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Category Management and Coordination in Retail Assortment Planning
in the Presence of Basket Shopping Consumers

Abstract
This paper studies the assortment planning problem with multiple merchandise categories and basket
shopping consumers (i.e., consumers who desire to purchase from multiple categories). We present a duopoly
model in which retailers choose prices and variety level in each category and consumers make their store
choice between retail stores and a no-purchase alternative based on their utilities from each category. The
common practice of category management (CM) is an example of a decentralized regime for controlling
assortment because each category manager is responsible for maximizing his or her assigned category’s profit.
Alternatively, a retailer can make category decisions across the store with a centralized regime. We show that
CM never finds the optimal solution and provides both less variety and higher prices than optimal. In a
numerical study, we demonstrate that profit loss due to CM can be significant. Finally, we propose a
decentralized regime that uses basket profits, a new metric, rather than accounting profits. Basket profits are
easily evaluated using point-of-sale data, and the proposed method produces near-optimal solutions.
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Abstract

This paper studies the assortment planning problem with multiple mer-
chandise categories. The categories interact with each other due to the ef-
fects of basket shopping consumers. We present a model in which a retailer
chooses the number of variants to offer in each category and the consumers of
multiple categories (i.e., basket shoppers) make their store choice between
the retail store and an exogenous outside alternative based on their total
utilities from their shopping basket. We investigate the interaction of the
category variety decisions at the retail store under centralized and decentral-
ized management regimes. The common practice of category management
is an example of a decentralized regime for controlling assortment because
each category manager is responsible for maximizing his or her assigned cat-
egory’s profit. We show that category management never finds the optimal
solution and generally provides less variety than optimal. In a numerical
study we demonstrate that the profit loss due to category management can
be significant. We provide guidelines on which type of categories the re-
tailer should carry and which should have more variety. Finally, we propose
a decentralized regime that uses basket profits, a new metric, rather than
accounting profits. Basket profits are easily evaluated from available data
and this method produces near optimal solutions.

∗The authors would like to thank David Bell, Morris Cohen, Marshall Fisher, Abba
Krieger, Debu Prohit, and Ananth Raman for helpful discussions. An electronic copy of
this paper is available from the authors’ webpages.



Retailers have increased product selections in all merchandise categories for a number of pos-

sible reasons, including heterogeneous customer preferences, variety seeking consumers and brand

competition: Quelch and Kenny (1994) report that the number of products in the market place

increased by 16% per year between 1985 and 1992 while shelf space expanded only by 1.5% per

year during the same period. This rapid growth in variety has raised questions as to whether it is

excessive. For example, many retailers are adopting an “efficient assortment” strategy, which pri-

marily seeks to find the profit maximizing level of variety by eliminating low-selling products (Kurt

Salmon Associates 1993), and “category management”, which attempts to maximize the profits

within a category (AC Nielsen 1998). There is even empirical evidence that variety levels have

become so excessive that reducing variety does not decrease sales (Dreze et al. 1994, Broniarcyzk

et al. 1998, Boatwright and Nunes, 2001). And from the perspective of operations within the store

and across the supply chain, it is clear that variety is costly: greater variety can lead to slower

selling inventory, poor product availability, higher handling costs and greater markdown costs.

While there may be agreement that reducing variety can increase short run profits, there is

far less agreement with respect to its impact on long run profits. Assortment planning models

in the literature, and organizational forms such as category management, focus on the selection

of products in a single category assuming store traffic is exogenous, i.e., variety within a category

influences demand conditional on a store visit, but does not influence store choice. However, if,

based on single category analyses, a retailer reduces variety in all categories, then the store becomes

less attractive and some customers are likely to defect to other retailers, thereby reducing store

traffic. This concern is particularly relevant with respect to basket shoppers: if a basket shopper

does not find an item that she wants in one category, she may purchase her entire basket from

another retailer. Although retailers are well aware of this issue, there is little research on what to

do about it.

This paper works with a stylized model to develop managerial insights regarding the assort-

ment planning process in an environment with multiple categories. The retailer offers a selection

of products in each merchandise category. Basket shopping consumers choose between the retailer

and an outside alternative to maximize their total shopping utility. The retailer’s decisions across

merchandise categories can be managed under centralized or decentralized regimes. Decentralized

regimes (optimization on a category by category basis), such as category management (CM), are

analytically manageable but they ignore (in their pure form) the impact of cross-category interac-
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tions. Centralized regimes account for these effects, but only in theory they do so because they are

not implementable in practice: it is extremely difficult to design a model to account for all cross-

category effects, to estimate its parameters with available data and to actually solve it. Chen et al

(1999) also emphasize the need for models that are solvable with parameters that can be estimated

from available data. As CM and centralization are two extremes, merchandising managers often

create an intermediate approach by adding constraints to the planning process based on their own

knowledge about the store’s categories and customers: e.g., include a particular product, have at

least two brands in a subgroup, ensure that the timing and depth of promotions are coordinated

across obviously complementary products (chips and salsa, beer and pretzels, etc.), etc. But it is

not clear if the appropriate constraints are implemented (e.g., should there be at least two brands

or five brands, etc.) or whether all of the necessary interactions are accounted for with this ad-hoc

approach.

We address the following research questions in this paper. What is the loss due to decentraliza-

tion compared to the optimal solution? (In some cases decentralization may perform well.) Do

decentralized solutions have a consistent bias? (Too much or too little variety.) Is there a way to

have the best of both worlds, i.e., are there easily solvable management regimes, based on readily

available data, that lead to nearly optimal assortments?

We find that the impact of basket shopping consumers on assortment planning is more complex

than one might initially suspect because basket shopping generates two contradictory effects. To

illustrate, consider a supermarket example. Capers, a low penetration, low frequency product is

often not profitable, but customers that buy capers usually buy large baskets of products. Hence,

expanding variety in the spices-condiments category (A) to include capers increases store traffic

and sales in some other category (B), i.e., more variety in category A makes adding variety to

category B more attractive because category A might pull in more shoppers to the store (i.e.,

categories are strategic complements). This is an intuitive effect, and it leads to the conclusion

that ignoring interactions leads to less than the optimal amount of variety (capers are not included

in the assortment if you maximize profit in that category alone; they are included only if total

store profit is maximized). However, if category A is very attractive, category B can free ride with

lower variety (i.e., categories are strategic substitutes): if the spice-condiment category is deep

because of the inclusion of capers, other categories need less variety to attract the same basket

shoppers. That effect contradicts the initial intuition, hence, maybe decentralized management

2



leads to too much variety. In economic models, activities are usually assumed to be (or found

to be) either strategic complements or substitutes, but not both. Our model provides a realistic

counter-example.

We characterize the assortment chosen with a decentralized regime, which we refer to as cate-

gory management (CM), as well as the assortment with a centralized solution (assuming an ideal

situation in which we are able to estimate all of the demand parameters, solve the problem, etc.).

We show that if there are any basket shoppers, CM never finds the optimal solution and mostly

provides less variety than optimal, even though two categories can be either complements or substi-

tutes depending on their variety levels. With numerical examples we demonstrate that the profit

loss due to CM can be significant, 28% on average. More importantly, the performance gets worse

as the number of categories increases. Our point is that decentralization can be costly if there are

basket shopping consumers and the interactions among categories is not explicitly modeled. To

address the potential problem with a decentralized approach to assortment planning, we propose

a simple heuristic that retains decentralized decision making (category managers optimize their

own categories’ profit) but adjusts how profits are measured. To be specific, instead of using an

accounting measure of a category’s profit, we define a new measure called basket profits. Basket

profits can be estimated using point-of-sale data and it enables CM to approximately measure

the true marginal benefits of merchandising decisions. We believe this analytical approach is an

attractive alternative relative to ad-hoc coordination across category managers.

The next section describes our model, followed by the literature review in Section 2. Section 3

details the consumer choice process and Section 4 presents the solution under different management

regimes. Discussion of managerial implications in Section 5 is followed by the heuristic solution in

Section 6, a brief numerical study in Section 7 and concluding remarks in Section 8.

