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I. INTRODUCTION 

The ability to detect change accurately is vital for economic as well as social success.  

Consider four very different examples.  A baseball manager must decide whether his pitcher has 

“lost his stuff”.  A doctor must determine whether a patient’s health has taken a turn for the 

worst.  A production manager is unsure of whether a manufacturing line is out of control.  A 

central bank needs to determine whether an economy has slipped into recession.  In each case, 

the state of the world may have changed from one “regime” to another.  These examples 

illustrate some of the difficulties associated with detecting change.  First, the “signal” in each 

instance (an errant pitch, a sudden drop in blood pressure, or a sharp increase in defective goods, 

a precipitous drop in the stock market) is noisy, and thus there is a need to separate the “signal” 

from the “noise”.  Second, a decision maker must balance between making one of two mistakes.  

She can over-react (i.e., act as if the world has changed, when it in fact has not) or under-react 

(i.e., act as if the world has remained the same, when it in fact has changed). 

The general problem of detecting change has received considerable recent attention in 

both the academic and popular press.  Financial economics has documented both over- and 

under-reaction in financial markets to earnings announcements and other news (De Bondt & 

Thaler, 1985; Brav & Heaton, 2002).  Even more recently, the run-up in stock prices in the late 

1990’s led to considerable debate among pundits over whether the historically high stock prices 

were a bubble and a short-term anomaly, or whether the market valuations were warranted 

because of the advent of a “new economy” (Browning, 1998; Gasparino, 1998).  Finally, the 

management literature has emphasized how critical it is for managers to be able to detect the 

onset of a new regime (Grove, 1999).   
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This research takes a step toward understanding how good individuals are in detecting 

regime shifts.  In particular, we are motivated by the following questions: Do individuals over-

react or under-react to indications of change?  When do individuals over-react, and when do they 

under-react?  What psychological processes explain the pattern of over- and under-reaction?  

Two experimental studies provide some answers to these questions.  Individuals both over-react 

and under-react.  However, the pattern of over-reaction and under-reaction is systematic, not 

random.  Under-reaction is most common in unstable environments in which signals are precise, 

and over-reaction is most likely to occur in stable environments in which signals are noisy.  The 

psychological story we use to explain these results, the system neglect hypothesis, posits that 

individuals primarily react to signals of change, and secondarily to the system that generated the 

signal. 

Our chapter is organized as follows.  We begin by describing our experimental setup.  

This permits us to establish some terminology, and also helps us develop and explain our 

psychological hypothesis of system neglect.  We then show how the system neglect hypothesis 

predicts over-reaction in some environments, and under-reaction in other environments.  Next, 

we present the results of two studies.  The two studies involve two very different tasks, judgment 

and choice, but both show the predicted pattern of over- and under-reaction.  We conclude by 

reviewing the questions raised in the introduction, and posing some new questions. 

Detailed descriptions of the studies, as well as much more extensive analyses, are found 

in Massey & Wu (2002). 
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EXPERIMENTAL SETUP 

An Informal Description 

We begin by describing the setup used in our experimental studies.  Subjects in our 

experiments observe signals and use these signals to infer whether there has been a shift from 

one regime to a second regime.  Figure 1 depicts our basic experimental setup.   

 

Figure 1: Experimental Setup (Low Diagnosticity, Low Transition Probability System) 

We call everything inside the box in Figure 1 a system.  A system has several important 

characteristics.  First, a system involves two regimes, an incumbent regime (the “red bin”) and a 

transition regime (the “blue bin”).  The process begins with the red bin but may switch to the 

blue bin at any period.  The blue bin is an absorbing state:  if there is a switch to the blue bin at 

any time, the process will continue with that regime.   

Subjects observe signals and must use these signal to infer whether there has been a shift 

from the red bin to the blue bin.  In the example in Figure 1, a subject has observed a signal 

consisting of a red ball drawn in the first period and blue balls drawn in the second and third 
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periods.  In judging whether the process has switched to the blue bin, two aspects of the system 

are critical.  A subject must consider the diagnosticity of the signal.  In Figure 1, the red bin does 

not differ that much from the blue bin: the red bin consists of 60% red balls and 40% red balls, 

while the blue bin has 60% blue balls and 40% red balls.  Thus, the signals are relatively 

uninformative.  Contrast this to the system in Figure 2 in which the red bin has 90% red balls, 

and the blue bin has 90% blue balls.  Thus, the signal in Figure 2 is much more diagnostic than 

the signal in Figure 1. 

