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Abstract
The U.S. Census Bureau provides an estimate of the true population as a supplement to the basic census
numbers. This estimate is constructed from data in a post-censal survey. The overall procedure is referred to as
dual system estimation. Dual system estimation is designed to produce revised estimates at all levels of
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We design three alternative formulas for dual system estimation and investigate the differences in area
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consequences when used for the enumeration data that occurs in an actual large scale application like the
Census. (Assumptions of this nature are sometimes collectively referred to as the “synthetic assumption” for
dual system estimation.)

The specific focus of our study is the treatment of the category of census counts referred to as imputations in
dual system estimation. Our results show the degree to which varying treatment of these imputation counts
can result in differences in population estimates for local areas such as states or counties.
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Alternative formulas for synthetic dual

system estimation in the 2000 census

Lawrence Brown1,∗ and Zhanyun Zhao2,†

University of Pennsylvania and Mathematica Policy Research

Abstract: The U.S. Census Bureau provides an estimate of the true popula-
tion as a supplement to the basic census numbers. This estimate is constructed
from data in a post-censal survey. The overall procedure is referred to as dual
system estimation. Dual system estimation is designed to produce revised es-
timates at all levels of geography, via a synthetic estimation procedure.

We design three alternative formulas for dual system estimation and in-
vestigate the differences in area estimates produced as a result of using those
formulas. The primary target of this exercise is to better understand the nature
of the homogeneity assumptions involved in dual system estimation and their
consequences when used for the enumeration data that occurs in an actual
large scale application like the Census. (Assumptions of this nature are some-
times collectively referred to as the “synthetic assumption” for dual system
estimation.)

The specific focus of our study is the treatment of the category of census
counts referred to as imputations in dual system estimation. Our results show
the degree to which varying treatment of these imputation counts can result
in differences in population estimates for local areas such as states or counties.

1. Introduction

The U.S. census is required by the Constitution to be conducted every ten years.
In an attempt to provide better estimates of the true population than contained
in the basic census counts, the Census Bureau [13] uses both statistical and demo-
graphic methods. In 2000 the statistical process was called Accuracy and Coverage
Evaluation (A.C.E.).

The 2000 A.C.E. data consists of two parts: the Population sample (P-sample)
and the Enumeration sample (E-sample). The P-sample includes persons who are
validly included in the A.C.E. survey, and the E-sample includes census enumera-
tions from households in the A.C.E. block clusters. For a detailed overview of the
2000 A.C.E., please see Hogan [9] and Norwood and Citro [11].

The 2000 A.C.E. was designed to get an estimate of the population at every
geographic level, based on the census count and the information from the E-sample
and the P-sample. To be more precise, the procedure adopted by the Census Bureau
is termed a synthetic dual system estimate. Its validity rests on several assumptions,
including a major synthetic (homogeneity) assumption.
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Various technical assumptions can be made for synthetic assumption. These
affect the details of the formulas needed to produce the final population estimates.
For ideal and homogeneous populations any of the resulting formulas will produce
unbiased estimates. However, the U.S. population does not appear to have this type
of ideal structure. Hence different synthetic assumptions yield different estimates,
and it does not appear that all of these estimates are actually unbiased.

This paper investigates the nature of these assumptions and the extent of the
differences produced when using three alternative dual system formulas within the
2000 U.S. Census. It should be emphasized that the data available to us do not
allow us to make any confident claim as to which of the estimates is more accurate;
indeed such a claim is not our objective. Instead, we present our analyses as a
means of providing better understanding of the dual system estimation process in
the presence of actual populations, such as that encountered in the 2000 Census,
and of judging the extent of differences that may be expected to result from differing
assumptions about the census enumeration process.

Our analysis revolves around the extent and homogeneity of imputations of
household and whole person records into the census enumeration. The available
data allows us to produce alternative estimates based on different treatment of
these imputations. As we later remark, there are other aspects of the dual system
process that might involve analogous biases in the presence of inhomogeneity, how-
ever the data available to us do not allow for as complete an analysis relative to
those factors.

In Section 2 we briefly discuss the nature and extent of imputation in the 2000
census. It is clear that the desired stochastic homogeneity does not hold there.
Section 3 introduces background for dual system estimation and the synthetic as-
sumption. The alternative formulas are presented in Section 4. Section 5 displays
the results of using these formulas to estimate the true population shares of the
states in 2000. Section 6 presents similar results for estimation of population shares
of groups of counties. Mathematical comparison of different formulas is made in
Section 7. Section 8 contains a summary conclusion and remarks.

The data for A.C.E. was collected during the 2000 census and first prepared and
analyzed before April 2001. The Census Bureau decided not to issue the results
then produced as official census estimates. Following this, the data was re-analyzed
several times, leading up to revised A.C.E. estimates, referred to as A.C.E. Revi-
sion II. These were released on March 2003. The revised data identified, and deleted
from the estimation process, a significant number of records that were judged to
be duplicates. There were also a number of other more technical, but not insignif-
icant, innovations in A.C.E. Revision II. See Kostanich [10] for a more complete
description of A.C.E. Revision II.

The analyses of our paper are based on the original April 2001 A.C.E. data.
There are several reasons for our using this original data, rather than the revised
A.C.E. II data. The primary reason is that this is the data that was supplied to
us by the Bureau, beginning in 2001. (We gratefully acknowledge the Bureau’s
assistance in supplying us with suitable versions of this data.) Furthermore, our
purpose has been to understand the nature of traditional dual system estimation,
and the consequences of alternate synthetic assumptions. For the most part the
nature of the April 2001 A.C.E. data in relation to the census is analogous to that
between earlier censuses and their dual system surveys. (In particular, both the 2000
census counts and the 2001 A.C.E. data contain correspondingly significant numbers
of duplicates, such as presumably existed in earlier census data even though there
was no way to explicitly identify them. See Section 2 on imputation for discussion
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of one difference between 2000 and earlier censuses.) Furthermore the analysis of
A.C.E.II involves a number of special complications and assumptions beyond those
of the standard dual system analyses.

2. Imputation

We use II, the Census Bureau’s notation, to denote the number of imputations.
Technically II is referred to as “insufficient information”. It is not unusual for some
census records to contain incomplete information to a modest extent. If all or nearly
all relevant information is missing so that the matching of the P-sample records to
the E-sample enumerations is not feasible, then the record is described as having
insufficient information. Here we use the word “imputation” generally to describe
records that for some reason do not include enough information to be included in
the A.C.E. process. Broadly speaking, census imputation also includes imputation
for item non-response for records in the A.C.E., and imputation for matching status
in the A.C.E. process. Yet in our context, imputation is referred to as the whole
records not included in the A.C.E. process due to insufficient information. In the
2000 census, imputations included two parts: inherent imputation and late adds.

