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Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-
Integer Programming Approach

Abstract
This paper proposes using nonlinear mixed-integer programming to solve the customized bundle-pricing
problem in which consumers are allowed to choose up to N goods out of a larger pool of J goods. Prior work
has suggested that this mechanism has attractive features for the pricing of information and other low-
marginal cost goods. Although closed-form solutions exist for this problem for certain cases of consumer
preferences, many interesting scenarios cannot be easily handled without a numerical solution procedure. In
this paper, we investigate the efficiency gains created by customized bundling over the alternatives of pure
bundling or individual sale under different assumptions about customer preferences and firm cost structure, as
well as the potential loss of efficiency caused by pricing with incomplete information about consumer
reservation values. Our analysis suggests that customized bundling enhances sellers’ profits and enhances
welfare when consumers do not place positive values on all goods, and that this consumer characteristic is
much more important than the shape of the valuation distribution in determining the optimal pricing scheme.
We also find that customized bundling outperforms both pure bundling and individual sale in the presence of
incomplete information, and that customized bundling still outperforms other simpler pricing schemes even
when exact consumer valuations are not known ex ante.
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Optimal Customized Bundle Pricing for Information Goods 

 

Abstract 

In this paper, we provide a model for choosing the optimal number of bundles and their prices 

in the context of designing markets for information goods. Selling bundled goods is a widespread 

phenomenon, and a recent paper by Bakos and Brynjolfsson (1999) showed that under conditions 

of zero marginal cost, and independent and identically distributed customer valuations, pure 

bundling is optimal for a multi-product monopolist. In this paper, we show, using a nonlinear 

programming framework and numerical analyses, that in many cases, even with iid customers and 

zero marginal cost, offering multiple customized bundles may be better. In cases with non-iid 

customers, offering different customized bundles is clearly optimal; a pure bundling approach may 

lead to significant loss of profit. 
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1. Introduction 

In this paper, we provide a model for choosing the optimal number of bundles and their prices 

in the context of designing markets for information goods. The emergence and rapid growth of the 

Internet has led researchers and information goods providers to rethink the economics of selling 

information goods. Many researchers have argued that such electronic distribution of information 

goods enables information goods providers to engage in more efficient and profitable pricing 

schemes.  For example, Bakos and Brynjolfsson (1999) showed that under certain conditions: zero 

marginal costs, and independent and identically distributed customer valuations for all goods, pure 

bundling (offering all goods for a fixed price) is optimal for a multiproduct monopolist.   

However, there are some practical difficulties associated with a pure bundling strategy. First, a 

large bundle of information goods may price out consumers with budget constraints. For example, 

when the information goods provider has 300 different kinds of goods and all customers have i.i.d. 

U(0,1) valuation on each good, by the law of large number, it is suggested that the provider should 

sell the pure bundle at a price of $150 and that almost all customers will be willing to spend this 

much!  But in reality, we would hardly expect that all customers will be willing to spend nearly 

$150 on a bundle of 300 different kinds of goods, many of which would not add any value at all. 

Second, valuable demand information may be obscured when all goods are sold in a whole bundle. 

Third, in reality, we may seldom incur situations where customer valuations for all goods are i.i.d. 

Customers usually have high variation in valuations and tastes.   

The i.i.d. assumption itself can be violated in many cases. For example, all people may not 

positively value all information goods (Chuang and Sirbu, 1999). Different people usually have 

very different tastes in consuming information goods; they only positively value some of the 

information goods that interest them. In addition to this reason of heterogeneous personal tastes, 
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due to budget (time, attention) constraints, and bounded rationality, customers can only consume a 

finite number of information goods, usually small. For example, we seldom read every article or 

column in the newspaper; the empirical study performed by King and Griffiths (1995) show that 

out of the 80 to 100 articles in an average journal, over 40% of those surveyed read no more than 

five articles. This, again, indicates that consumers only put positive values on some goods among 

all the goods available.  