Figure 2: Experimental Setup (High Diagnosticity, High Transition Probability System) 

Finally, the subjects must consider the stability of the system, as measured by the 

transition probability, or chance the system will switch from the red bin to the blue bin in any 

period.  The system in Figure 1 is a very stable system, with a transition probability of .02.  In 

contrast, the system in Figure 2 is considerably less stable with a transition probability of .20. 

To review, a system consists of two regimes, a red bin and a blue bin, and two system 

parameters, diagnosticity (the relative composition of red balls in the red bin to red balls in the 
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blue bin), and transition probability.  It is important to note that whereas the system generates a 

signal, the signal is outside the system. 

Although our experimental paradigm necessarily simplifies most real world change 

processes, we can nevertheless map our introductory examples to this conceptualization.  

Consider the manufacturing process example.  A process begins “in control” (the incumbent 

regime) but may drift and become “out of control” (the transition regime) (Shewhart & Deming, 

1986).  The diagnosticity of a signal, such as the defect rate, is captured by variability of the 

process, while the transition probability is captured by the historical “hazard rate”. 

A Formal Description 

More formally, we let tR  indicate that the process is in the red bin in period t, and tB  

indicate that the process is in the blue bin in period t.  Each bin produces one of two possible 

signals: a red ball ( 1tr = ) or a blue ball ( 0tr = ), where tr  is an indicator variable for a red signal 

in period t.  Let Pr( 1| )R t tp r R= =  and Pr( 1| )B t tp r B= =  denote the proportion of red balls in 

the red and blue bins, respectively.  In our experiments, the red bin and blue bin are symmetric: 

1= −R Bp p .  Then /R Bd p p=  measures the diagnosticity of the signal. We denote 

1Pr( | )t tq B R+=  the transition probability, or probability that the process changes from the red bin 

to the blue bin at any given period.  In addition, the process begins with the red bin at 0=t , 

0Pr( ) 1R = , and the blue bin is an absorbing state, 1Pr( | ) 1t tB B+ = .  Finally, denote the history of 

signals from period 1 to t by 1( ,..., )t tH r r= .  In Figure 1, .6Rp = , .4Bp = , 1.5d = , and .02q = , 

while .9=Rp , .1=Bp , 9=d , and .20=q  in Figure 2.   

It is straightforward to derive the Bayesian posterior odds given tH : 
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The derivation is found in Appendix II of Massey & Wu (2002).  In our experiments, we 

compare empirical behavior to this normative expression. 

THE SYSTEM NEGLECT HYPOTHESIS 

Consider the signal in Figure 1: a red ball in period 1, and blue balls in periods 2 and 3.  

Clearly, the signal is suggestive of a change to the blue bin.  However, a Bayesian agent must 

also consider the diagnosticity of the signal and the stability of the system (i.e., the transition 

probability).  The system neglect hypothesis suggests that individuals will attend primarily to the 

signal, and secondarily to the system that generated the signal.   

The system neglect hypothesis draws on and extends research in static judgment.  

Edwards’ (1968) research on conservatism found that subjects updated their judgments too 

slowly when presented with samples of evidence.  Kahneman & Tversky’s (1973) work on 

representativeness showed the opposite: that individuals were too willing to extrapolate from 

small samples.  Griffin & Tversky (1992) resolved this apparent paradox by noting that research 

in the conservatism literature typically involved large samples, while representativeness research 

involved small samples.  More generally, Griffin & Tversky proposed that individuals attend first 

to the “strength of evidence” and then secondarily to the “weight of evidence”.  Roughly 

speaking, the strength of evidence is its magnitude or extremity, while the weight of evidence is 

its reliability or validity.  Suppose, for example, you need to determine whether a coin is biased 

towards heads or tails.  The strength of evidence corresponds to the proportion of heads in a 

sample, while the weight of evidence corresponds to the sample size.  An individual who 
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considers the strength of evidence but ignores the weight of evidence would find 4 heads out of 5 

more convincing than 20 heads out of 30, even though the opposite is true according to Bayes 

Rule.  