One can identify two basic kinds of inherent imputation. Sometimes we do know
with reasonable certainty how many people there are in the household, but lack
personal information about them as is needed for the matching of the E-sample
and the P-sample in the dual system process. In this case, we just need to impute
demographic information for each person. On the other hand, sometimes the actual
number of people in the household is also unknown. In this circumstance both the
true counts and personal information need to be imputed. It is even possible to give
a finer subdivision of types of inherent imputations. See Norwood and Citro [11].

Imputation related to a large number of late-adds was a special feature of the
2000 census. Because of its concern about address duplication, the Census Bureau
created a special research program just after the basic census data was collected.
The Bureau was able to identify, and pulled out, approximately 6 million person
records in 2.4 million housing units as potential duplicates. Later on, approximately
2.4 million persons in 1 million housing units were reinstated into the census. How-
ever, this was too late for the 2.4 million people to be included in the A.C.E.
process. Hence they were referred to as “Late Adds” and were treated similarly to
imputation data. For details of research on duplicates, see ESCAP [4]. Table 1 is a
comparison of the distributions of imputation in 1990 and 2000.

Besides the fact that there was no special treatment for Late Adds in the 1990
census, there is a significant difference in terms of the ratio of imputations from
households with known person count and imputations from households with un-
known person count between the 1990 and the 2000 Census. In 2000, that ratio was
about 4. Yet in 1990, the ratio was 44 which is 10 times larger than that in 2000.

Table 1

Number of imputations (II) as a percentage of census count (C)

Imputation type 2000 Census 1990 Census
Known Person Count 1.68 0.88
Unknown Person Count 0.43 0.02
Late Adds 0.85 0.00
Total 2.96 0.90

(Source: The 2000 Census: Interim Assessment)
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The percentages of II from the 1980 census were more similar to those of 2000 than
were the 1990 percentages.

In this paper, the item C−II denotes the number of people with full information.
They are frequently referred to as “data-defined” persons, and we use DD to denote
the number of them in the following sections.

3. Dual system estimation

As we introduced before, the 2000 A.C.E. data consists of the E-sample and the P-
sample. Based on the information of the E-sample and the P-sample, a dual system
estimate of the population is produced for special subgroups, called post-strata.
These post-strata estimates are then apportioned and recombined so as to form
estimates for any geographic area, such as state, county, census block etc. We now
discuss some aspects of this procedure.

3.1. Post-stratification

For the purpose of analysis, the population is divided into certain groups called post-
strata. Sixty-four post-stratum groups were created based on information about
geographic location, race, Hispanic origin, housing tenure etc. In addition there
were 7 age/sex categories. Thus originally there were 448 post-strata. Later on,
some small post-strata were collapsed together to form 416 final post-strata. [See
Table 5 in the Appendix for details of the construction of post-strata.]

3.2. Dual system estimation

The dual system estimate for post-stratum i can be written as

(1) D̂SEi = DDi × ĈRi ×
1

M̂Ri

.

Here DDi is the number of data-defined persons in post-stratum i. ĈRi and
M̂Ri are the estimates of the E-sample correct enumeration rate and the P-sample
matching rate respectively.

In the E-sample, enumerations are divided into two categories: correct enumer-
ations and erroneous enumerations. The correct enumeration rate measures the
accuracy of the census. It is estimated as

(2) ĈRi =
CEi

CEi + EEi
,

where CEi denotes the number of correct enumerations and EEi denotes the num-
ber of erroneous enumerations in post-stratum i.

The P-sample persons are taken into a matching procedure to see whether they
can be matched with persons in the E-sample. The P-sample matching rate then
measures the coverage of the census. The formula for M̂Ri is more complicated
than that for the other elements of (1), and it is not particularly pertinent to the
current considerations. The reader should consult Hogan [8] for details.

Since it was adopted by the Census Bureau to estimate the population, the dual
system estimation method has been considered in principle a large-scale capture-
recapture procedure. It can be motivated from an over-simplified, primitive model
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for capture-recapture estimation. In this model, the interrelation of the P-sample
and the E-sample can be schematically summarized in a two by two table, and
elements in the two by two table are estimated based on the assumption of the
independence of the E-sample and the P-sample. For a detailed overview of dual
system estimation, see Hogan [7].

3.3. Synthetic assumption

The census provides population figures for geographic subdivisions much smaller
than those defined by post-stratum boundaries. These “smaller areas” include
states, congressional districts, metropolitan areas, and even divisions as small as
census tracts and census blocks within tracts.

In order to get smaller area estimates, the estimates D̂SEi for each post-stratum
must be divided up and apportioned to geographic areas lying within that post-
stratum. This procedure is called synthetic estimation and the assumption(s) that
support its validity is (are) referred to as the synthetic assumption.

It seems to us that there are various reasonable forms of synthetic assumptions
that could be proposed, and these lead in practice to different smaller area popu-
lation estimates. For now we first present the formula implemented by the Bureau.
Then we later contrast it with alternative formulas that also seem to us to be
plausible.

For the purpose of synthetic estimation, the Census Bureau assumes that the
estimate, D̂SEi, should be divided in proportion to the total census counts within
its post-stratum. Let the index k, k = 1, 2, . . . ,Ki refer to geographic subregions
within post-stratum i. Let Cik denote the total census counts for post-stratum i and
region k, and let Ci denote the totals for the post-stratum. The Bureau population
estimate for post-stratum i region k is then called ̂DSEik or Sik and is given by
the formula

(3) Sik ≡ ̂DSEik =
Cik

Ci
D̂SEi.

This reflects the Bureau’s synthetic assumption that the population distribution
for smaller areas within a post-stratum is homogeneous with respect to the census
counts for those areas within that post-stratum.

Formula (3) is often rephrased in a different but equivalent format. Define the
Coverage Correction Factor for post-stratum i (CCFi) by

(4) CCFi =
D̂SEi

Ci
.

Then

(5) Sik = CikCCFi.

There is a different but equivalent way to interpret (3) or (5). The Census Bu-
reau’s estimate can also be written as

(6) Sik = Cik + (D̂SEi − Ci) ×
Cik

Ci
.

We will later build upon this interpretation.
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In summary, for geographic region k this gives the following population estimate:

(7) Sk =
∑

i

Sik =
∑

i

CikCCFi.

Here in (7), Sk is called the synthetic dual system estimate, abbreviated as
SynDSE. It is clear from its definition that it applies the same adjustment factor
for people in each post-stratum, and aggregates the adjusted post-stratum level
population numbers for an estimate of the population of the entire geographic area.