Further, Hitt and Chen (2001) show that offering one or more customized bundles (and letting 

customers self-select goods up to a certain number) can further increase a firm’s profit while 

reducing inefficiency when sellers face heterogeneous demand, e.g. when customers do not 

positively value all goods or face budget constraints. However, they could only find optimal 

bundle sizes and prices under certain customer valuation functions (e.g. for valuations with the 

single-crossing property). Unfortunately, this property seldom holds in reality, and so it is still 

unclear to many information goods providers how to sell and price their goods in practice. In 

particular, it is important to decide how many bundles to offer, and at what price(s) to charge given 

various kinds of valuation functions.  

A previous paper (Hanson and Martin, 1990) tried to solve the bundle pricing problem for a 

product line as a mixed integer linear program. A significant difference between our framework 

and theirs is that they assume that supplying customers with bundles cost money; i.e. there is a 

non-zero marginal cost for producing items. This assumption does not hold true for most 

information goods.   Further, their assumptions lead to a formulation where there is an exponential 

growth of variables with the number of goods.  Thus, the best they can do is to solve examples with 

no more than 21 goods. Given the fact that almost all, if not all, information goods providers offer 

much more than 21 goods, this technique may be inappropriate for information goods providers. In 

addition, they do not consider menu costs for offering multiple bundles.  
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This paper aims at providing guidance to a monopolist selling a large number of information 

goods on how to optimally sell and price their goods by formulating the problem as a nonlinear 

mixed integer program based on the concept developed by Hitt and Chen’s (2001) customized 

bundling strategy. We note that pure bundling is an extreme example of customized bundling, and 

thus is treated as a special case in our model. Our model can accommodate not only any kind of 

demand distribution or consumer valuation functions, but also the marginal bundle cost of a bundle 

and the menu cost which may occur in offering multiple bundles. Moreover, since the variables in 

our model grow only linearly with the number of goods, our model can be solved for any feasible 

number of information goods. Given any demand structure and cost structure, our model can 

determine how many bundles an information goods provider should offer, and at what price it 

should charge for each bundle.   

We use pure bundling (selling all goods at a fixed price) and individual sale (selling each good 

at its profit maximization price) as benchmark to demonstrate the performance of the solution from 

our model. Overall, our numerical analyses suggest that, under independently and identically 

distributed (i.i.d.) customer valuations and zero marginal cost, pure bundling is optimal, as shown 

in a recent paper by Bako and Brynjolfsson (1999), however, pure bundling is only one of the 

optimal solutions. In cases with non i.i.d. customers, the solution given by our model (i.e., offering 

different customized bundles) outperforms pure bundling and selling individual goods. In addition, 

number of bundles to be offered is a decreasing function of both bundle costs and menu costs.  

We introduce our model formulation in section 2, and discuss the solution approach in section 

3. Numerical results and case analysis are presented in section 4, followed by concluding remarks 

in section 5. 
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2. Problem Formulation 

In this section, we formulate the optimal bundling and pricing problem for an information 

goods provider that distributes J goods to I consumers. The model is developed from the seller’s 

perspective. The problem for the seller is to decide how many goods to include in each bundle, and 

how to price these bundles in order to maximize its profit subject to a set of consumer participation 

and incentive constraints. The problem for the buyer (i.e. customer) is to choose exactly what 

items go into each bundle. Following Stigler (1963), we assume that customer demand information 

is captured by a vector of reservation prices of the items that go into a bundle. Customers will want 

to maximize consumer surplus based on the difference between the total reservation price for items 

in a bundle, and the price they pay. The seller has take into account dimensions of the customer’s 

decision problem which appear as constraints in the seller’s problem.  

Note that the price is only determined by the size of the bundle and not its contents. For 

example, the seller might decide to bundle 3 CDs for $20.00, and the buyer will choose which 3 

CDs to buy. Different buyers could choose different CDs to buy. This is similar to what many CD 

and DVD clubs like Columbia House offer. There is an overhead cost for having bundles for sales. 