In our setup, we suggest that signals provide the strength of evidence and the system 

parameters (diagnosticity and transition probability) provide the weight of evidence.  Thus, 

system neglect predicts that subjects will act approximately the same to the signal in Figure 1 and 

Figure 2, since the signal in each case is identical, even though the systems are substantially 

different.  

The signal is also likely to be overweighted because it is more salient than the system.  In 

virtually every real world decision problem, the system parameters are not known, and perhaps 

cannot be known.  Furthermore, since the signal changes over time, unlike the underlying system 

parameters, it is natural to attend to the signal, not the system.  Put differently, the signal is in the 

foreground, while the system is in the background.  Thus, the system neglect hypothesis is 

similar in spirit to the correspondence bias or fundamental attribution error (Jones & Harris, 

1967), and also to the cognitive psychological notion that decision makers often attend to surface 

features and ignore deep structure. 
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Figure 3: Posterior probabilities of a change for the sequence: red, blue, blue  

The system neglect hypothesis implies a particular pattern of over- and under-reaction.  

We illustrate this pattern with the following numerical example.  Consider four systems, 

corresponding to low ( 1.5d = ) and high diagnosticities ( 9d = ), and low ( .02q = ) and high 

( .20q = ) transition probabilities.  Suppose that a subject has observed the signal in Figures 1 and 

2: a red ball in period 1, a blue ball in period 2, and a blue ball in period 3.  The posterior 

probability that the last ball was drawn from the blue bin is given in Figure 3.  The posterior 

probability in the high diagnosticity, high transition probability cell is almost one (.97), while the 

posterior probability in the low diagnosticity, low transition probability cell is close to zero (.10). 

Suppose that a subject neglects the system completely and gives the same posterior in 

each case.  Such complete neglect gives rise to a pattern in which the greatest tendency for under-

reaction is in the low diagnosticity, low transition probability cell (the southeast cell), and the 

greatest tendency for over-reaction is in the high diagnosticity, high transition probability cell 

(the northwest cell).  For example, if a subject’s posterior probability in each case is .50, she will 
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under-react in 3 of the 4 cells, with the greatest under-reaction in the southeast cell, and the only 

over-reaction in the northwest cell (Figure 4).  Note that the system neglect hypothesis only 

makes a prediction about the relative pattern of over- and under-reaction.  We may see all over-

reaction (for example, if the subject’s posteriors are .98), all under-reaction (for example, if the 

subject’s posteriors are .05), or the mixed pattern we see in Figure 4.  

We first test for the predicted pattern of over- and under-reaction in a judgment and 

choice study. 

EXPERIMENT 1: JUDGMENT STUDY 

Methodology 

We conducted two computer-based studies based on the experimental setup described 

above.  In the first study, subjects ( 40n = ) saw a sequence of signals, and after each signal, 

provided a probability that the process had changed.  Details of both Experiments 1 and 2 are 

found in Massey & Wu (2002). 

The program consisted of several screens with explanations of the statistical process and 

the payment scheme.  We then conducted 18 trials of 10 periods (signals) per trial.  The trials 

involved different systems, constructed by crossing 4 transition probability levels and 3 

diagnosticity levels.  Diagnosticity levels ( /R Bd p p= ) were 1.5, 3, and 9, and transition 

probabilities were .02, .05, .10, and .20.  We generated 5 random sequences per condition for a 

total of 60 sequences.  Each subject was given 1 or 2 sequences from each condition.  Thus, 12 

subjects provided judgments for each of the 60 sequences.  
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Figure 4: Hypothesized pattern of under- and over-reaction under system neglect 

At the beginning of each trial, subjects were shown the parameters, Rp , Bp , and q, 

governing that trial.  These parameters were displayed continuously throughout each trial.  