1 Model Basics

Consider a retailer that carries multiple categories of goods (e.g., shirts, ties, sports jackets). The

retailer offers a certain assortment defined by what categories she carries and the selection of

products in each category. The set of categories is denoted J = {1, 2, ..,N} and the set of variants
in category j is denoted Sj = {1, 2, .., Ij}. The retailer carries assortment X = (X1,X2, ..,XJ),

where Xj ⊂ Sj, for all j. There is an outside alternative (possibly another retailer) that consumers
can choose to do their shopping. The outside alternative carries assortment Z = (Z1, Z2, .., ZJ)
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where Zj ⊂ Sj , for all j. In this paper we take the perspective of the retailer and analyze her
decisions X assuming that Z is exogenous. It is worth noting here that the outside alternative can

be interpreted in three meaningful ways:

I1 the retailer’s direct competitor (e.g., the store across the street),

I2 an aggregate representation of the world outside the retailer,

I3 a no purchase option calibrated such that the retailer’s share in the model given X and Z is

the ratio of its current market share to the maximum potential market share it could achieve

by carrying the broadest and deepest possible assortment, Xj = Sj for all j ∈ J.

We make the following assumptions about the retailer’s operations. The cost of providing

an assortment Xj is Cj(Xj), which is increasing, convex in Xj and can be parameterized with a

scalar cj such that ∂Cj(cj)/∂cj > 0 (Appendix A describes a realistic replenishment system that

yields convex costs in assortment depth.) Let pj > 0 be the per-unit margin for all variants in

category j1. Consistent with the notation for the assortment decisions, a variable name in bold

letter denotes a vector of those variables; c = (c1, ..., cN) and p = (p1, ..., pN).

There are different types of consumers in the market that are characterized by the contents of

their shopping baskets. Let t be the index to the elements of the power set of J, {B : B ⊆ J}.
Bt ⊂ J denotes a shopping basket that contains categories j ∈ Bt. The number of type t

consumers in the market is randomly distributed with mean λt. A consumer of type t purchases

exactly one unit of a product from each category in her shopping list Bt. Consumers have perfect

information about the offerings at the retail store and the outside alternative (i.e., X and Z). A

type t consumer systematically evaluates the attractiveness of the retailer, At(X), and the outside

alternative, At(Z), and chooses the alternative that maximizes her total utility from the shopping

experience. Rhee and Bell (2002) show that consumers patronize many stores but they typically

have a primary affiliation to a “main store” that captures the majority of their spending. The
1The assumption of identical absolute margins of all variants in a category is restrictive. However, it may be

realistic in certain cases. For example, different color/size shirts of the same style have the same price tag. Moreover,

Anderson et al. (1992) and Cattani et al. (2003) prove that when customers follow a MNL choice model, optimal

pricing policy for a group of variants is an identical absolute mark-up policy. This theoretical result fully supports

our assumption.
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choice between the retailer and the outside alternative in our model corresponds to the choice of a

“main store”. Thus, customers in our model do not split their shopping between two stores.

2 Related Literature

Interest in category management (CM) is high. According to a recent industry report, 83% of the

grocery retailers view CM as the most important issue facing them (Progressive Grocer 1996). The

shift from brand-centered management to CM resulted in a more profitable pricing structure by

eliminating the competitive pricing between brands (AC Nielsen 1998, Basuroy et al. 2001, Zenor

1994). Our paper attempts to shift the discussion from brand level to the category level and raises

questions about the interaction among categories.

Chen et al. (1999) also study the impact of basket shopping consumers. They show that

merchandising decisions should not be governed by accounting profits, but rather by a new construct

they develop called marketing profits. Like us, they argue that simple techniques, based on readily

available data, are needed to guide decision making. However, there are some significant differences

between their work and ours. In their model each consumer type bases its store choice decision

on the variety of a single category, what they call the lead category. Hence, expanding variety in

category B has no influence on the store choice decision of category A lead customers. In contrast,

our consumers base their decisions on the total utility of their basket, which may include multiple

categories. As a result, there are minimal strategic interactions among categories in their model,

whereas in our model the strategic interactions are strong and lead to both strategic substitutes

and complements. A second key difference is how they improve decision making. They assume

a store makes optimal shelf space decisions and then infer marketing profit parameters that would

imply those decisions are optimal. They then use those marketing profit estimates to guide other

merchandising decisions, such as advertising allocation. We use point of sales data to estimate

basket profits, without assuming the retailer’s assortment is optimal, and then derive optimal

assortment decisions in a decentralized regime.

There are many different modeling approaches to consumer choice over multiple products. See

Anderson, de Palma and Thisse (1992) for a review. We follow the approach taken by Guadagni

and Little (1983) and others: we presume each consumer receives a random utility from each item

in the choice set and the highest utility item is chosen. As a result, increasing the breadth and

depth of the assortment in our model increases total demand. The findings in Dhar, Hoch and
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Kumar (2001) are generally consistent with that assumption. However, we recognize that our

model does not explicitly account for other possible factors that influence the relationship between

assortment variety and demand: the space devoted to a category and the presence or absence of

a favorite item influence the perception of variety (Kahn and Lehmann 1991, Broniarczyk et al.

1998) as well as a the arrangement, complexity and presence of repeated items in an assortment

(Hoch et al. 1999, Huffman and Kahn 1998, Simonson 1999).

Although research has primarily focused on single category choice decisions, there is recent

research that examines multiple category purchases in a single shopping occasion by modeling the

dependency across multi-category items explicitly (see Russell et al. 1997 for a review). Manchanda

et al. (1999) find that two categories may co-occur in a consumer basket either due to their

complementary nature (e.g., cake mix and frosting) or due to coincidence (e.g., similar purchase

cycles or other unobserved factors). Bell and Lattin (1998) show that consumers make their store

choice based on the total basket utility. Bodapati and Srinivasan (1999) relates feature advertising

to store traffic effects using a nested logit framework. In these papers and in ours, consumers first

assign a utility to an anticipated market basket and subsequently use this utility to determine store

choice.

Fixed costs for each store visit (e.g., search and travel costs) provide an intuitive explanation

for why consumers basket shop. Bell, Ho and Tang (1998) use market basket data to analyze

consumer store choices and explicitly consider the roles of fixed and variable costs of shopping. We

do not explicitly derive optimal baskets - we take them as given.

A number of recent papers study assortment selection and stocking decisions for a group of

substitutable products in a single category (e.g., van Ryzin and Mahajan 1999, Mahajan and

van Ryzin 2001, Smith and Agrawal 2000, Kok and Fisher 2004) and several papers focus only on

stocking decisions (e.g., McGillivray and Silver 1978, Parlar 1988, Netessine and Rudi 2003). Unlike

our paper, they assume store traffic is exogenous. Agrawal and Smith (2003) study assortment

selection and inventory optimization with consumers that purchase sets of complementary items

(e.g., shirt and tie, only shirt, skirt and blouse, etc.). These papers do not consider simple heuristics

nor compare their centralized decision making regime to a decentralized regime.

We use game theory to study competitive interactions in our CM (decentralized) regime. Gruca

and Sudharshan (1991) and Basuroy and Nguyen (1998) study a market share game based on the

Multinomial Logit (MNL) model and demonstrate that certain conditions are needed for equilibrium
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to exist. Although our model of consumers’ product and store choice is based on a nested MNL

model, our retailer’s share equation has the same form as a Multiplicative Competitive Interactions

(MCI) model. Karnani (1985) studies an MCI market share model with several firms that compete

in a single market through several marketing decisions, including price. Existence of equilibria

is not guaranteed in his model, because the profit function of a single firm is not jointly concave

in the marketing variables. Our model is similar to his, however we have several customer types

corresponding to several markets and we do not include price as a choice variable. Finding the

centralized solution in our model with a single customer type corresponds to finding the best

response of a firm in Karnani’s model and we show that this is not straightforward. Monahan

(1987) studies a model in which two firms compete with each other in several markets under an

MCI model with a single marketing variable. Our model also has several markets, but the retailer’s

shares in different markets (customer types) are interdependent and multiple marketing variables

(i.e., variety levels in all categories) play a role in each market. Netessine and Zhang (2004) show

that decentralized retailers selling strategic complements carry less inventory than optimal. We

show that CM provides less variety than optimal in the presence of basket shoppers even though

the interactions among categories in our model are not always strategic complements.

3 Consumer Choice

Our consumer choice model is based on a nested Multinomial Logit (MNL) framework. A consumer

chooses between the retailer and the outside alternative based her expected utility with each option.