3.4. Rationale for post-stratification

The preceding discussion highlights one main rationale and target for post-strat-
ification. Accuracy of the synthetic estimation formula (3) rests on the assumption
that the population for the geographic areas within post-strata is distributed in
proportion to the census count.

There are at least two other reasons for post-stratification in connection with
dual system estimation. The logic supporting the dual system estimate requires
that the matching rate be constant for individuals within post-strata. Violation of
this will, in general, lead to bias in the dual system estimate (1) of the post-stratum
population. Such a situation is referred to as “correlation bias”. There are many
discussions of correlation bias in the literature. For example, Seker and Deming
[12] had an early discussion on correlation bias. Bell [1] introduced a third system
to estimate the correlation bias. Freedman and Wachter [5] also had a discussion
on correlation bias and heterogeneity. Zhao [14] investigated the data of the 2000
census to test the plausibility of the assumption of absence of correlation bias.

A third, though perhaps less important, rationale for post-stratification is that,
in principle, suitably chosen post-strata can reduce the variance of estimates given
through formulas such as (1) and (3). Conversely, a choice of too many post-strata
with consequently small sample sizes within each post-stratum can lead to estima-
tors with inflated variances. See Hogan [7] for a discussion of this in relation to the
1990 census. See Freedman and Wachter [6] for a perspective on post-stratification
and its effects in the 2000 census.

4. Alternative formulas

In this section, we present three alternative formulas for synthetic estimation. The
Census Bureau’s formula is based on the synthetic assumption that the population
distribution for small areas within a post-stratum is homogeneous with respect to
the census counts (including imputations) for those areas within that post-stratum.
Our alternative formulas are sensitive to the the homogeneity of imputations in the
census, and its role in the synthetic estimation of subpopulation counts.

4.1. First alternative formula

Note that the estimates D̂SEi are computed only from enumerations of data-defined
people. That is because Ci does not appear in (1). Thus the estimates of D̂SEi of
post-stratum totals involve DD directly, but do not involve the number of counts
labelled as II. It can thus be plausibly argued that the counts II should also not
play a role in distributing D̂SEi geographically within post-strata.
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As noted in Section 3.4, homogeneity assumptions relative to the components of
(1) are already part of the general justification for dual system estimation. From
this perspective, it also seems reasonable to assume that the population for the ge-
ographic area within post-strata should be proportional to the enumeration of data
defined people. This form of synthetic assumption leads to the alternate estimate
S1

ik described as the formula

(8) S1
ik ≡ ̂DSE1

ik =
DDik

DDi
D̂SEi,

where DDik is the number of data-defined persons in geographic region k within
post-stratum i, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki.

There is another way to view the formula for S1
ik. For each post-stratum i,

consider DCFi (Data-defined Coverage Factor) as a replacement of CCFi. Their
relationship is described in the following formula

(9) DCFi =
Ci

Ci − IIi
=

Ci

DDi
CCFi.

Then applying the same Data-defined Coverage Factor for post-stratum i to the
number of data-defined persons in geographic region k within post-stratum i, the
corresponding S1

ik for geographic level k is thus written as

(10) S1
ik = DDikDCFi.

Note that (9) implies that DCFi =
D̂SEi

DDi
, it is easy to show that (8) and (10)

are equivalent.

4.2. Second alternative formula

It can be plausibly argued that the distribution of imputations IIik = Cik −DDik,
k = 1, 2, . . . , Ki is a valid reflection of distribution of the true undercount relative
to Cik within the post-stratum. Presumably imputations are concentrated in areas
where it is intrinsically hard to count people, and hence areas with high undercount
rate would be expected to have high imputation rate. Since the “true” undercount
is not observed, it is hard, or impossible to devise a way to check this assertion. If
it were valid, then the desirable estimate for the true population would be derived
by distributing the post-stratum undercount estimates within the post-stratum in
proportion to IIik. This leads to the formula

(11)
S2

ik = Cik + (D̂SEi − Ci) ×
IIik

IIi

= Cik + (DDi × DCFi − Ci) ×
IIik

IIi
.

As we noted before, the estimate of the total undercount for post-stratum i is
D̂SEi −Ci, and this undercount is distributed to each geographic level proportion-
ally to its imputation rate within the post-stratum. The estimate for the population
is then the census counts plus the estimated undercount. In summary, this formula

is the same as (6) except that
IIik

IIi
is substituted for

Cik

Ci
.
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4.3. Third alternative formula

Note that the Census Bureau’s formula (6) is Sk = Cik + (D̂SEi − Ci) ×
Cik

Ci
.

Compare this with (11), and another reasonable formula comes out naturally as

(12)
S3

ik = Cik + (D̂SEi − Ci) ×
DDik

DDi

= Cik + (DDi × DCFi − Ci) ×
DDik

DDi
.

In words, this formula begins from a base of the census counts Cik (including
IIik). It then considers the distribution of DDik as a reflection of the true under-
count rate at geographic level within post-strata.

Clearly all of the formulas presented here have the same normalization property

(13)
∑

k

Sl
ik =

∑
k

Sik = D̂SEi, l = 1, 2, 3.

Also, if we take the summation over post-stratum index i, then we will have the
estimate of the population at geographic area k as

(14) Sl
k =

∑
i

Sl
ik, l = 1, 2, 3.

5. Results from alternative formulas at state level

5.1. Comparison of shares at state level

Allocating seats in the House of Representatives is the original constitutional man-
date for which the decennial census was established. Much attention was put on
which states had gained or lost seats. It is of primary interest to compare different
formulas at the state level.

Figure 1 shows comparison of alternative formulas and the Census Bureau’s for-
mula for the 16 largest states. [See Figure 5 in the Appendix for the full comparison
of all 51 states.] The comparison is made in the sense of population shares. A state’s
population share is normally defined as its percentage of the national total. Thus
they do not affect estimates for national totals. The horizontal line for each state
shows the confidence interval of share difference: SynDSE (Sk) share minus census
share. The standard error of share difference is computed from Davis [3] published
by the Census Bureau. The square represents the share difference between Sk and
census, the dot represents the share difference between S1

k and census, and the tri-
angle represents the share difference between S2

k and census. The share difference
between S3

k and census is omitted from the figure since it is very close to the one
between Sk and census.

The most prominent feature is for the state of New York where the difference
calculated from S1

k falls very far outside of (below) the confidence interval calculated
from census formula. For several other states the result for S1

k is also outside the
confidence interval (above, as for North Carolina, Virginia, and Ohio, or below,
as for Indiana and Illinois). S2

k agrees better with the census formula. For several
large states, such as Texas, California, Florida and Pennsylvania, the square and
the triangle are very close to each other. The result for New York is driven towards
0, although it still falls outside (above) the confidence interval.
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Fig 1. State level shares comparison from different formulas.