Subjects were then shown a series of red and blue balls.  After each signal, subjects indicated the 

probability that the “computer has switched to the blue bin”.  Subjects were not permitted to 

change their probabilities once they were entered. 

We rewarded subjects according to a quadratic scoring system that paid a maximum of 

$0.10 per judgment and a minimum of -$0.10 per judgment.  Subjects were paid the maximum, 

for example, if they indicated with certainty that the process was red, and the process indeed was 

red.  The scoring system is proper and truth-revealing for risk-neutral subjects (Brier, 1950). 

At the end of each trial, subjects were given feedback as to if and when the process 

switched from the red bin to the blue bin.  The computer also indicated how much they won or 

lost on that particular trial. 
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Results 

Payments ranged from $6.60 to $14.67 (mean=$11.61).  A Bayesian agent would have 

made $14.23 on average.  Thus, an average subject made 18% less than a Bayesian agent.   

We are interested in how subjects respond to indications of change, relative to the 

Bayesian standard.  Therefore, we consider changes in probability judgments after a subject has 

observed a blue signal.  Figure 5 depicts the Bayesian response (change in probability) to a blue 

ball for each of the 12 conditions averaged across the trials.  The pattern depicted in Figure 5 is 

identical to that shown in Figure 3:  the most reaction is required for 9d =  and .2q =  (average 

Bayesian change of .31), and the least reaction is called for when 1.5d =  and .02q =  (average 

Bayesian change of .05).   

We contrast the Bayesian response with the empirical response shown in Figure 6.  

Although the responses were not identical across the 12 conditions, they were considerably more 

compressed than demanded by Bayes Rule, and reveal much less of a gradient sloping upward 

toward the southeast than found in Figure 5.   
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Figure 5: Bayesian change in posterior probabilities after observing a blue 
ball (Experiment 1) 
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Figure 6: Empirical change in probability judgments after observing a blue 
ball (Experiment 1) 

Our measure of over- and under-reaction is obtained by considering the difference 

between the empirical and Bayesian change.  The plot of over- and under-reaction is shown in 

Figure 7.  We find over-reaction in 6 conditions, and under-reaction in 6 conditions.  As 

predicted, the greatest over-reaction occurs in the most northwest cell (lowest diagnosticity, 

lowest transition probability), and the greatest under-reaction is found in the most southeast cell 

(highest diagnosticity, highest transition probability).  
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Figure 7: Pattern of under- and over-reaction (Experiment 1) 

In Massey & Wu (2002), we provide more formal support for the system neglect 

hypothesis by fitting a series of quasi-Bayesian models (in the spirit of Edwards, 1968).  These 

models show that subjects are sensitive to the underlying system parameters, but insufficiently so 

relative to a Bayesian agent. 

EXPERIMENT 2: CHOICE STUDY 

Methodology 

We employed a similar methodology to the one used in Experiment 1.  The major 

difference was the response mode: instead of providing a probability judgment, subjects 

predicted the color of the next ball. 

We recruited 50 subjects for an experiment that consisted of 18 trials of 10 periods.  

Before each trial, subjects were shown the system parameters governing that trial.  Subjects were 

asked to predict the color of the next ball for each period, including the first period.  They were 

then shown the signal for that period.  The task continued until the trial was completed. 

Our design used 3 diagnosticity levels ( 1.5d = , 3, and 9) and 4 transition probabilities 

( q =.025, .05, .10, and .20) for a total of 12 experimental conditions.  We randomly generated 3 

unique sequences for each of the 12 conditions.  Each subject was thus given 50% of the 36 total 

sequences, and 1 or 2 of the 3 sequences from each condition.  Subjects were paid 9 cents for 

each correct prediction (maximum of 180).   

Normative Model 

We compare our subjects’ behavior with the normative model.  The Bayesian posterior 

that a switch has occurred by 1t −  is 1 1 1Pr( | )b
t t tp B H− − −= , and determined by manipulating (1).  It 
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is easy to show that a subject should predict a blue ball if 1 1 1Pr( | ) (1 ) .5b b
t t t tB H p p q− − −= + − >  (see 

Massey & Wu, 2002).  Put differently, a subject should predict a blue ball if she believes that it is 

more likely that the process has switched to the blue bin. 