Her total utility at the retailer (or the outside alternative) is the sum of her utilities from each

category in her basket.

In merchandise category j, a consumer’s utility from purchasing variant i in category j is uji =

vji + ε where ε are i.i.d. according to a Gumbel distribution with zero mean and variance π2µ2/6,

i.e., F (y) = exp
£−e−(y/µ+γ)¤ , where γ is Euler’s constant (γ ≈ 0.5722). Without loss of generality,

we order the variants in a category in decreasing expected utilities, i.e., vj1 ≥ vj2 ≥ .. ≥ vjIj . Let
U(Xj) be a consumer’s utility from the purchase of one variant in category j with assortment Xj ,

i.e., U(Xj) = max{uji : i ∈ Xj}. Because the Gumbel distribution is closed under maximization,
U(Xj) follows a Gumbel distributed with mean E[U(Xj)] = µ ln

P
i∈Xj

evji/µ and scale parameter µ

(Ben-Akiva and Lerman 1985). The analogous results follow for the outside alternative.

Consider a consumer type with a single category basket, i.e., Bt = {j}. From the MNL formula,
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the probability the consumer chooses the retailer over the outside alternative is

st(Xj) =
exp (E[U(Xj)]/µ)

exp (E[U(Xj)]/µ) + exp (E[U(Zj)]/µ)
=

Aj(Xj)

Aj(Xj) +Aj(Zj)
, Aj(Xj) =

X
i∈Xj

evi/µ. (1)

Now consider a customer with a multi-category basket. Her total basket utility is Lt(X) =P
j∈Bt

U(Xj), the sum of the utilities of the categories in her basket. Lt(X) is not Gumbel because

the Gumbel distribution is not closed under addition. The store choice probability of the consumers

can not be specified in closed form with the true distribution of Lt. To be able to use the MNL

formula, we show in Appendix B that the distribution of Lt can be approximated with a Gumbel

distribution. (In particular, the Kolmogorov-Smirnov statistic, the maximum distance between the

two distributions, is fairly small across different parameter values.) As for empirical support, Bell

and Lattin (1998) use the MNL framework to estimate the basket utilities from consumer basket

data and report their model fits the store choice data well.

Let Gt(X) be a Gumbel random variable whose mean and variance are the same with Lt(X),

i.e.,

E[Gt(X)] =
X
j∈Bt

µ ln
X
i∈Xj

evji/µ = µ ln
Y
j∈Bt

X
i∈Xj

evji/µ

and V (Gt) = |Bt|πµ2/6. Hence the scale parameter of Gt is µ
p|Bt|. Consumer type t chooses the

maximum of Gt(X) and Gt(Z) to decide where to shop, and from the MNL share formula

st(X) =
At(X)

At(X) +At(Z)
(2)

where

At(X) = exp

µ ln Y
j∈Bt

X
i∈Xj

evji/µ

,
µ
p
|Bt|

 =
Y
j∈Bt

Aj(Xj)
1√
|Bt|

Rewrite the share formula:

st(X) =

Q
j∈Bt

Aj(Xj)
1/
√
|Bt|

Q
j∈Bt

Aj(Xj)
1/
√
|Bt| +

Q
j∈Bt

Aj(Zj)
1/
√
|Bt|

(3)

The MNL and the Multiplicative Competitive Interactions (MCI) models are presented as al-

ternative formulations in text books and the choice between them depends on the particular appli-

cation. Our share formula, (3), has the form of a MCI model although our consumer choice model

is a nested MNL model.
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4 Analysis

In this section, we present a game theoretic analysis of category management (CM), which is

our representation of the decentralized regime because each category manager seeks to maximize

her own profit. We also characterize the optimal solution for the retailer (i.e., the centralized

regime). The analysis of the CM game is complex because the best response functions are not

monotone. Nevertheless, we provide equilibrium existence conditions and we characterize the

equilibria. The centralized regime is also not well-behaved, yet we are able to provide some

structure and monotonicity results.

The expected profit in category j is

πj(X) = pj
P

t|j∈Bt
λtst(X)−Cj(Xj)

Proposition 1 The retailer’s optimal assortment in category j is of the type {0, 1, 2, .., xj} where
xj ∈ {1, .., Ij}.

Proof. The proof is by contradiction. Consider two products i and k where i < k. Suppose

k ∈ Xj and i /∈ Xj and let X 0
j = Xj ∪ {i}\{k} Since vi ≥ vk, Aj(X 0

j) > Aj(Xj). We also have

Cj(X
0
j) = Cj(Xj), because |X 0

j| = |Xj |. Hence πj(X1, ..,X0
j , ..XN) ≥ πj(X1, .., Xj , ..XN).

van Ryzin and Mahajan (1999) prove the same result for a single category by explicitly modeling

the inventory costs of each product in a newsvendor framework. As a result, we can think of the

variety decision in each category in terms of the number of variants in the category, xj (as opposed

to a set of variants). The analogous result holds for the outside alternative, zj .

Redefine the attractiveness and share functions with these new decision variables. The variety

levels at the retailer and the outside alternative are x = (x1, x2, .., xJ), and z = (z1, z2, .., zJ) where

xj and zj ∈ {0, 1, .., Ij} for all j. Aj : {0, 1, 2, ..} → < and Aj(xj) =
xjP
i=1
evji/µ. The basket

attractiveness function is then At(x) =
Q
j∈Bt

Aj(xj)1/
√
Bt and the retailer’s share is

st(x) =
At(x)

At(x) +At(z)
(4)

Observe that Aj(xj) is nonnegative, increasing and concave in xj . Similarly At(x) is increasing

and concave in xj for all j and t. Finally, we can rewrite the category profit function.

πj(x) = pj
P

t|j∈Bt
λtst(x)−Cj(xj).
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The assortment decision x is a vector of integers. Hereafter, we work with the continuous

version of the problem: differentiability facilitates the derivation and presentation of the results

and allows comparative statics; and existence cannot be guaranteed under integrality constraints.

4.1 Category management

The common practice of category management (CM) is an example of a decentralized regime for

controlling assortment because each category manager is charged with maximizing profit with his

or her assigned merchandise category. Since basket shoppers’ store choice decision depends on

the variety levels of other categories, category j’s optimal variety level depends on the vector of

variety levels of the other categories denoted x−j (i.e., x−j = (x1, .., xj−1, xj+1, .., xN ). Hence a

game theoretic situation arises where category j employs a best response, defined as follows: the

strategy xj(x−j) is category j’s best response to x−j if

xj(x−j) = argmax
xj

©
πj(xj , x−j), s.t. 0 ≤ xj ≤ Ij

ª
, ∀j (CM)

Category managers do not actually need to know the λt parameters and the definition of the st

functions. We expect them to find the variety level that maximizes the category profits (i.e., the

best response function) given other categories’ variety levels. They would estimate a demand func-

tion, say dj(xj), as a proxy for
P

t|j∈Bt
λtst(x) and then solve a single variable concave optimization

problem to find xj(x−j). Note that dj(xj) depends on the variety levels of other categories.

CM can be interpreted as an explicit non-cooperative game between the category managers,

because each category manager is responsible exclusively for the profits of her own category. Al-

ternatively, it can be interpreted as an iterative application of single category planning where each

category’s variety level optimized assuming all other assortment decisions for the retailer are fixed.

The following theorem establishes the existence of equilibrium and lays the groundwork for further

analysis.

Theorem 2 (Existence) A Nash equilibrium in the CM game exists and any Nash equilibrium is

characterized by the following conditions.

P
t|j∈Bt

pjλt
∂st(x)

∂xj
−C 0j(xj) = 0, j = 1..N. (5)
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Proof. Define πjxj(x) ≡ ∂πj(xj, x−j)/∂xj and πjxjxk(x) ≡ ∂2πj(xj, x−j)/∂xj∂xk :

πjxj (x) =
P

t|j∈Bt
pjλt

∂st(x)

∂xj
−C0j(xj) (6)

πjxjxj (x) =
P

t|j∈Bt
pjλt

∂2st(x)

∂x2j
−C 00j (xj) (7)

As shown in Appendix C, At(x) is concave in xj ; therefore st(x) is concave in xj , for all t. Also

C00j (xj) ≥ 0 by assumption. Consequently, the category profit πj(x) is concave in xj . Existence of
an equilibrium follows from Theorem 1.2. in Fudenberg and Tirole (2000).