Interestingly, most of the time, the share difference of Sk and census falls between
the difference of S1

k and census, and the difference of S2
k and census. This tells us

that, in a sense the census formula is a compromise of the two alternatives we
introduced.

5.2. Role of imputation

Imputations create the primary difference in practice between the Bureau’s syn-
thetic formula (3) and alternative formulas such as our (8), (11) and (12). Note
that the assumption justifying (8) is that the undercount is homogeneous with re-
spect to DDik for regions within post-strata. In contrast, the assumption justifying
(3) is that of homogeneity with respect to Cik = DDik + IIik. If the imputation
rates were stochastically homogeneous with respect to Cik, then both formulas
would have the same expectation, and would generally yield very similar results in
practice.

Imputation rates for the 16 large states of Figure 1, together with the population
shares from the census, are given in Table 2. In this table, the total imputation rates,
the imputation rates from late adds (LA) and non late adds (Non-LA), as well as
the census shares are listed. [See Table 6 in the Appendix for the full table for all
51 states.] The overall imputation rate for New York is considerably larger than
the national rate of 3%.

Furthermore, what really matters is the imputation rates within post-strata
within the state relative to those post-strata results elsewhere. Because of this
it seems informative to supplement the overall imputation rates given in the table
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Table 2

Imputation rates for the 16 states

Number of Mean II(Tot) of
State II(Tot) II(Non-LA) II(LA) Census Share post-strata post-strata
NY 4.913 3.201 1.712 6.724 256 5.511
TX 3.508 2.633 0.875 7.417 264 3.962
IL 3.383 2.469 0.914 4.422 246 4.380
GA 3.300 2.349 0.951 2.907 234 3.994
CA 3.255 2.720 0.535 12.08 260 4.360
NJ 2.869 2.008 0.861 3.004 194 4.849
NC 2.795 1.640 1.156 2.849 236 3.558
IN 2.700 2.202 0.498 2.157 246 4.106
FL 2.672 2.113 0.558 5.700 236 4.534
MA 2.468 1.558 0.909 2.240 253 3.239
TN 2.465 1.599 0.867 2.025 222 3.372
WA 2.407 1.894 0.513 2.105 236 3.410
PA 2.322 1.574 0.748 4.331 242 3.595
VA 2.283 1.555 0.727 2.503 260 3.536
MI 1.876 1.341 0.536 3.541 260 3.039
OH 1.680 1.123 0.557 4.040 222 2.699

with per post-strata averages. As a result, Table 2 also gives the mean imputation
rate per post-strata within state as computed from the following formula:

(15) MIRk =
1
n∗

k

∑
{i,Cik �=0}

IIik

Cik
× 100%

where n∗
k is the number of post-strata within the state with non-zero census counts,

which is also listed in the table. Even a cursory examination of these imputation
rates in the census reveals that an assumption for the imputations of stochastic ho-
mogeneity within post-strata is not reasonable. (A valid, formal test of this statis-
tical hypothesis can be derived using the methods of Zhao [14]. This test decisively
rejects the null hypothesis of stochastic homogeneity, with a p-value < 0.0001.)

In Table 2, the comparison of New York and New Jersey points to an interesting
phenomenon. Overall New Jersey has an imputation rate of 2.869%. This is fairly
close to the national average. But it shares a lot of post-strata with New York. The
mean value of the imputation rates per post-strata in New Jersey is 4.849%. This
is the second highest among the 16 states. Yet as shown in Figure 1, in contrast to
New York, the differences for New Jersey using S1

k and S2
k are quite close to that

using the Census Bureau’s Sk. The result is that although New Jersey has relatively
high mean imputation rate per post-strata, its population estimate is not increased
as much by the dual system as this might seem to warrant. One explanation for
this is that an important neighboring state (New York) has even higher imputation
rates.

From another point of view, we can consider our alternative formula one as a
basic rate for estimate of population, while the Census Bureau’s formula can be
viewed as an attempt to use imputations with the hope of improving these basic
estimates.

6. Results from alternative formulas at county-group level

To better investigate the differences among all the formulas, we conduct a further
analysis down to a finer level: county-group level. Ideally our analysis might have
been performed on the level of congressional districts. However we had only county
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level data to work with. Hence we created county groups to roughly approximate the
size and geographic contiguity of congressional districts. (In some cases our county
groups were much more populous than congressional districts since we could not
split counties into smaller districts.) In general, small adjacent counties are lumped
to form a group with population roughly like a congressional district, while rela-
tively large counties (for example, a county contains several congressional districts)
would make a county-group by themselves. Totally we created 369 county-groups,
on average each having 730,000 people.

For each county-group, an adjusted estimate (SynDSE) is constructed by the
Census Bureau’s formula and our alternative formula 1, 2 and 3. It seems most
suitable to compare the adjustments to the relative shares. This is consistent with
the discussion in Brown et al. [2] and Freedman and Wachter [5]. However we
found direct statements of share differences to be less suitable in part because of
unfamiliarity with the county-groups and variability in their sizes. Hence it seems
more informative to express the adjustments in percentage terms from a base of
the original census numbers. It can be easily shown that this measure is a linear
transformation of the share difference, and as noted in the above references, the
results from the percent adjustment would be consistently comparable to the share
difference.

There are two possible choices of the base of the original census numbers. Nat-
urally people would consider the census counts, and the relative percent difference
can be expressed as

(16) reldif c =
SynDSE − C

C
× 100%.

However, one of the implications of the alternative formula one is that the number
of data-defined person DD is a more basic quantity. Therefore we use DD as the
base, and the relative percent difference is then defined as

(17) reldifd =
SynDSE − DD

DD
× 100%.

To account for the implication of imputation, (17) can be modified to be a
measure called state adjusted difference (SAD), which is defined by

(18) SADj = (
SynDSEj − DDj

DDj
− IIs

DDs
) × 100%.

In (18), j is the county-group index, s is the state index. The following Table 3
illustrates the descriptive statistics for SAD using different formulas.

As we already found from the last section, the alternative formula three gives
very similar results as the Census Bureau’s. It is also noticeable from the table that
overall there is no substantial difference in terms of the mean value of differences.
[The results from reldif c can be found in Table 7 in the Appendix, and they will
give similar relative conclusions among county groups within a state.]