Results 

As in Experiment 1, the normative model outperformed the average subject.  The 

normative model made correct predictions 69% of the time, while the average subject was correct 

64% of the time (range 59% to 73%).  Payments ranged from $9.63 to $11.79 (mean=$10.62). 

There are several ways to measure over- and under-reaction.  First, we consider when 

predictions at t are different from prediction at 1t − .  We take switches of this sort as a measure 

of belief revision, and compare the proportion of trials that a Bayesian agent would revise her 

predictions (10.8% of the trials) with the proportion of trials that our subjects revise their 

predictions (16.1% of the trials).  By this measure, subjects show a tendency to revise their 

predictions 50% more than a Bayesian agent. 

The system neglect hypothesis predicts that the difference between empirical and 

Bayesian belief revisions will be most extreme in the southeast and northwest cells.  Figure 8 

plots the difference between empirical and Bayesian switches for all 12 conditions.  We interpret 

negative values as under-reaction, and positive values as over-reaction.  We see the same general 

pattern as observed in Experiment 1: the most under-reaction occurs in the highest diagnosticity, 

highest transition probability condition, and the most over-reaction occurs in the lowest 

diagnosticity, lowest transition probability condition.   
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Figure 8: Pattern of under- and over-reaction measured by switches (Experiment 2) 

We next consider a second measure of over- and under-reaction: the amount of evidence 

required to make the first blue ball prediction.  Normatively, the threshold should be the same 

across all conditions, i.e., the first t for which 1 1 1Pr( | ) (1 ) .5b b
t t t tB H p p q− − −= + − > .  However, the 

system neglect hypothesis predicts that the “standard of proof” will be different across 

conditions.  Substantial evidence will be required in the high diagnosticity, high transition 

probability conditions (consistent with under-reaction), and very little evidence will be required 

in the low diagnosticity, low transition probability conditions. 

Figure 9 plots the average Bayesian prior at the time of the first blue prediction.  

Consistent with the system neglect hypothesis, the threshold varied across conditions.  In the low 

diagnosticity, low transition probability conditions, the average posterior probability for the first 

blue prediction was .11, considerably lower than the .50 that the normative model demands.  By 

comparison, in the high diagnosticity, high transition probability condition, subjects required 

evidence indicating a .88 chance of a change to make a blue prediction.  Note also that over-

reaction appears to be more pronounced in Experiment 2 than Experiment 1. 
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Figure 9: Amount of evidence required for first blue prediction.  Evidence is measured 
as the Bayesian posterior at time of first blue prediction (Experiment 2) 

 We tested for system neglect formally in Massey & Wu (2002) by fitting a quasi-Bayesian 

model to Experiment 2’s data, using a stochastic choice functional.  This exercise provides 

formal support for our hypothesis, and also shows that over-reaction is indeed more pronounced 

in Experiment 2 than Experiment 1. 

SUMMARY 

We end by returning to the questions we posed in the introduction, then present some 

additional questions that offer fruitful avenues for future research. 

Old Questions 

Question 1. Do individuals over-react to indications of change?  Do individuals under-

react to indications of change? 
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Our two studies show that individuals both over-react and under-react to indications of 

change.  We show over- and under-reaction, graphically, as well as formally in our estimates of 

quasi-Bayesian models (see Massey & Wu, 2002). 

Question 2. When do individuals over-react and when do they under-react?   

The pattern of over- and under-reaction is quite systematic.  In both studies, there is the 

most under-reaction in unstable systems with clear signals, and the most over-reaction in stable 

systems with noisy signals.  There also is more over-reaction in the choice task than the judgment 

task.  These two tasks are quite different psychologically, but may facilitate anchoring and 

adjustment processes of different sorts.  In the judgment task, it is natural to anchor on one’s 

judgment in the previous period.  In contrast, in the choice task, it is natural to anchor on the 

signal itself.  Anchoring and insufficient adjustment, applied very differently due to the 

difference in the nature of the tasks, could then explain the differential level of over-reaction in 

the choice study. 