Although an equilibrium exists, numerical examples show that there can be multiple equilibria

even in the N = 2 case. Figures 1 and 2 illustrate examples with one and three equilibria

respectively. We also found examples with multiple equilibria for N > 2.

The shape of the reaction functions xj(x−j) helps us to understand the dynamics of the game

from each category’s perspective. From (5) and the Implicit Function Theorem,

∂xj(x−j)
∂xk

= − P
t|{j,k}⊆Bt

pjλt
∂2st(x)

∂xk∂xj

, P
t|j∈Bt

pjλt
∂2st(x)

∂x2j
−C00j (xj)

The denominator is always negative, therefore the sign of ∂xj(x−j)/∂xk depends on the sign

of ∂2st(x)/∂xk∂xj for all t : {j, k} ⊆ Bt. We see from Equation (11) in Appendix C that

∂2st(x)/∂xk∂xj < (>)0 when At(z) > (<)At(x).

Remark 3 i) For each category pair (j, k), <N can be divided into three regions: j and k are

strategic complements in X+
jk, substitutes in X

−
jk, and the relation is indeterminate in <N − (X+

jk ∪
X−jk). ii) Let X

+ =
T

j,k∈J
X+
jk and X

− =
T

j,k∈J
X−jk. Clearly {x ≤ z} ⊆ X+ and {x > z} ⊆ X−.

Proof. i) Define X+
t =

n
x ∈ <N ,Qj∈Bt Aj(xj) <

Q
j∈Bt Aj(zj)

o
. X+

t is the region where the re-

tailer is less attractive to type t consumers than the outside alternative Observe that inX+
t , At(z)−

At(x) > 0. Let X+
jk = {x ∈ X+

t , ∀t|{j, k} ⊆ Bt}. In X+
jk, π

j
xjxk(x) is positive, hence π

j(x) is super-

modular in (xj , xk). Similarly define X
−
t =

n
x ∈ <N ,Qj∈Bt Aj(xj) >

Q
j∈Bt Aj(zj)

o
and X−jk =

{x ∈ X−t , ∀t|{j, k} ⊆ Bt}. In X−jk, πj(x) is submodular in (xj, xk). Notice that <N − (X+
jk ∪X−jk)

is not empty, unless there is only one shopping basket with j and k in it. The sign of πjxjxk(x)

is indeterminate in this region. ii) Note that in vector notation {x ≤ z} = {x|xj ≤ zj for all j}.
{x ≤ z} ⊆ X+

jk,∀j, k. Hence {x ≤ z} ⊆ X+. Similarly, {x > z} = {x|xj > zj for all j} ⊆ X−jk for
all j, k. Hence {x ≥ z} ⊆ X−.

11



In theoretical models with multiple activities, usually one type of interaction (either comple-

ments or substitutes) is assumed to hold everywhere or is found to hold everywhere. In our

model however, the type of interaction between the categories depends on the attractiveness of

all the shopping baskets that contain these two categories, which in turn depends on the variety

levels of categories j, k, and other categories that co-exist in the shopping baskets with j and

k. In the N = 2 case, since there is only one basket type with both j and k in it, we can tell

exactly the sign of ∂xj(x−j)/∂xk in any region in <2. The categories are strategic complements
if Aj(xj)Ak(xk) < Aj(zj)Ak(zk) and substitutes otherwise. As our analysis suggests, the reaction

functions in Figure 1 are increasing-decreasing in the other category’s variety level. However, we

can not partition the action space as clearly in the N > 2 case, because we do not know the slope

of the best response functions in <N − (X+
jk ∪X−jk). Nevertheless, Remark (3) characterizes two

distinct regions: In the first region (X+), all categories are strategic complements, we can say more

about the game and its’ characteristics by using the theory of supermodular games. In the second

region (X−), all categories are strategic substitutes.

Theorem 4 (Restricted game) Redefine the action space of the category management game (CM)

such that each category’s profit maximization problem is

max
xj

©
πj(xj, x−j), s.t. 0 ≤ xj ≤ zj

ª
,∀j (CM_R)

i) This game is supermodular. The equilibrium set is non-empty and has a largest and a smallest

element. The largest element is the Pareto best and the smallest element is the Pareto worst

equilibrium. The largest and the smallest equilibria are increasing in p and λ and decreasing in

z and c. ii) In a symmetric game where data for all categories are identical, there exists only

symmetric equilibria.

Proof. i) The feasible action space {0 ≤ x ≤ z} is a non-empty, convex and compact set. The

payoff function πj(x) is supermodular in all pairs of variables in {x ≤ z} ⊆ X+ from Remark (3).

Supermodularity of πj in (xj, xk) for all j, k implies that πj(xj , x−j) has increasing differences in

{0 ≤ x ≤ z}. Therefore (CM_R) is a supermodular game. The payoff function πj is continuous

in xj for each x−j in {0 ≤ x ≤ z}. Then by Theorem 4.2.1. of Topkis (1998), the set of equilibrium
points is a non-empty complete lattice and a greatest and a least equilibrium point exist. Since

the payoff to a player is increasing in other players’ strategies, i.e.,
∂πj(x)

∂xk
≥ 0 for all k 6= j, the

largest element is the Pareto best and the smallest element is the Pareto worst equilibrium. This

12



result follows from a simple step-wise improvement argument, see Section 2.2.3. of Vives (1999).

We parameterize the game (CM_R) by (p,λ,−z,−c). It is easy to show that πj is continuous
in x−j for every (p,λ,−z,−c) and it has increasing differences in xj and p,λ,−z, and −c. By
Theorem 4.2.2. of Topkis (1998) we obtain the monotonicity results.

ii) The proof is by contradiction. Let x be an asymmetric equilibrium with xj > xk for some

j and k. By definition of equilibrium x satisfies (5) for all categories including j and k :

P
t|j∈Bt

pjλt
∂st(x)

∂xj
−C0j(xj) = 0 and

P
t|j∈Bt

pkλt
∂st(x)

∂xk
−C0k(xk) = 0.

Now,
∂st(x)

∂xj
=

∂st(xj, x−j)
∂xj

<
∂st(xk, x−j)

∂xk
<

∂st(xk, x−k)
∂xk

=
∂st(x)

∂xj

The first inequality follows from the concavity of st in xj and xj > xk. The second inequality follows

from the supermodularity of st() and x−j < x−k. Also we have pj = pk and C0j(xj) ≥ C0k(xk).
Hence the LHS of the equation for j is always strictly smaller than the one for k. As a result, both

conditions can not be satisfied at the same time and x can not be an equilibrium.

The action space defined in Theorem 4 is quite realistic under interpretation (I2) of the outside

alternative, because x < z implies that the retailer’s market share is less than half of the whole

market. Even in the original game with the unrestricted strategy space, if the cost of providing

variety is too high and all the equilibria are in X+, the results of Theorem 4 apply.

In a symmetric game, the categories have the same price, cost, competition, and demand vec-

tors. Second part of the above Theorem rules out the asymmetric equilibria in a symmetric game

(CM_R). The same result can also be established for the submodular region of the game (see part

3 of Proposition 11 in Appendix D), but we are only able to rule out asymmetric equilibria for the

whole game in the case of two symmetric categories.

Theorem 5 In the game CM with N = 2 and two categories are symmetric, there exists only

symmetric equilibria.

Proof. i) By the second part of Theorem (4) and part (iii) of Proposition (11), the only region

that can have asymmetric equilibria is <2 − {x ≤ z}−X−. This region is a subset of X+ and it

is composed of two distinct parts on each side of the diagonal, denoted F1 and F2 (see Figure 3 for

illustration of these regions. Reaction functions are symmetric. If x1(x2) passes through one of

13



F1 or F2, x2(x1) passes through the other and vice versa. Hence there cannot be an intersection

in either F1 or F2.

4.2 Optimal solution

In the centralized system, total store profits are optimized over all category variety levels.

max
x

(
Π(x) =

NP
j=1

πj(x), s.t. 0 ≤ xj ≤ Ij, ∀j
)

(OPT)

Differentiate Π(x) with respect to xj.