This overhead cost is due to the need by the provider to search and package different sizes of goods, 

and to keep track of a heterogeneous demand set of the customers. The more bundles offered in a 

sales menu, the larger the overhead cost. In addition, the cognitive costs consumers face when 

evaluating large sets of offers (Shugan, 1980) are also one motivation for menu costs. Thus, the 

number of bundles for sale will be limited. Therefore the provider/seller of bundles will try to 

maximize revenue net of the cost of providing a menu of bundles.  

We will model the problem of optimizing the customized bundles for information goods and 

pricing them as a nonlinear integer mathematical programming problem. Table 1 provides the 
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definitions of all the parameters and variables used in this model. The primal problem is given by: 

Table 1 Definitions of the parameters and variables used in the model 

Given Parameters 
: Bundle cost of creating a bundle of  goods. This would include the sum of marginal 

      production cost, distribution cost, transaction cost, any binding cost, etc. We assume 
      this is the s

jB j

ame for any kind of bundles of  goods.j
 

: There are total  potential customers in our target market.I I  
: The vendor has total  different kinds of information goods in hand.J J  
: Marginal menu cost if we add one more bundle choice on the menu.M  
: Total reservation price of customer 's top  favorite goods.ijR i j  

: Customer 's reservation price for his th favorite information goods.ikV i k  
Decision Variables 

: The price assigned to the bundle of  goods.jP j  

: Consumer surplus of customer .iS i  
: The decision variable which is 1 if consumer  chooses to buy the bundle of  goods
 and 0 otherwise.

ijX i j
 

( )1,...,

: The decision variable which is 1 if the vendor chooses to offer the bundle of  goods

on the menu and 0 otherwise. # of customized bundles offered

j

jj J

Y j

Y
=

=∑
 

 

Primal Problem IP: 
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( )

1,... 1,..., 1,...,

1,...,

Max ( - ) -                    (1)

s.t.
, 1,..., ;  1,...,             (2)

- , 1,..., ;  1,...,                         (3)

( - )

j j ij ji I j J j J

ij ikk j

i ij j j

i ij j ijj

P B X MY

R V i I j J

S R P Y i I j J

S R P X

= = =

=

=

= = =

≥ = =

=

∑ ∑ ∑

∑

1,...,

1,...,

, 1,...,                  (4)

( - ) 0, 1,..., ;  1,...,             (5)

1 ,  1,...,                                          (6)

,  1,..., ;  1,...,                

J

ij j ij

ijj J

ij j

i I

R P X i I j J

X i I

X Y i I j J
=

=

≥ = =

≤ =

≤ = =

∑

∑
                     (7)

0, 1,...,                                                      (8)
0, 1,...,                                                    (9)
0 or 1, 1,..., ;  1,...,        

i

j

ij

S i I
P j J
X i I j J

≥ =
≥ =

= = =                (10)
0 or 1, 1,...,                                       (11)jY j J= =

 

The objective function (1) is to maximize the total profits of the vendor. This is calculated by 

the summation of profit obtained from each customer minus the menu cost of the vendor. Each 

constraint is explained in the following. 

Constraint (2) defines Rij as the total reservation price of customer i's top j favorite goods. In 

regards to the assumption on complete information of consumer reservation price vector, such 

truth-telling could be implemented through mechanisms like the Groves-Clarks mechanism. 

Constraint (3) ensures that each customer maximizes her surplus Si. This is achieved by requiring 

the final consumer surplus is no less than the consumer surplus from any other bundle offered by 

the seller (incentive compatible constraints). Constraint (4) defines consumer surplus as the 

difference between customer i’s reservation price and the market price of the bundle she chooses. 

Constraint (5) ensures that consumer will choose a bundle only when her surplus on this bundle is 

nonnegative (individual rationality constraints); otherwise, she won’t choose this bundle. 

Constraint (6) ensures the assumption that each customer will purchase exactly one bundle, or 

won’t make a purchase at all. This constraint could be relaxed and this relaxation would further 
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favor our customized bundle setting. Constraint (7) ensures that only when the vendor offers the 

bundle of j goods, customers can choose this kind of bundle; otherwise, no such choice is available. 

Constraint (8) and (9) are nonnegative constraints for consumer surplus and bundle price. 