Question 3.  What psychological processes explain the pattern of over- and under-

reaction?   

We put forth the system neglect hypothesis: individuals attend primarily to the signal and 

secondarily to the system that generates the system.  This hypothesis draws on psychology that 

has been used to explain behavior in both cognitive and social psychology.  The main implication 

of this hypothesis is a pattern of over- and under-reaction, with the greatest tendency for under-

reaction in unstable systems with precise signals, and the most over-reaction in stable systems 

with noisy signals.  Two studies find exactly this pattern of over- and under-reaction.  The system 

neglect hypothesis is further supported by estimation of quasi-Bayesian models. 
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New Questions 

We close by offering three new questions and presenting some preliminary answers to 

these questions. 

Question 4.  Does the pattern of over- and under-reaction diminish over time? 

Learning has received considerable recent attention in experimental economics, both in 

terms of experimental study and formal models (cf. Camerer & Ho, 1999).  Do subjects learn to 

detect change better when given experience?  In Experiment 1, we looked at the first 4 periods 

and the remaining 14 periods separately.  The gradient shown in Figure 5 was most pronounced 

in the first 4 periods, but the pattern was still significant in the remaining 14 periods.   

We also conducted a study in which subjects were given 20 trials from 1 of 6 different 

systems. System neglect was still apparent at the end of the 20 trials, but was significantly less 

pronounced than at the beginning of the experiment.  However, most of the learning occurred in 

systems with high diagnosticity.  A more complete discussion of the results is found in Wu & 

Massey (2003). 

In summary, subjects do appear to learn with repetition, but most of the learning happens 

very quickly and is probably due as much to increased comprehension of the task as real learning.  

Beyond that, learning is very slow, and appears to occur reliably only in conditions highly suited 

for learning—conditions with high diagnosticity, where reinforcement is very strong. 

Question 5.  What other psychological influences lead to over- and under-reaction? 

In this chapter, we have highlighted the role of the system neglect hypothesis in 

predicting patterns of over- and under-reaction.  However, we believe that there are other 

psychological factors that may influence the ability to detect change, particularly in real world 

detection tasks.  First, in most real world situations, individuals often have a vested interest in 
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one of the two regimes.  For example, a “bricks and mortars” company will not be eager to see 

the advent of the “new economy”, while those heavily invested in the technology sector will be 

looking for signs of change.  In addition, decision makers may have invested time or money in 

the incumbent regime.  Thus, factors such as sunk costs, commitment escalation and motivated 

reasoning may make under-reaction more pronounced in many real world decisions (e.g., Staw, 

1981; Kunda, 1990).  Understanding how these and other psychological factors interact with 

system neglect should be a fruitful area for future research.  

Question 6.  What prescriptions should be offered for this bias? 

Unfortunately, most behavioral biases do not have trivial remedies (Russo & 

Schoemaker, 2002).  This undoubtedly holds for the behavior documented here.  However, we 

offer some preliminary thoughts. 

Much popular management literature has called for organizations to be nimble, reactive, 

and flexible (Bhide, 2000; Hamel, 2000; Schoemaker, 1995).  What often goes unsaid is that 

organizations must be appropriately reactive.  Clearly there is a trade-off between flexibility and 

perseverance.  This research suggests there are environments in which managers are prone to stay 

the course when they should be react, as well as environments in which they react when they 

should stay the course.  Managing this tension is a major challenge for firms operating in 

dynamic environments. 

Our research shows that individuals in dynamic environments emphasize indications of 

change over the system providing those indications.  For managers, this means a tendency to 

respond to events rather than to the environment in which those events take place.  Our research 

suggests that organizations should devote more resources to analyzing and interpreting the 

environment.  Firms need to understand whether their environment (the “system”) is more likely 



   

 21

to lead to errors of under-reaction or errors of over-reaction.  For example, a firm in the relatively 

stable electrical utility industry is likely to overreact to rumors about a change in government 

regulation, whereas a firm in the rapidly changing technology sector is likely to underreact to the 

newest market data.  Understanding the environment is crucial to correctly interpreting the events 

affecting an organization and hence managing the tension between under- and over-reaction. 
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