∂Π(x)

∂xj
=
X
t|j∈Bt

pjλt
∂st(x)

∂xj
−C0j(xj) +

NX
k=1
k 6=j

X
t|j,k∈Bt

pkλt
∂st(x)

∂xj
(8)

The marginal effect of xj on the total profit is composed of its impact on own and cross category

sales. After reorganizing terms, the first order conditions for optimality are

X
t|j∈Bt

X
k∈Bt

pk

λt
∂st(x)

∂xj
−C0j(xj) = 0, ∀j (9)

The first order optimality conditions are based on the total profit earned from each customer

type, whereas the CM solution is based on the category profits. Since st(x) is concave in xj ,

∂2Π(x)/∂x2j < 0, for all j and t, and the first order condition (9) characterize the unique optimal

variety level xj for fixed x−j. However, we are not able to show that the joint optimization problem

is unimodular, therefore the system of equations ∂Π(x)/∂xj = 0 for j = 1, .., N is not sufficient

for optimality. It is easy to find numerical examples where Π(x) is not jointly concave, even with

N = 2.

We start the characterization of the optimal solution by describing two special cases of problems.

Note that Case A problems include all two category problems including the Case B problems.

Case A N categories. Basket types have the following property: |{Bt : j, k, l ∈ Bt}| ≤ 1 for all j, k, l
such that j 6= k, j 6= l, and k 6= l.

Case B N = 2. Symmetric categories. All customers are basket shoppers (i.e., λt > 0 only for

Bt = {1, 2}). The products in a category are equally popular (i.e., Aj(x) is linear). Cost of
variety is linear (i.e., C00j (x) = 0).
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Theorem 6 Consider the special case A. i) If a symmetric solution to the first order conditions

of OPT (9) satisfies At(x) > 2τ−1
2τ+1At(z) where τ = 1/

p|Bt| for any t, it is a local optimal solution
and can not be part of a continuum of local optima. ii) There exist at most one symmetric solution

to (9) in X−.

Proof. i) A sufficient condition for a stationary point to be a local maximum is that the Jacobian

of Πjxj = 0, j = 1..N is diagonally dominant, because a symmetric diagonally dominant matrix

with negative diagonal entries is negative definite (Corollary 7.2.3 of Horn and Johnson, 1985).

We need Πjxjxj (x) +
P
k 6=j |Πjxjxk(x)| < 0 and x ∈ X. Replace pj in the proof of Proposition

11 with
P
l∈Bt pl and show that diagonal dominance is achieved if At(x) >

2τ−1
2τ+1At(z) is satisfied.

Hence, in this interval Π(x) is jointly concave at the symmetric stationary points. ii) Following the

same line of analysis we did for the game (CM), we can show that ∂Π(x)
∂xk∂xj

< 0 in X−. Therefore,

the solution to the first order condition for category j for fixed x−j is decreasing in x−j in X−.

Decreasing reaction functions can intersect at the diagonal at most once.

Theorem 7 Consider the special case B. Focus only on the symmetric solutions x = (x, x). The

profit function is convex-concave in x, therefore either (0, 0) or the largest stationary point with

positive profit is the global optimal solution.

Proof. Total profit function is Π(x, x) = (p1 + p2)x2τ/(x2τ + z2τ )− C1(x)− C2(x). The second

derivative is given by

(p1 + p2)2τx
2τ−2z2τ

(x2τ + z2τ )3
¡
x2τ (−1− τ) + zτ (τ − 1)¢

whose sign is positive at x = 0, decreases with x, and is negative for large values of x. Hence the

profit function is convex-concave in x. The function is decreasing for large x, therefore there is a

local maximum in the concave part of the function, which is the global optimum if it yields positive

profit.

Similar to the decentralized solution, the theory of supermodularity enables us to characterize

the properties of the optimal solution and provide comparative statics for the restricted problem.

Theorem 8 (Restricted problem) Redefine the action space of the optimization problem (OPT) as

max
x

(
Π(x) =

NP
j=1

πj(x), s.t. 0 ≤ xj ≤ zj, ∀j
)

(OPT_R)
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i) The set of solutions to the first order conditions (9) of OPT_R has a smallest and a largest

element that are monotone increasing in p and λ and decreasing in z and c. ii) The set of optimal

points argmax{Π(x), s.t., 0 ≤ xj ≤ zj ,∀j} is non-empty, has a smallest and a largest element that
are monotone increasing in p and λ and decreasing in z and c.

Proof. i) The existence of a largest and a smallest equilibrium and the monotonicity of the set in

the parameters follow from applying the theory of supermodular games to the first order optimality

conditions, similar to the proof of Theorem 4. However, a stationary point may not be a local

maximum. ii) The result on the set of optimal points follow from the optimization of a supermodular

function (Theorem 2.8.3 in Topkis, 1999).

4.3 Comparison of the centralized and decentralized solutions

Let Xcm be the set of Nash equilibria in the CM game. Similarly Xo is the set of stationary points

of the optimal profit function, OPT. We assume the optimal solution is interior. The following

theorems show that CM never finds the optimal solution as long as there are basket shoppers.

Theorem 9 Suppose that there exists at least one consumer type with more than one category in

their basket and positive demand rate, i.e., |Bt| > 1 and λt > 0. i) The set of Nash equilibria

Xcm in the category management game, CM, does not contain the global optimal solution to OPT.

Xcm does not contain any of the local optimal solutions either. ii) If data is symmetric across all

categories, then there is a symmetric stationary point in Xo greater than any symmetric equilibrium

in Xcm (and it is a local optimum if it satisfies At(x) > 2τ−1
2τ+1At(z)). iii) Consider the special case

B. The optimal solution is greater than the largest symmetric equilibrium.

Proof. Compare the first order conditions to the optimization problem (OPT ) given by (9) and

the game (CM) given by (6):

Πxj (x)− πjxj(x) =
NX

k=1,k 6=j

X
t|j,k∈Bt

pkλt
∂st(x)

∂xj
> 0

if there is one basket type with more than one category and positive demand rate. Therefore, no

point x can satisfy both set of conditions, i.e., Xcm ∩Xo = ∅. ii) For fixed vector of variety levels
of other categories, x−j,the solution to the first order conditions for category j (xoj(x−j)) is always

larger than the best response of category j in the game (xcmj (x−j)). In the symmetric game, let the
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largest symmetric equilibrium have variety level xcm for all categories. It is sufficient to consider

an arbitrary category. We have xoj(x
cm
−j ) > x

cm
j (x

cm
−j ) = x

cm. We also know that xoj(x
cm
−j ) does not

go to infinity since it is decreasing in X−. Therefore, xoj(xcm−j ) will cross the 45 degree line at least

once more and the intersection is a stationary point of (OPT ), i.e., ∃x1 : xoj(x1−j) = x1 > xcm.

iii) Follows from part (ii) and that the largest stationary point is the optimal solution in case B

according to Theorem 7.

Theorem 10 (Restricted Problem) Suppose that there exists at least one consumer type with more

than one category in their basket and positive demand rate, i.e., |Bt| > 1 and λt > 0. The global

optimal solution of the optimization problem OPT_R, xo, has strictly higher variety in at least one

category than any of the Nash equilibria of the game CM_R, including the Pareto best equilibrium,

i.e., ∃j, xoj > xcmj , ∀xcm ∈ Xcm.

Proof. Let xo be the optimal solution to (OPT_R) and xcm be any equilibrium of the game

(CM_R). By contradiction, suppose that xo < xcm.

Π(xo) =
X
j

πj(xoj , x
o
−j) <

X
j

πj(xoj , x
cm
−j ) <

X
j

πj(xcmj , x
cm
−j ) = Π(x

cm)

This is a contradiction with the optimality of xo. The first inequality follows from ∂πj(x)/∂xk ≥ 0
for all k 6= j and x, and the second inequality follows from the definition of the equilibrium, i.e.,

xcmj = argmaxxj π
j(xj, xcm−j ).

Note that CM and OPT would yield the same solution if all customers were single category

shoppers. Also, due to the supermodularity of the profit functions in the restricted strategy space,

discrete versions of Theorems 4, 8 and 10 are easily established with the following slight modification

in Theorem 10: the optimal solution provides greater than or equal to (not strictly greater than)

variety than the equilibrium solution in at least one category.