Table 3

Distribution of state adjusted difference at county group level

Min Max Median Mean SD
CB’s formula −2.97 7.38 0.98 1.14 1.40
Alter. formula 1 −2.95 4.93 1.20 1.18 1.10
Alter. formula 2 −3.08 9.80 0.81 1.15 1.60
Alter. formula 3 −2.98 7.29 0.99 1.14 1.39
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Fig 2. State adjusted difference – New York (DD base).

It is impossible to visually show the results of SAD from all county-groups in
one figure; instead we illustrate the results in the following three states:

1. New York: because of the large discrepancy in share comparison (Figure 1)
and the relatively large size (3rd biggest state)

2. New Jersey: because of the interesting phenomenon discussed in Section 5.2
3. California: because of the relatively large size (biggest state)

Figure 2 is the plot of SAD in each county-group in New York. [The table
generating this figure can be found in the Appendix.] Each one of the 21 points on
the X-axis represents a county group, and the state adjusted differences represented
on the Y-axis are connected by a line. Different types of lines represent different
formulas. Again, the results from alternative formula 3 are not shown in the figure
because they are very close to those from the Census Bureau’s formula. It is obvious
that for the three counties in New York city (Bronx, Kings and Queens) which have
a very large percent of imputation, the differences are much higher than those from
other county-groups.

Figure 3 is the plot of SAD in each county-group in New Jersey. Despite the
fact that New Jersey shares a lot of post-strata with New York, the scale of the
differences is much smaller than that from New York.

Figure 4 is the plot of SAD in each county-group in California. From all three
figures, it can be seen that most of the time, the lines using Census Bureau’s formula
lie between the lines using our alternative formula 1 and alternative formula 2.
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Fig 3. State adjusted difference – New Jersey (DD base).

This confirms that the Census Bureau’s formula is kind of a compromise of the two
alternatives.

It can also be seen that in general, at the lower end of the figure (smaller dif-
ference between SynDSE and DD), the difference using Census Bureau’s formula
tends to be lower (higher) than that using alternative formula 1 (using alternative
formula 2), while at the upper end of the figure (larger difference between SynDSE
and DD), the difference using Census Bureau’s formula tends to be higher (lower)
than that using alternative formula 1 (using alternative formula 2). (The detailed
results at each county group in these three states could be found in Table 8 through
Table 10 in the Appendix.)

7. Comparison of different formulas

7.1. Comparison of four formulas

As stated earlier, if the imputation rates were stochastically homogeneous with
respect to the census count, then all the formulas would have the same expectation.

It is easy to prove that if
IIik

IIi
=

Cik

Ci
, then S1

k = S2
k = S3

k = Sk.
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Fig 4. State adjusted difference – California (DD base).

7.2. When is DCF better

Our alternative formula (10) uses DCF instead of CCF . One may wonder under
which conditions does DCF behave better than CCF .

Consider the following simpler case: there are two states for a single post-
stratum, and there are no people who moved between the census day and the
A.C.E. interview. The corresponding counts in state 1 and 2 within post-stratum
are: CE1, CE2, EE1, EE2, MN1, MN2, NN1, NN2, II1, II2, and they are all ob-
servable. Here CEj , EEj , MNj , NNj , and IIj (j = 1, 2) denotes the number
of correct enumerations, erroneous enumerations, matched non-movers, unmatched
non-movers, and imputations respectively. For a formal definition of these types
of counts, see Norwood and Citro [11]. As also shown in Norwood and Citro [11],
CCF and DCF can be written as functions of these five types of counts

(19) CCF =
CE1 + CE2

CE1 + CE2 + EE1 + EE2 + II1 + II2
× NN1 + NN2

MN1 + MN2
,

(20) DCF =
CE1 + CE2

CE1 + CE2 + EE1 + EE2
× NN1 + NN2

MN1 + MN2
.

To further simplify the case, we assume that the two states are equal in size, i.e.
CE1 = CE2, MN1 = MN2, NN1 = NN2
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The following analysis makes a comparison of the squared errors resulting from
use of (3) and (10). In order to make this comparison it is necessary to make some
assumptions about the true population. The analysis is somewhat simple under the
plausible assumption that the unbiased DSE from the two by two tables within
each state describes the true population parameters. A similar analysis is possible
under other assumptions.

The unbiased DSE from the actual two by two tables within each state can be
written as

St
1 = CE1 ×

NN1

MN1
= S, St

2 = CE2 ×
NN2

MN2
= S.

The synthetic DSEs for state 1 and 2 within post-stratum calculated from CCF
and DCF (use alternative formula one) are

(21) Sc
i =

CEi + EEi + IIi

CE1 + CE2 + EE1 + EE2 + II1 + II2
× 2S, i = 1, 2,

and

(22) Sd
i =

CEi + EEi

CE1 + CE2 + EE1 + EE2
× 2S, i = 1, 2.

Define the variance, i.e. the squared error of synthetic DSE from the true popu-
lation, as

Δc = (Sc
1 − St

1)
2 + (Sc

2 − St
2)

2

= 2S2(
CE1 + EE1 + II1 − (CE2 + EE2 + II2)
CE1 + EE1 + II1 + CE2 + EE2 + II2

)2,

Δd = (Sd
1 − St

1)
2 + (Sd

2 − St
2)

2

= 2S2(
CE1 + EE1 − (CE2 + EE2)
CE1 + EE1 + CE2 + EE2

)2.

The difference of Δd and Δc is

(23)

Δd − Δc = 2S2{( EE1 − EE2

2CE1 + EE1 + EE2
)2

−(
EE1 + II1 − (EE2 + II2)

2CE1 + EE1 + EE2 + II1 + II2
)2}

= 2S2{( EE1 − EE2

2CE1 + EE1 + EE2
+

EE1 + II1 − EE2 − II2

2CE1 + EE1 + EE2 + II1 + II2
)

(
EE1 − EE2

2CE1 + EE1 + EE2
− EE1 + II1 − EE2 − II2

2CE1 + EE1 + EE2 + II1 + II2
)}.

If CE >> (EE, II), as is usually the case, then

(24)

Δd − Δc ≈ −2S2(4CE1(EE1 − EE2) + 2CE1(II1 − II2))(2CE1(II1 − II2))
(2CE1 + EE1 + EE2)2(2CE1 + EE1 + EE2 + II1 + II2)2

.
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Table 4

Frequency table of better performance of DCF among large/small post-strata

CCF DCF Total
Small 48 89 137
Large 23 84 107
Total 71 173 244

From (24) we have

• If EE1 = EE2 then Δd − Δc ≤ 0, DCF is better.
• If II1 = II2 then Δd − Δc ≥ 0, CCF is better.
• If EE1 �= EE2 and II1 �= II2.