Constraint (10) enforces the integer property of the decision variables with respect to consumer 

purchasing, and constraint (11) enforces the integer property of the decision variables with respect 

to bundle offering. 

We will now provide a method to solve this problem for cases where the number of potential 

items that can be bundled is great. 

 

3. Solution Approach 

3.1. Lagrangean Relaxation 

By using the Lagrangean relaxation method, we can transform the primal problem (IP) 

mentioned above into the following Lagrangean relaxation problem (LR) where constraint (6) is 

relaxed: 

Problem LR 

( )

1,..., 1,..., 1,..., 1,..., 1,...,

1,...,

( )=Max ( ) + (1 )       (12)

s.t.
, 1,..., ;  1,...,             (13)

- , 1,..., ;  1,...,                  

j j ij j i iji I j J j J i I j J

ij ikk j

i ij j j

a P B X MY a X

R V i I j J

S R P Y i I j J

φ
= = = = =

=

− − −

= = =

≥ = =

∑ ∑ ∑ ∑ ∑

∑

1,...,

       (14)

( - ) , 1,...,                  (15)

( - ) 0, 1,..., ;  1,...,             (16)
,  1,..., ;  1,...,                                     (17)

0, 1,...,   

i ij j ijj J

ij j ij

ij j

i

S R P X i I

R P X i I j J
X Y i I j J
S i I

=
= =

≥ = =

≤ = =

≥ =

∑

                                                   (18)
0, 1,...,                                                    (19)
0 or 1, 1,..., ;  1,...,                        (20)

0 or 1, 1,...,

j

ij

j

P j J
X i I j J
Y j

≥ =

= = =

= =                                        (21)J

 9 



 

Since we relax only one constraint here, we have one corresponding Lagrangean Multiplier ai 

which is nonnegative because the constraint we relaxed is an inequality constraint. 

Note that we can reorder the terms in objective function of Problem LR and obtain the 

following objective function: 

1,..., 1,..., 1,...,
( )=Max [ ( ) ]+        (22)j j i ij j ij J i I i I
a P B a X MYφ

= = =
− − −∑ ∑ ∑ a  

This nonlinear integer programming problem LR is complicated and hard to solve. But we have 

the following observations. First, given constraint (15) and (16), constraint (18) is redundant, so 

we can remove it. Second, constraint (15) simply defines the consumer surplus. If we replace Si in 

constraint (14) with ∑k=1,…,J(Rik-Pk)Xik, we can remove constraint (15). After doing these, we will 

get an equivalent problem as following: 
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Problem LR 

( )

1,..., 1,..., 1,...,

1,...,

1,...,

( )=Max [ ( ) ]+    (23)

s.t.
, 1,..., ;  1,...,                       (24)

( - ) - , 1,..., ;  1,...,           (25)

j j i ij j ij J i I i I

ij ikk j

ik k ik ij j jk J

a P B a X MY

R V i I j J

R P X R P Y i I j J

φ
= = =

=

=

− − −

= = =

≥ = =

∑ ∑ ∑

∑
∑
( - ) 0, 1,..., ;  1,...,                       (26)

,  1,..., ;  1,...,                                               (27)
0, 1,...,                                                 

ij j ij

ij j

j

R P X i I j J
X Y i I j J
P j J

≥ = =

≤ = =

≥ =               (28)
0 or 1, 1,..., ;  1,...,                                   (29)

0 or 1, 1,...,                                                   (30)
ij

j

X i I j J
Y j J

= = =

= =

a

 

Note LR can be decomposed into J different problems except for the complicated constraint 

(25). Because the left-hand side is summed over J, one cannot decompose this particular constraint. 

We will drop constraint (25) and solve a relaxed version of LR, which we call Problem R.  