Figures 2 and 4 present pathological examples demonstrating some potential outcomes. Figure 2

shows that even the best of three CM equilibria provides significantly less variety than the optimal

solution. In Figure 4 the unique CM equilibrium has the retailer eliminating both categories

although the optimal solution has positive variety in both categories.
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5 Properties of the Optimal and Equilibrium Assortments

In this section, we investigate the effect of perturbations on the optimal and equilibrium solutions

and make inferences about how to allocate resources to categories. We assume the optimal solution,

xc, and the equilibria xd are an interior, so they are responsive to small parameter changes. We

classify categories into two types: A basket category has a high co-occurrence rate in baskets with

other categories; an independent category has most of its demand from single category shoppers.

5.1 Best collection of categories

Consider the scenario with N symmetric categories but focus on two categories j and k. Let

subscripts j and k denote the individual category shoppers of the respective categories. Also jk

denotes the consumers with shopping basket {j, k}. Given a variety level, the retailer’s share of

customers with individual categories is larger than its share of basket shoppers if and only if the

retailer provides less variety than the outside alternative: sj > sjk and sk > sjk if and only if xo < z.

Hence, the retailer prefers to have a higher proportion of basket shoppers among its customers of

categories j and k when xo > z (when its market share is greater than 50% of its potential). This

occurs because it is easier for a larger retailer to attract basket shoppers than a small retailer

(basket shoppers choose based on multiple categories rather than one). The result implies that a

retailer is better off with a collection of independent categories if xo < z and better off with basket

categories if xo > z. The situation a retailer is in probably depends on how the outside alternative

is interpreted. With interpretation I2, the outside alternative is the aggregate representation of

all the other firms, so the retailer probably has less than 50% of the whole market and is better

off with a collection of independent categories. With interpretation I3, the retailer probably has

more than 50% of its market potential, so the retailer prefers to carry basket categories. I3 is the

better interpretation if a retailer’s demand would increase by less than 100% if it were to carry a

full assortment in every category.

5.2 Which categories should have more variety?

Consider two categories with same total demand but one category is more of a basket category

than the other. In which category should the retailer provide more variety? Let subscripts j,k,

and l denote the individual category shoppers of the respective categories. Also jk and jl denote

the consumers with shopping baskets {j, k} and {j, l}, respectively. Suppose the demand rate of
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all baskets with variant k are identical to those with l. The only exception is the rate of individual

category shoppers (λk and λl) and basket shoppers of j and k or j and l (λjk and λkl). Let

λk = Λ+ δ, λjl = Λ− δ, λl = Λ− δ, λjl = Λ+ δ where Λ ≥ δ ≥ 0. If δ = 0, categories k and l are
identical, as δ increases, demand to each category remains constant, l becomes more of a basket

category.

By the implicit function theorem, ∂xck/∂δ has the same sign as

∂2Π(x)

∂δ∂xj

¯̄̄̄
xo
= pks

0
k(x

o
k)− (pj + pk)

∂sjk(x
o
j , x

o
k)

∂xk

Similarly, xcl increase with δ if

pls
0
l(x

c
l ) < (pj + pl)

∂sjl(x
o
j , x

o
l )

∂xl

If categories k and l are symmetric, then as δ increases from zero, xok and x
o
l move in reverse

directions. In §4.1, we showed that ∂2sjl(xj , xl)/∂xj∂xl > 0 if Aj(xj)Al(xl) < Aj(zj)Al(zl) and

> 0 otherwise. Hence ∂sjl(xj , xl)/∂xl is an increasing-decreasing function of xj. There may be

an interval of xoj say, (x
o
j ,x

o
j), where the inequality is satisfied and ∂xol /∂δ > 0, i.e. the optimal

variety level of the basket category is higher than the optimal variety of the independent category.

For xoj < xoj and x
o
j > xoj , the reverse is true. The intuition for this result is as following. If

xj is too low, it is not possible to attract many basket shoppers by increasing the variety of the

basket category only, so it is better to increase variety in the independent category. If xj is in

that interval, the basket category should be assigned more variety. As xj gets too large, there is

no need to increase variety in the basket category l because j’s variety level is already attracting

many basket customers to category l. To illustrate this result, we generated a series of numerical

examples by varying cj to control xcj .

Similar analysis yields that the equilibrium variety levels display the same properties. xcm in-

creases with δ when xcmj ∈ (xcmj ,xcmj ) which is defined by the region pls0l(xcml ) < pl∂sjl(xcmj , xcml )/∂xl.
With symmetric categories pl < pj + pk, hence (xcmj ,x

cm
j ) ⊂ (xcmj ,xcmj ), i.e., there may be cases

where the optimal solution assigns more variety to the basket category and the category manage-

ment solution does the reverse.

6 Category management with basket profits

The CM equilibrium solution emerges as the outcome of a natural iterative process: category

managers set variety levels, store traffic and sales are realized, category managers reassess the
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demand function for their category and choose new assortments, etc. The same process occurs if

the retailer does category by category optimization. Either way, the process converges to one of

the CM equilibria. Despite its simplicity, we show in the next section that CM can significantly

deviate from the optimal solution. However, it is not easy to implement the centralized optimal

solution: that solution involves estimating the number of customers for all 2N basket types and an

N−dimensional optimization of an ill-behaved function.

In this section we introduce a decentralized heuristic that promises the best of both worlds (i.e.,

the simplicity of CM and a profit level close to that of the optimal solution). The main weakness

of CM is that it fails to recognize the intercategory effects of variety decisions and underestimates

the marginal benefit of variety. As we have seen, the marginal benefit of variety is quite complex.

Consider basket shoppers that purchases from two categories, A and B. Increasing variety in

A increases demand from these shoppers in both category A and B. But more variety in A

may also warrant a change in the variety of B, depending on the current variety levels: variety

should be added to B if they are acting as complements and less if they are substitutes. From

the perspective of the manager of category A, an additional sale is only worth pA, but from the

retailer’s perspective it is worth more. We approximate the true marginal benefit to the retailer

with the weighted average of the gross margins across basket types. We call this new metric basket

profits because it measures the total profit earned from a customer. Specifically, let p̂j be the

basket profit from category j :

p̂j =
X
t|j∈Bt

λtX
l∈Bt

pl

, X
t|j∈Bt

λt

The manager for category j is then measured with the following profit function:

π̂j(x) = p̂j
P

t|j∈Bt
λtst(x)−Cj(xj).

Each CM then chooses variety

xBj (x−j) = argmax
xj

©
π̂j(xj, x−j), s.t. 0 ≤ xj ≤ Ij

ª
, ∀j. (CM_B)

Note that all our results on the CM equilibria apply directly to the CM_B heuristic. If we

compare the derivative of the CM’s profit function to the optimality conditions (9), we see that

CM_B uses a weighted average p̂j for all consumer types instead of using
P
k∈Bt pk for consumer

type t. This approximation should work well if ∂st(x)/∂xj for all t are close to each other, however,
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even in symmetric category examples, ∂st(x)/∂xj varies with the basket size. From a practical

perspective, note that the basket profit for each category is easily computed from POS data: it is

the average gross margin earned from customers who purchased a basket including that category.

7 Numerical Results

This section reports on numerical study that focuses on the magnitude of the profit loss due to CM

relative to the optimal solution and the performance of CM with basket profits.

Group 1: We generated 72 symmetric scenarios from all combinations of the following parame-

ters:
p = 1

Aj(x) = x

zj = {5, 10}
N = {2, 3, 5}

Cj(x) = cjx

cj = {2, 4}
Demand in each category is 100 units and demand is divided across baskets according to the basket

ratio vectors given in Table 1. For example, the vector {.2, .6, .2} for N = 3 means that 20% of

the demand goes to baskets of size one, 60% goes to baskets of size two, and 20% to baskets of size

three. For category 1, there are two baskets of size two, {1,2} and {1,3} and 60 units of demand

is equally divided among them. Hence, λ1 = 20,λ2 = 20,λ3 = 20,λ12 = 30,λ13 = 30,λ23 = 30,

and λ123 = 20.