– If EE1 > EE2 and II1 > II2 then Δd − Δc ≤ 0, DCF is better.
– If EE1 > EE2 and II1 < II2.

∗ If EE1 − EE2 ≤ −II1 − II2

2
then Δd − Δc ≤ 0, DCF is better.

∗ If EE1 − EE2 > −II1 − II2

2
then Δd − Δc > 0, CCF is better.

More generally, we assume CE2 = λCE1, MN2 = λMN1, NN2 = λNN1, since
homogeneity assumption appears to hold for the two largest groups: CE and MN.
For the setup and results from the test of homogeneity assumption, see Zhao [14].
Similarly we have

• If λEE1 = EE2 then Δd − Δc ≤ 0, DCF is better.
• If λII1 = II2 then Δd − Δc ≥ 0, CCF is better.
• If λEE1 �= EE2 and λII1 �= II2.

– If λEE1 > EE2 and λII1 > II2 then Δd − Δc ≤ 0, DCF is better.
– If λEE1 > EE2 and λII1 < II2.

∗ If λEE1 − EE2 ≤ −λII1 − II2

2
then Δd − Δc ≤ 0, DCF is better.

∗ If λEE1 − EE2 > −λII1 − II2

2
then Δd − Δc > 0, CCF is better.

The above discussion gives certain conditions when the Census Bureau’s cor-
rection factor (4) or the alternative correction factor (9) performs better than the
other one. To show the empirical results from the data, let’s consider a simple case.
Suppose we regard New York state as state 1, and all the other states together
as state 2, then we calculate the DCF and CCF for the 244 post-strata that are
in both states. We found that DCF is better in 70% of post-strata which exist
in both state 1 and state 2. Furthermore, if we categorize the post-strata into two
groups: large post-strata (having more than 50,000 correct enumerations) and small
post-strata, DCF performs much better in the large post-strata.

From Table 4, it could be seen that DCF (corresponding to formula (10)) per-
forms better about 65% of the time in small post-strata and 80% of time in large
post-strata.

8. Conclusion

The major purpose of this paper is to better understand the 2000 A.C.E. process by
providing alternative formulas. To construct these three formulas, alternate forms
of the synthetic assumption are used, and the structure of imputation is analyzed.
We find that the alternative estimation formulas seem also justifiable.
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It is perhaps hard to tell which formula gives generally more accurate results.
It appears to us that each one has its own merit and no one dominates another.
In addition, there seems no way with existing data to compare the biases of the
formulas. Nonetheless, it appears that the first of the alternatives would achieve
smaller variance than that of the Census Bureau’s formula if the number of erro-
neous enumerations and the number of imputations are positively correlated, which
holds true in most of the cases.

What we do observe is that the Census Bureau’s formula tends to be a compro-
mise among the three alternatives. For this reason it seems to us reasonable to stick
to the original one, especially in view of a lack of further evidence.

All the Census Bureau’s formula and our alternative formulas use the total num-
ber of imputations to create population estimates. As noted in Section 2, there are
different classes of imputation. It may be preferable to use only some subsets of
imputations, and create formulas in different ways.

Finally we want to point out that the correct enumeration rate CE/(CE + EE)
is estimated in producing synthetic estimation. This estimate is another poten-
tial source of heterogeneity, and the related synthetic assumption on it should be
studied. A valid, formal test of the hypothesis that the correct enumeration rate is
geographically homogeneous within post-strata for states or counties can be derived
using the methods of Zhao [14]. This test shows there is significant non-homogeneity.
(The details of this test will be reported elsewhere.) It would be desirable to also
see how this inhomogeneity affects synthetic estimates results. However, unlike II,
the components CE and EE are not measured for the entire census, but rather
only for the A.C.E. sample blocks. Thus it is unclear how to use existing data to
create estimates related to this factor.

Appendix
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Table 5. Schematic for post-stratification variables (see Section 3.1 for further description)
(MSA: Metropolitan Statistical Area; TEA: Type of Enumeration Area; MO/MB: Mail out/Mail back)

Race/Hispanic Origin Tenure MSA/TEA High return rate Low return rate

Domain number NE MW S W NE MW S W
Domain 7: Owner Large MSA MO/MB 1 2 3 4 5 6 7 8
Non-Hispanic White Medium MSA MO/MB 9 10 11 12 13 14 15 16
and Other Small MSA & Non-MSA MO/MB 17 18 19 20 21 22 23 24

All Other TEAs 25 26 27 28 29 30 31 32
Non- Large MSA MO/MB 33 34

Owner Medium MSA MO/MB 35 36
Small MSA & Non-MSA MO/MB 37 38
All Other TEAs 39 40

Domain 4: Owner Large MSA MO/MB 41 42
Non-Hispanic Black Medium MSA MO/MB

Small MSA & Non-MSA MO/MB 43 44
All Other TEAs

Non- Large MSA MO/MB 45 46@
Owner Medium MSA MO/MB

Small MSA & Non-MSA MO/MB 47 48
All Other TEAs

Domain 5: Native Hawaiian Owner 49
or Pacific Islander Non-Owner 50
Domain 6: Owner 51
Non-Hispanic Asian Non-Owner 52
Domain 3: Owner Large MSA MO/MB 53 54
Hispanic Medium MSA MO/MB

Small MSA & Non-MSA MO/MB 55 56
All Other TEAs

Non- Large MSA MO/MB 57 58
Owner Medium MSA MO/MB

Small MSA & Non-MSA MO/MB 59 60
All Other TEAs

Domain 1: On Reservation Owner 61
American Indian or Alaska Native Non-Owner 62
Domain 6: Off Reservation Owner 63
American Indian or Alaska Native Non-Owner 64
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Table 6