Problem R 

1,..., 1,..., 1,...,

1,...,

( )=Max [ ( ) ]+    (31)

s.t.
, 1,..., ;  1,...,                       (32)

( - ) 0, 1,..., ;  1,...,                       (33)

j j i ij j ij J i I i I

ij ikk j

ij j ij

ij

V a P B a X MY a

R V i I j J

R P X i I j J
X Y

= = =

=

− − −

= = =

≥ = =

≤

∑ ∑ ∑

∑

,  1,..., ;  1,...,                                               (34)
0, 1,...,                                                               (35)
0 or 1, 1,..., ;  1,...,                 

j

j

ij

i I j J
P j J
X i I j J

= =

≥ =

= = =                   (36)
0 or 1, 1,...,                                                   (37)jY j J= =

 

It is not hard to see that Problem R is actually the summation of J independent subproblems 

(one for each j, as shown in (38)-(44)) plus a constant term ∑i=1,…,I ai.  
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Subproblem j 

1,...,

1,...,

Max ( )                      (38)

s.t.
, 1,...,                (39)

( - ) 0, 1,...,                (40)
,  1,...,                                     

j j i ij ji I

ij ikk j

ij j ij

ij j

P B a X MY

R V i I

R P X i I
X Y i I

=

=

− − −

= =

≥ =

≤ =

∑

∑

   (41)
0,                                                      (42)
0 or 1, 1,...,                            (43)

0 or 1,                                          (44)

j

ij

j

P
X i I
Y

≥

= =

=

 

Each of such subproblem j is actually equivalent to the following setting. Given each 

customer’s reservation price for the bundle of j goods (constraint (39)), we are trying to maximize 

vendor’s total profit by deciding whether to offer the bundle of j goods (i.e. determine Yj) and the 

price of the bundle Pj. The fixed cost of offering the bundle j is M while the marginal bundle cost to 

provide this bundle to customer i is Bj + ai (ai is Lagrangean Multiplier). Again, each customer is 

assumed to maximize her surplus and she is willing to purchase the bundle (set Xij to 1) when the 

surplus is nonnegative (constraint (40)). 

 

3.2. Algorithmic Intuition 

Under this Subproblem j, the vendor should offer a bundle of j goods if the maximum revenue 

∑i=1,…,I (Pj - Bj - ai)Xij achievable by providing this bundle is larger than the fixed cost M; in 

addition, the vendor is willing to sell the bundle with j goods only when it is profitable (i.e. Pj - Bj 

- ai ≥ 0). 

Keeping these in mind, we first try to find the most profitable price Pj and use it to calculate the 

maximum revenue ∑i=1,…,I (Pj - Bj - ai)Xij for each subproblem j. If the resulting revenue is larger 

than M, the vendor should offer the bundle by setting Yj = 1. We then set Xij of those profitable and 
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willing-to-buy customers to 1, others to 0, and the optimal objective function value of this 

subproblem is equal to (maximum revenue - M). On the other hand, if the maximum revenue 

achievable is smaller than M, the vendor should not offer the bundle. We then simply set all 

decision variables Pj and Yj to 0, which in turn set all Xij to zero, and the optimal objective function 

value of this subproblem is equal to 0. 

To derive the most profitable price Pj, let’s first sort the reservation price Rij of all potential 

customers in descending order and call them R1, R2,…, RI. Obviously, if we set the price above R1, 

no customer will be willing to buy and the maximum revenue achievable is 0. So setting the price 

above R1 is not profitable. Now assume we set the price between Rk and Rk+1 (Rk > Rk+1), then at 

most k customers will be willing to buy. We soon discover that if we raise the price a bit to Rk, the 

total number of willing-to-buy customers won’t change while the maximum profit achievable will 

rise for sure. In other words, any price setting between Rk and Rk+1 is no better than Rk, and when 

considering the best price, we only have to take R1, R2,…, RI  as possible candidates. To this point, 

we successfully decrease the set of possible optimal pricing Pj from a continuous set to a discrete 

and finite one. Since the set is finite (with size I), we can simply compare the maximum revenue 

achievable by each possible price and pick up the best one as our final choice. 

After the above analysis, we can design the following algorithm to solve Problem R, the further 

relaxed problem of Problem LR where constraint (25) is removed. 

