the regression problem conditional
on the values of U and Z0. Finally, we derive the desired rates by using Theorem 6
and Wedin’s sin-theta theorem [55].

(1◦) As a first step, we verify that the “whitening” step is indeed possible, which
requires that σr(B) > 0. To this end, let J = supp(V0). Since B = UDV′V0 +
Z0V0, we have

σr(B) ≥ σr

(
UDV′V0) − σ1

(
Z0V0)

(103)
≥ σr(U)σr(D)σr

(
V′V0) − σ1

(
Z0

J

)
.

By our assumption on V0, condition (41) is satisfied with probability at least 1−
C/[nh(λ)]. By Lemma 10 in the supplementary material [12] and the union bound,

σr(U) ≥ √
n

(
1 −

√
r

n
−

√
2 log[nh(λ)]

n

)
,

(104)

σr

(
V′V0) ≥ 1

2
, |J | ≤ k∗

q

holds with probability at least 1 − C/[nh(λ)]. Note that assumption (26) implies
that n ≥ C0r and that n ≥ C0 log[nh(λ)]. Thus, for sufficiently large C0 in (26),
the first inequality in (104) leads to σr(U) ≥ 2

3

√
n. Together with σr(D) = √

λr ,
the first term in (103) is thus lower bounded by 1

3

√
nλr , and hence

σr(B) ≥ 1

3

√
nλr − σ1

(
Z0

J

)
(105)

with probability at least 1 − C/[nh(λ)].
Turning to the second term in (103), we first note that it is upper bounded by

maxI⊂[p],|I |=k∗
q
‖Z0

I‖ conditioned on the event that |J | ≤ k∗
q . Note that for any

t > 0, we have

P
{

max
I⊂[p],|I |=k∗

q

∥∥Z0
I

∥∥ >
√

n +
√

k∗
q + t

}
≤ ∑

I⊂[p],|I |=k∗
q

P
{∥∥Z0

I

∥∥ >
√

n +
√

k∗
q + t

} ≤
(

p

k∗
q

)
exp

(−t2/2
)

≤
(

ep

k∗
q

)k∗
q

exp
(−t2/2

) = exp
(
− t2

2
+ k∗

q log
(

ep

k∗
q

))
.
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Set t = t∗ =
√

2k∗
q log(ep/k∗

q) + √
2 log[nh(λ)]. The rightmost side of the last

display is then bounded by C/[nh(λ)]. Thus, by (104) and the union bound,

σ1
(
Z0

J

) ≤ √
n +

√
k∗
q + t∗ ≤ 2

√
n(106)

with probability at least 1−C/[nh(λ)], where the last inequality holds because the
assumption (26) implies that k∗

q ≤ n/4 and t∗ ≤ n/2 as long as C0 is sufficiently
large.

Under the assumption that λr ≥ C0 for some sufficiently large C0 > 36, (105)
and (106) lead to σr(B) ≥ c

√
nλr > 0 with probability at least 1 − C/[nh(λ)].

This completes the first step in the proof.
(2◦) Let Ā = 1√

2
ARC−1 = 1√

2
DU′BRC−1 = 1√

2
DU′L. Then � = VĀ in (32).

In the second step, we show that there exist two constants C2 > C1 > 0 depending
only on κ , such that with probability at least 1 − C/[nh(λ)],

C1
√

nλ ≤ σr(Ā) ≤ σ1(Ā) ≤ C2
√

nλ.(107)

To this end, note that (104) and assumption (26) imply

σr(Ā) ≥ 1√
2
σr(D)σr(U) ≥

√
nλr

2

(
1 −

√
r

n
−

√
2 log[nh(λ)]

n

)
≥ C1

√
nλ

holds with probability at least 1 − C/[nh(λ)]. Under the same assumption,
Lemma 10 in the supplementary material [12] implies

σ1(Ā) ≤ 1√
2
σ1(D)σ1(U) ≤

√
nλ1

2

(
1 +

√
r

n
+

√
2 log[nh(λ)]

n

)
≤ C2

√
nλ.

Thus (107) is established.
(3◦) Next we show that, conditioned on the event that (107) holds, the signal

matrix � lies in Fq(s
′,p) where

s′ ≤ sσ
q
1 (Ā) ≤ Cs(nλ)q/2 ≤ Cs

(
nh(λ)

)q/2
,(108)

where the middle inequality is due to (107), the last inequality follows from the
assumption that λ ≥ C0 and the first inequality is due to ‖�‖q,w ≤ ‖V‖q,w‖Ā‖q ,
which is a consequence of equation (110) in Section 7.1 of the supplementary
material [12].

Let k′ be defined in (44). We show that whenever (108) holds, we have

k′ ≤ C′k∗
q,(109)

where k∗
q is the effective dimension defined in (13), and the constant C′ depends

only on q . To see this, note that k∗
q ≥ 1 by Remark 1. Then (109) holds trivially if

k′ = 1. Next assume that k′ ≥ 2. By definition, t
q/2
k′−1(k

′ − 1) ≤ s′. Note that β > 1
and tk ≥ r + log ep

k
. By (108), we have (k′ − 1)(r + log ep

k′−1)q/2 ≤ Cs(nh(λ))q/2.
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Hence k′−1 ≤ k∗
q(Cs,p, r, n,λ) ≤ τq(C)k∗

q(s,p, r, n,λ), where the last inequality
follows from the third property of k∗

q in Remark 1. This proves the desired (109).
Let E denote the event that both (104) and (107) hold. Then

E
∥∥V̂V̂′ − VV′∥∥2

F = E
∥∥V̂V̂′ − VV′∥∥2

F1{E} + E
∥∥V̂V̂′ − VV′∥∥2

F1{Ec}

≤ E
∥∥V̂V̂′ − VV′∥∥2

F1{E} + Cr

nh(λ)
.

Here, the last inequality holds because the loss function is upper bounded by r and
P(Ec) ≤ C/[nh(λ)].

To further bound the first term on the rightmost hand side, we note that E is
completely determined by U and Z0. Hence, it is nonrandom conditioned on U
and Z0. Thus

E
∥∥V̂V̂′ − VV′∥∥2

F1{E} ≤ 2E
‖�̂ − �‖2

F

σ 2
r (Ā)

1{E} ≤ C

nλ
E‖�̂ − �‖2

F1{E}

= C

nλ
E
[
E
[‖�̂ − �‖2

F1{E}|U,Z0]1{E}
]

≤ C

nλ
E
[
k′
(
r + log

ep

k′
)

1{E}
]

≤ Ck∗
q

nλ

(
r + log

ep

k∗
q

)
.

Here, the first inequality comes from Wedin’s sin-theta theorem for SVD [55]. The
second inequality comes from (107). The second-to-last inequality comes from
Theorem 6. The last inequality holds because on the event E, k′ ≤ Ck∗

q in view
of (109), and k �→ k(r + log(ep/k)) is increasing. We complete the proof by not-
ing that 1/λ ≤ C/h(λ) holds since λ > C0. The upper bound 2(r ∧ (p − r)) holds
in view of (20).

SUPPLEMENTARY MATERIAL

Supplement to “Sparse PCA: Optimal rates and adaptive estimation”
(DOI: 10.1214/13-AOS1178SUPP; .pdf). We provide proofs for all the remaining
theoretical results in the paper. The proofs rely on results in [17, 19, 20, 25, 31, 33]
and [51].
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