Imputation rates for 51 states

Number of Mean II(Tot) of
State II(Tot) II(Non-LA) II(LA) Census Share post-strata post-strata
NY 4.913 3.201 1.712 6.724 256 5.511
NM 4.474 2.895 1.579 0.652 236 4.137
HI 4.247 2.913 1.334 0.430 222 4.781
WY 3.921 2.588 1.333 0.175 148 4.166
NV 3.918 3.257 0.661 0.718 236 4.479
AZ 3.891 3.145 0.746 1.835 236 4.942
VT 3.887 2.223 1.664 0.215 134 3.961
DC 3.860 3.726 0.134 0.196 144 4.373
TX 3.508 2.633 0.875 7.417 264 3.962
AL 3.491 2.212 1.279 1.584 235 4.104
IL 3.383 2.469 0.914 4.422 246 4.380
DE 3.339 2.901 0.438 0.277 222 4.900
RI 3.302 2.360 0.942 0.369 221 4.821
GA 3.300 2.349 0.951 2.907 234 3.994
CA 3.255 2.720 0.535 12.08 260 4.360
SC 3.221 2.145 1.076 1.417 236 4.423
MD 3.074 2.503 0.572 1.887 222 4.178
NH 3.056 1.987 1.070 0.439 217 4.440
MT 3.039 1.583 1.456 0.321 152 4.478
MS 3.038 1.677 1.360 1.005 228 3.289
LA 2.886 1.886 1.000 1.584 236 3.432
NJ 2.869 2.008 0.861 3.004 194 4.849
AR 2.810 1.403 1.407 0.950 222 2.852
NC 2.795 1.640 1.156 2.849 236 3.558
CO 2.786 2.039 0.747 1.535 236 4.119
IN 2.700 2.202 0.498 2.157 246 4.106
FL 2.672 2.113 0.558 5.700 236 4.534
ME 2.604 1.258 1.345 0.453 184 2.889
AK 2.584 1.385 1.199 0.202 152 3.131
ID 2.554 1.821 0.733 0.461 152 3.374
WV 2.506 0.856 1.651 0.645 215 2.625
MA 2.468 1.558 0.909 2.240 253 3.239
TN 2.465 1.599 0.867 2.025 222 3.372
KT 2.447 1.164 1.283 1.435 222 2.888
WA 2.407 1.894 0.513 2.105 236 3.410
CT 2.390 1.544 0.847 1.205 256 3.875
UT 2.369 1.765 0.604 0.801 236 2.972
SD 2.362 1.392 0.970 0.266 140 2.733
PA 2.322 1.574 0.748 4.331 242 3.595
VA 2.283 1.555 0.727 2.503 260 3.536
OK 2.261 1.282 0.979 1.220 236 2.517
OR 2.260 1.711 0.549 1.222 236 3.639
WI 2.153 1.600 0.553 1.903 258 4.311
MO 2.098 1.200 0.898 1.986 222 3.050
ND 1.985 1.003 0.983 0.226 138 2.342
KS 1.904 1.227 0.678 0.953 236 2.739
MI 1.876 1.341 0.536 3.541 260 3.039
MN 1.873 1.237 0.636 1.748 236 3.463
OH 1.680 1.123 0.557 4.040 222 2.699
IA 1.629 0.963 0.666 1.032 215 2.589
NE 1.608 0.994 0.615 0.607 236 2.487
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Fig 5. Share comparison at state level.
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Table 7

Distribution of relative difference between census and SynDSE at county group level

Min Max Median Mean SD
CB’s formula −0.13 2.96 1.15 1.14 0.54
Alter. formula 1 −3.26 3.78 1.22 1.18 0.84
Alter. formula 2 −0.14 4.31 1.06 1.13 0.68
Alter. formula 3 −0.13 2.97 1.15 1.14 0.54

Table 8

County group level results in New Jersey
(Through Table 8 to 10, the second column “CB’s” lists the results using the Census Bureau’s

formula, the third column “Alter. 1” lists the results using alternative formula 1, and the fourth
column “Alter. 2” lists the results using alternative formula 2.)

Relative difference in New Jersey (census as the base)
Counties CB’s Alter. 1 Alter. 2 Census II/Census
Passaic 1.566 1.282 1.743 479073 3.863
Essex 1.471 1.706 1.423 770844 4.462
Hudson 1.470 0.745 1.763 599525 5.369
Somerset, Union 1.250 1.268 1.339 807714 3.087
Atlantic, Cape May &
Cumberland, Salem 1.234 1.179 1.354 542964 2.766
Mercer 1.223 1.160 1.514 329669 3.030
Middlesex, Monmouth 1.123 1.707 1.009 1334607 2.021
Morris 1.064 1.387 1.011 461026 1.938
Sussex, Warren 0.973 1.920 0.838 243450 1.890
Bergen 0.967 1.344 0.894 872769 2.187
Burlington, Ocean 0.964 1.089 0.985 912247 2.068
Camden, Gloucester 0.951 0.882 1.274 747998 2.756
Hunterdon 0.797 1.380 0.772 117643 1.474

State adjusted difference in New Jersey
Counties CB’s Alter. 1 Alter. 2 DD II/DD
Hudson 4.273 3.507 4.583 567337 5.674
Essex 3.255 3.502 3.206 736452 4.670
Passaic 2.693 2.398 2.877 460565 4.019
Somerset, Union 1.521 1.540 1.613 782780 3.185
Mercer 1.432 1.367 1.732 319680 3.125
Atlantic, Cape May &
Cumberland, Salem 1.159 1.103 1.282 527948 2.844
Camden, Gloucester 0.858 0.787 1.190 727384 2.834
Bergen 0.271 0.656 0.196 853681 2.236
Middlesex, Monmouth 0.254 0.851 0.138 1307639 2.062
Burlington, Ocean 0.143 0.270 0.164 893380 2.112
Morris 0.108 0.437 0.054 452090 1.977
Sussex, Warren −0.036 0.930 −0.174 238849 1.926
Hunterdon −0.649 −0.057 −0.674 115909 1.496
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Table 9

County group level results in New York

Relative difference in New York (census as the base)
Counties CB’s Alter. 1 Alter. 2 Census II/Census
Bronx 2.405 −1.893 4.313 1285415 9.016
Clinton, Franklin, Fulton, Hamilton &
Jefferson , Lewis Oswego, St Lawrence 1.683 1.512 1.819 524735 3.126
Chenango, Delaware , Herkimer &
Madison, Oneida, Otsego, Schoharie 1.486 1.364 1.568 530826 3.023
Broome, Sullivan, Tioga, Tompkins, Ulster 1.480 1.193 1.576 562836 3.147
New York 1.477 3.012 1.088 1477358 2.887
Allegany, Cattaraugus, Chautauqua &
Chemung, Schuyler, Steuben, Yates 1.280 1.036 1.522 484489 2.786
Dutchess, Putnam 1.263 0.891 1.506 355568 3.702
Kings 1.255 −3.263 1.717 2426027 9.817
Orange, Rockland 1.212 0.764 1.430 606779 3.851
Columbia, Essex, Greene, Rensselaer &
Saratoga, Warren, Washington 1.095 0.520 1.326 603542 3.339
Westchester 0.999 1.162 1.149 899806 3.150
Albany, Montgomery, Schenectady 0.999 1.067 0.896 469399 2.602
Queens 0.945 −2.359 1.417 2202506 7.967
Cayuga, Cortland, Onondaga 0.794 0.986 0.807 567471 2.184
Nassau 0.736 −0.072 1.183 1312886 3.380
Monroe 0.735 1.566 0.541 708834 1.512
Erie 0.684 0.057 0.939 919474 2.683
Niagara, Orleans 0.532 0.311 0.291 256313 1.984
Suffolk 0.491 0.161 0.947 1390791 3.103
Genesee, Livingston, Ontario &
Seneca, Wayne, Wyoming 0.252 0.273 0.372 376399 1.899
Richmond −0.035 −1.626 0.576 434542 5.332