The unique CM equilibrium has no variety in 12 out of the 72 scenarios, resulting in a 100%

profit loss relative to the optimal solution. In 21 scenarios there are multiple CM equilibria, one of

which was the zero equilibrium. In those cases we assumed the better equilibrium prevails. Table

2 presents summary data on the performance of CM: the average profit loss due to decentralization

is 28% and on average variety is 44% less than optimal. The performance of CM deteriorates with

more categories (N), higher outside variety (z), higher variety costs (c) and a higher proportion of

basket shoppers.

Group 2: To explore asymmetric categories, we focus on the N = 2 cases of Group 1. A total of

48 examples are generated from all combinations of zj ∈{5,10} and cj ∈{2,4} for the two categories,
i.e., 16 examples for each of the three basket types. The average CM loss is 8% in the asymmetric

examples in comparison to the 13% loss for the two symmetric category examples in Group 1.

Table 3 presents results for CM with basket profits (CM_B) in comparison to traditional CM

and the optimal solution for the examples with N = 2 from both Groups 1 and 2 and with N = 3

from Group 1. Like CM, CM_B may lead to multiple equilibria. We first consider the best
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equilibrium of CM_B. The maximum loss with basket profits is only 2.1% and the average loss

is only 0.2%. Variety with basket profits is on average 4.6% higher than optimal. Furthermore,

CM_B works equally well for asymmetric and symmetric scenarios. One drawback of the basket

profits heuristic is that it could converge to a bad equilibrium in case of multiple equilibria. Table

3 shows that even the worst equilibrium of CM_B performs better than the best equilibrium of

CM (i.e., average profit loss for worst of CM_B is 8.5% whereas it is 13.2% for best of CM). The

reason for inferior performance is that all categories have zero variety in the worst equilibria in

our experiments (CM_B usually has a unique equilibrium in asymmetric examples, and as a result

performs well). Starting with a high variety level when a category is first introduced ensures that

CM_B (or CM) converges to the best equilibrium.

8 Conclusion

We study a retailer’s assortment planning problem with multiple categories and basket shopping

consumers that choose between the retailer and an outside alternative. We investigate the retailer’s

assortment decisions across categories under centralized and decentralized management regimes.

We find that variety levels between categories can be either strategic complements or strategic

substitutes. Nevertheless, we also find that decentralized assortment planning, as with category

managers responsible for their own category’s profit, is likely to lead to lower than optimal variety

and significantly lower profits than optimal. But a centralized optimal solution is almost surely not

implementable in practice due to the complexity of the required data estimation and optimization.

Therefore, we propose a decentralized regime, like category management, but instead of evaluating

each category manager’s accounting profit, we measure their basket profits, where basket profits are

estimated using point of sales data. We find that our basket profit approach provides nearly the

optimal variety and optimal profit. Hence, although the presence of basket shopping consumers is

known to create significant analytical complications for the assortment planning problem, a robust

and simple analytical solution exists.

A Example of a replenishment system with convex operating cost

Consider a single category with x products and demand λ(x) = A(x) (A(x) +A(z))−1 where

A0(x) > 0 and A00(x) ≤ 0. Item i’s demand rate is λi(x), where
P
i λi(x) = λ(x). Total shelf

space capacity is S and assume each item’s maximum inventory level is proportional to its demand
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rate, Si = Sλi(x)/λ(x). There are commercial algorithms that allocate shelf space in this way (see

Bultez and Naert 1988 for references). In a continuous review inventory system with zero lead time

an order is placed whenever the inventory level is zero and the average inventory level for a single

product is Si/2. Total average inventory is S/2, hence inventory holding cost is independent of x.

The number of orders per unit time for item i is λi(x)/Si(x) = λ(x)/S, i.e., the order frequency is

identical across all items. The total number of orders in the category is xλ(x)/S, whose second

derivative is

2λ0(x) + xλ00(x)
S

=
A(z)

(A(x) +A(z))3
(2A0(x)((A(x) +A(z)− xA0(x) +A00(x)(A(x) +A(z)))

≥ A(z)

(A(x) +A(z))3
(2A0(x)A(z) +A00(x)(A(x) +A(z)))

The inequality is due to the concavity of A(x). A00(x) ≤ 0 and A(0) = 0 implies A(x) ≥ xA0(x).
If the x products have similar demand rates, A(x) is linear. A00(x) = 0 and the cost function is

convex in x. With strictly concave A(x), the cost function is still convex if A(x) is not too concave.

For example, if A(x) = lnx, the sign of the second derivative is determined by A(z)(−1+2x)− lnx,
which is strictly positive for z ≥ e and x > 1.

B Sum of two Gumbel distributed random variables

The sum of two Gumbel distributions does not have a closed form distribution function. We

approximated the sum of Gumbel distributed random variables with a Gumbel distribution. Here

we discuss the quality of this approximation. One measure of similarity of two probability distrib-

utions is the Kolmogorov-Smirnov (K-S) distance, which is the supremum of the distance between

the cumulative density functions. Consider the case with three Gumbel random variables, X,Y and

Z with parameters (ηX , µX), (ηY , µY ), and (ηZ , µZ). The mean of X+Y is ηX+ηY +γ(µX+µY )

and its variance is π2µ2/6. We set the parameters of Z to have the same mean and variance with

X + Y as follows.

µZ =
q
µ2X + µ

2
Y and ηZ = ηX + ηY + γ(µX + µY − µZ)

K-S distance is

sup
u
|FX+Y (u)− FZ(u)| ≈ max

p∈{0.01,..,0.99}
¯̄
FX+Y (F

−1
Z (p))− p¯̄

We computed FX+Y using numerical integration and searched for the maximum over percentiles

for the combination of the following parameters: ηX = {10, 40}, ηY = {10, 40}, µX = {5, 20},
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µY = {5, 20}. The K-S distance never exceeded 0.019 in these examples, which we believe is fairly
small. It is also of interest to note that the K-S distance seems to be effected by only the ratio of

µX/µY but none of the other parameters, reaching the maximum at µX/µY = 1. Figure 5 provides

an example of the cumulative density functions of X + Y and Z.

Finally, from the perspective of our model, we are interested more in how the resulting choice

probabilities are affected with the approximation. Consider that X,Y,A,B are all Gumbel dis-

tributions, X + Y and A+ B are approximated by Gumbels Z and C respectively. We compare

Pr{X + Y < A + B} and Pr{Z < C}. Notice that the latter one can be computed using the

MNL formula. For the combination of the set of parameters above, the maximum difference in

probabilities is 0.010, which is also fairly small and in the same order of magnitude with the K-S

distance. Table 4 presents a set of resulting choice probabilities with both the true distributions

and the Gumbel approximations.

C Derivatives

Let τ = 1/
√
Bt, Φ = At(x)+At(z) and ∆ = At(z)−At(x). The first and second derivatives of the

attractiveness function are

∂At(x)

∂xj
= I{j∈Bt}τAt(x)Aj(xj)

−1A0j(xj)

∂2At(x)

∂x2j
= I{j∈Bt}τAt(x)Aj(xj)

−1 ¡Aj(xj)−1A0j(xj)2 (τ − 1) +A00j (xj)¢
∂2At(x)

∂xj∂xk
= I{j,k∈Bt}τ

2At(x)Aj(xj)
−1Ak(xk)−1A0j(xj)A

0
k(xk)

The first and second derivatives of the share function are derived below.

∂st(x)

∂xj
= I{j∈Bt}

At(z)

(At(x) +At(z))2
∂At(x)

∂xj
= I{j∈Bt}

At(z)

Φ2
τAt(x)Aj(xj)

−1A0j(xj)
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∂2st(x)

∂x2j
=

At(z)

(At(x) +At(z))3

Ã
−2
µ
∂At(x)

∂xj

¶2
+ (At(x) +At(z))

∂2At(x)

∂x2j

!

= I{j∈Bt}
At(z)

Φ3

 −2
³
At(x)Aj(xj)

−1A0j(xj)τ
´2

+ΦτAt(x)Aj(xj)
−1
³
Aj(xj)

−1A0j(xj)
2 (τ − 1) +A00j (xj)

´


= I{j∈Bt}
At(z)At(x)Aj(xj)

−1

Φ3
¡−2At(x)Aj(xj)−1A0j(xj)2τ +Φ ¡¡Aj(xj)−1A0j(xj)2 (τ − 1) +A00j (xj)¢¢¢

= I{j∈Bt}
At(z)At(x)Aj(xj)

−1τ
Φ3

¡
Aj(xj)

−1A0j(xj)
2 (−2τAt(x) + (−1 + τ)Φ) +ΦA00j (xj)

¢
=−I{j∈Bt}

At(z)At(x)Aj(xj)
−1τ

(At(x) +At(z))3
¡
Aj(xj)

−1A0j(xj)
2(Φ− τ∆)−ΦA00j (xj)

¢
(10)

≤ 0.