State adjusted difference in New York
Counties CB’s Alter. 1 Alter. 2 DD II/DD
Bronx 7.386 2.662 9.482 1169523 9.909
Kings 7.110 2.100 7.622 2187875 10.885
Queens 4.517 0.927 5.030 2027022 8.657
Richmond 0.428 −1.252 1.073 411372 5.632
Orange, Rockland 0.098 −0.367 0.325 583412 4.005
Dutchess, Putnam −0.011 −0.397 0.241 342405 3.844
Clinton, Franklin, Fulton, Hamilton &
Jefferson, Lewis Oswego, St Lawrence −0.203 −0.379 −0.062 508331 3.227
Broome, Sullivan, Tioga, Tompkins, Ulster −0.390 −0.686 −0.291 545126 3.249
Chenango, Delaware, Herkimer &
Madison, Oneida, Otsego, Schoharie −0.517 −0.643 −0.433 514779 3.117
Columbia, Essex, Greene, Rensselaer &
Saratoga Warren, Washington −0.580 −1.175 −0.340 583388 3.455
New York −0.673 0.908 −1.073 1434701 2.973
Westchester −0.882 −0.714 −0.728 871460 3.253
Nassau −0.906 −1.742 −0.443 1268496 3.499
Allegany, Cattaraugus, Chautauqua &
Chemung, Schuyler, Steuben, Yates −0.985 −1.236 −0.736 470993 2.865
Suffolk −1.457 −1.798 −0.987 1347631 3.203
Albany, Montgomery, Schenectady −1.470 −1.400 −1.575 457183 2.672
Erie −1.708 −2.351 −1.445 894808 2.757
Cayuga, Cortland, Onondaga −2.123 −1.927 −2.109 555079 2.232
Niagara, Orleans −2.601 −2.826 −2.846 251228 2.024
Monroe −2.885 −2.042 −3.082 698113 1.536
Genesee, Livingston, Ontario &
Seneca, Wayne, Wyoming −2.974 −2.953 −2.852 369250 1.930



112 L. Brown and Z. Zhao

Table 10

County group level results in California

Relative difference in California (census as the base)
Counties CB’s Alter. 1 Alter. 2 Census II/Census
Imperial 2.959 3.589 2.783 131317 4.343
Kings 2.384 1.891 2.827 109332 4.114
San Luis Obispo, Santa Barbara 2.191 2.257 1.911 613840 2.995
Monterey, San Benito, Santa Cruz 2.086 1.607 2.325 680087 4.018
Merced, Stanislaus 2.050 1.848 2.198 647207 3.538
Del Norte, Humboldt, Lake, Mendocino, Napa 1.918 1.920 1.865 406509 3.242
Kern, Tulare 1.913 1.233 2.213 993655 4.352
Los Angeles 1.829 1.727 1.776 9344086 3.529
Butte, Lassen, Modoc, Nevada, Plumas &
Shasta, Sierra Siskiyou, Trinity, Yuba 1.801 2.345 1.353 621777 2.431
Fresno, Madera, Mariposa 1.661 0.448 2.228 912453 4.657
Colusa, Glenn, Sutter, Tehama, Yolo 1.577 1.935 1.325 338148 2.704
San Francisco 1.572 0.623 1.900 756976 4.283
Inyo,San Bernardino 1.542 1.817 1.349 1682190 3.135
Alameda 1.408 1.969 1.186 1416006 2.757
San Joaquin 1.390 0.771 1.581 544827 3.827
Riverside 1.380 1.404 1.395 1511034 3.179
Santa Clara 1.282 1.223 1.361 1652871 3.081
Orange 1.275 0.953 1.483 2803924 3.216
San Diego 1.228 1.623 0.989 2716820 2.616
San Mateo 1.192 0.841 1.311 696711 3.252
Ventura 1.131 1.150 1.189 739985 2.729
Sacramento 1.105 1.250 0.966 1198004 2.702
Contra Costa, Solano 1.065 1.612 0.868 1316047 2.330
Alpine, Amador, Calaveras, El Dorado &
Mono, Placer, Tuolumne 0.987 0.778 1.073 534773 3.136
Marin, Sonoma 0.953 1.144 0.909 683315 2.365

State adjusted difference in California
Counties CB’s Alter. 1 Alter. 2 DD II/DD
Imperial 4.269 4.928 4.085 125614 4.540
Kings 3.412 2.898 3.874 104834 4.291
Fresno, Madera, Mariposa 3.262 1.990 3.857 869960 4.884
Kern, Tulare 3.186 2.475 3.500 950411 4.550
Monterey, San Benito, Santa Cruz 2.995 2.496 3.244 652762 4.186
San Francisco 2.753 1.762 3.090 724551 4.475
Merced, Stanislaus 2.429 2.219 2.582 624309 3.668
Los Angeles 2.189 2.084 2.135 9014370 3.658
San Joaquin 2.060 1.417 2.259 523974 3.980
Sanluis Obispo, Santa Barbara 1.982 2.049 1.693 595458 3.087
Del Norte, Humboldt, Lake, Mendocino, Napa 1.968 1.970 1.913 393332 3.350
Inyo, San Bernardino 1.464 1.748 1.265 1629458 3.236
Riverside 1.344 1.369 1.360 1462999 3.283
Orange 1.276 0.944 1.491 2713751 3.323
San Mateo 1.228 0.866 1.351 674056 3.361
Santa Clara 1.137 1.076 1.219 1601952 3.179
Colusa, Glenn, Sutter, Tehama, Yolo 1.036 1.404 0.777 329003 2.780
Butte, Lassen, Modoc, Nevada, Plumas &
Shasta, Sierra, Siskiyou, Trinity, Yuba 0.972 1.530 0.513 606664 2.491
Alameda 0.920 1.496 0.691 1376961 2.836
Alpine, Amador, Calaveras, El Dorado &
Mono, Placer, Tuolumne 0.892 0.677 0.981 518002 3.238
Ventura 0.604 0.623 0.664 719791 2.806
San Diego 0.584 0.988 0.337 2645741 2.687
Sacramento 0.548 0.698 0.407 1165633 2.777
Contra Costa, Solano 0.112 0.672 −0.090 1285381 2.386
Marin, Sonoma 0.034 0.230 −0.011 667156 2.422
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