∂2st(x)

∂xk∂xj
=

At(z)

(At(x) +At(z))3

µ
−2∂At(x)

∂xk

∂At(x)

∂xj
+ (At(x) +At(z))

∂2At(x)

∂xk∂xj

¶
= I{j,k∈Bt}

At(z)

Φ3
τ2At(x)Aj(xj)

−1Ak(xk)−1A0j(xj)A
0
k(xk)(At(z)−At(x)) (11)

D Statement and proof of intermediate step

Proposition 11 Consider the special case A. i) If CM symmetric equilibrium x satisfies At(x) >
(2τ−1)
(2τ+1)At(z), for all t where τ = 1

.p|Bt| , then x can not be part of a continuum of equilibria. ii)

The game CM has at most one symmetric equilibrium in X−. iii) If categories are symmetric and

there exists an equilibrium in X−, then it is the unique equilibrium in X− and it is symmetric.

Proof. i) As we mentioned before, the game (CM) has multiple equilibria, but we use the unique-

ness conditions as an argument in our proof. Showing that a best reply map (xj(x−j))j=1,..,N is a

contraction mapping is sufficient for a game to have a unique equilibrium. A sufficient condition

for a mapping to be a contraction is that the Jacobian of πjxj = 0, j = 1..N is diagonally dominant

(Section 2.5., Vives 1999), i.e.,

πjxjxj (x) +
X
k 6=j

|πjxjxk(x)|< 0

P
t|j∈Bt

pjλt
∂2st(x)

∂x2j
−C 00j (xj) +

X
k 6=j

X
t|{j,k}⊆Bt

pjλt

¯̄̄̄
∂2st(x)

∂xk∂xj

¯̄̄̄
< 0

In the special case A, ∩k 6=j{t|j, k ∈ Bt} = ∅, and ∪k 6=j{t|j, k ∈ Bt} ⊆ {t|j ∈ Bt}. So there is
no baskets counted twice in the double summation. Hence, a sufficient condition for diagonal
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dominance is to show that
¯̄̄
∂2st(x)
∂xk∂xj

¯̄̄
< −∂2st(x)

∂x2j
for all t, j, and k. From (10) and (11), we see

that sufficient condition
¯̄̄
∂2st(x)
∂xk∂xj

¯̄̄
< −∂2st(x)

∂x2j
,∀t may not hold in general. However, it holds when

Aj(xj) = Ak(xk), A0j(xj) = A0k(xk), and (Φ− τ∆) > τ |∆|. In X+, the last condition is equivalent

to At(x) >
(2τ−1)
(2τ+1)At(z) (the coefficient (2τ−1)

(2τ+1) is approximately 0.17. Therefore the proposition

applies to a large part of the strategy space. InX−, |∆| = −∆, (Φ−τ∆) > −τ∆ is satisfied. Notice
that the sufficiency condition for diagonal dominance is achieved without using the nonnegative

terms −ΦA00j (xj) and ∂2st(x)
∂x2j

for t : j ∈ Bt, k /∈ Bt in the argument. Due to the slacks not used

in proving the sufficiency condition and the continuity of all the terms, we can argue (or formally

prove) that diagonal dominance of the Jacobian is satisfied not only at the diagonal but also in an

ε neighborhood of the diagonal when ε is chosen sufficiently small.

Using this result, we define new games on smaller compact N-cubes around the diagonal of

<N . Since the best response map is a contraction there is a unique equilibrium in that cube. The

implication of this result on the original game CM is that there cannot be a continuum of equilibria

or equilibria too close to each other around the diagonal.

ii) Since all the best response functions xj(x−j) are decreasing in all components of x−j in

X−, if there is a symmetric equilibrium in X−, there can not be a larger symmetric equilibrium.

Therefore, there can be at most one symmetric equilibrium in the submodular region of CM.

iii) When categories are symmetric, since the reaction functions are decreasing, the only pos-

sibility to have multiple equilibria in X− is when there is a continuum of equilibria around the

symmetric equilibrium, (e.g., reaction functions with a slope of -1). But this is ruled out by part

(i).
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Figure 1. A two category example with unique category management equilibrium. 
N=2, symmetric categories, pj=1, Aj(x)=x, Cj(x)=cjx, cj=2, zj=5 for all j. 
λ1=50, λ2=50, λ12=50. 
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Figure 2. A two category example depicting the three category management 
equilibria and the optimal solution. N=2, symmetric categories, pj=1, 
Aj(x)=x, Cj(x)=cjx, cj=2.8, zj=5 for all j. λ1=0, λ2=0, λ12=100. 
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Figure 3. A two category example illustrating the regions relevant to the proof of 
Proposition 5. N=2, symmetric categories, pj=1, Aj(x)=x, Cj(x)=cjx, cj=3, 
zj=10 for all j. λ1=100, λ2=100, λ12=100. 
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Figure 4. A two category example depicting the unique category management 
equilibrium at zero and the optimal solution. N=2, symmetric categories, 
pj=1, Aj(x)=x, Cj(x)=cjx, cj=4, zj=10 for all j. λ1=0, λ2=0, λ12=100. 
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Figure 5.  Cumulative density functions of the sum of two Gumbel random variables 
and its Gumbel approximation. ηx=ηy=20, µx=µy=10. 

 

 

 

 

Table 1. Allocation of basket shoppers in numerical experiments.  First entry in a 
vector is the percentage of shoppers with a basket of size one, the second 
entry is the shoppers with a basket size of two, and so on.  

Proportion of basket shoppers N = 2 N = 3 N = 5

(.8, .2, 0, 0, 0)

(.5, .5, 0, 0, 0)

(.6, .2, .2, 0, 0)

(.2, .6, .2, 0, 0)

(.2, .2, .6, 0, 0)

(.2, .2, .2, .2,.2)

(.2, 0, .6, 0, .2)

(.2, 0, .2, 0, .6)

(0, 0, .2, .2, .6)

(.8, .2, 0)        
(.5, .5, 0)

(.2, .8, 0)        
(.6, .2, .2)

(.2, .2, .6)       
(0, .2, .8)

low

medium

high

(.8, .2)

(.5, .5)

(.2, .8)

 

 



 

Table 2.  Summary of numerical results. 

Profit loss,        
1 - Πcm/Πo 

Decrease in variety 
level, 1 - xcm/xo 

2 13% 31%
3 23% 41%
5 35% 51%

low 14% 34%
high 41% 55%
low 14% 34%
high 41% 55%

Proportion low 4% 20%
of basket medium 27% 47%
shoppers high 51% 66%

z

N

c

 

 

 

Table 3.  Performance of the category management (CM) and the basket profits 
heuristic (CM_B) in comparison to the optimal solution. (B and W denotes 
the best and worst equilibria of CM_B, respectively). 

N Data 1 - Πcm/Πo 1 - ΠB/Πo 1 - ΠW/Πo 1 - xcm/xo 1 - xB/xo 1 - xW/xo

Symmetric 13.4% 0.2% 8.5% 30.6% -4.7% 4.0%
Asymmetric 6.8% 0.1% 0.1% 26.5% -3.9% -3.7%

3 Symmetric 22.8% 0.3% 21.1% 40.8% -5.7% 15.5%
13.2% 0.2% 8.5% 31.8% -4.5% 4.0%

2

Average profit loss Average deviation in variety levels

Average  

 

 

Table 4.  Resulting choice probabilities using the true distribution of the sum of two 
Gumbel random variables and its multinomial logit approximation.  

(X,Y) (A,B) TRUE MNL 
(5,5) (10,10) 0.401 0.395
(5,10) (10,10) 0.458 0.456
(10,10) (10,10) 0.500 0.500
(5,20) (10,10) 0.542 0.544
(20,20) (10,10) 0.661 0.669

Mean Pr{X+Y>A+B}
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