Step 1. ∀ j=1,…,J 

 { choose the best price Pj among R1j, R2j,…, RIj by comparing the maximum revenue    

        achievable; 

    if maximum revenue ≥ M, set Yj = 1 and which in turn determines Xij for each i;  

   else set Pj, Xij, and Yj to 0 } 
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Step 2. Add the objective function value of J subproblems together plus a constant term 

∑i=1,…,Iai. This is the objective function value of Problem R.  

 

3.3. The Dual Problem and the Subgradient Method 

According to the algorithm proposed above, although we could not directly solve the 

Lagrangean relaxation problem Problem LR, we can successfully solve Problem R. According to 

the weak Lagrangean duality theorem, the optimal objective value of Problem LR is an upper 

bound of the optimal objective value of Primal Problem IP. And since Problem R is a relaxation of 

Problem LR, the optimal objective value of Problem R is also an upper bound of the optimal 

objective value of IP. We then construct the following dual problem to calculate the tightest upper 

bound and solve the dual problem by using the subgradient method. More details about the 

subgradient method can be found in (Bertsekas, 1999). 

min  V(a)                   (D)    

s.t. a ≥ 0. 

where V(a) is Problem R from Page 10. 

Let the vector S be a subgradient of V(a) at (a1, a2,…, aI). In iteration k of the subgradient 

optimization procedure, the multiplier a is updated by ak+1 = ak - αkSk where Sk = 1 - ∑j=1,…,JXij. 

The step size αk is determined by 

2
( )k h

k

k

V a
S

φα β −
=  

where φ h is the primal objective value, which we get from a heuristic solution (a lower bound 

of the optimal primal objective value), and β is a constant, 0 ≤ β ≤ 2. The initial value of the 
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multiplier vector a is chosen to be the 0 vector and φ h is always updated to the best lower bound 

we can get so far. 

After the implementation of the subgradient optimization procedure, we got an upper bound on 

the optimal objective value of the primal problem. But as expected, no primal feasible solution was 

found in the process due to the structure and complexity of this bundle pricing problem. In the 

following section, we try to utilize the dual solutions to develop some heuristic algorithm to get the 

primal feasible solutions. 

 

3.4. Getting Primal Feasible Solutions 

For each iteration of the subgradient method, we get a set of dual feasible solutions which is 

affected by the updating Lagrangean Multiplier a. But because we relax constraints (6) and (25) 

above, the dual feasible solutions we get for Problem R may not be feasible for the original primal 

problem. However, it is possible to obtain a good primal solution using heuristics which start from 

a fairly suboptimal dual solution. We will now describe this heuristic, which we can use to 

generate a sequence of primal feasible solutions by adjusting the sequence of dual feasible 

solutions we get from the subgradient method.     

Algorithm “Bundling”: 

Step 1. For each potential customer i, choose the bundle k (only those with Yj = 1) with the 

largest positive surplus. Set Xik to 1, and other Xij to 0. (This enforces constraint (25) 

and constraint (6)).  

Step 2. For each offered bundle (those with Yj = 1), calculate its revenue achieved ∑i=1,…,I (Pj 

- Bj)Xij. Choose the bundle k with the smallest revenue. If the revenue is smaller than 

M, we don’t offer this bundle by setting the corresponding Pj, Xij, and Yj to 0 and go 
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to step 1. 

Step 3. Calculate consumer surplus Si according to constraint (4). 

 

4. Numerical Results and Case Analysis 

For our case analyses, we examined the cases when customer’s reservation price for the goods 

is i.i.d. as well as when it is non-i.i.d. We compare the optimal customized bundle case (our model) 

to both the pure bundling strategy, and the case where the items are sold individually and the 

customers choose to do the bundling themselves based on their reservation prices. We also 

examined the sensitivity of the number of optimal bundles to the menu cost and marginal bundle 

cost.  

 

4.1. When Customer’s Reservation Price for the Goods is i.i.d. 

In this section, we examined the cases when customer valuation for each good is i.i.d.  (Table 

2). For cases 1 to 4, we assume the customer valuation for each good is i.i.d. uniform distribution 

between 0 and 1, and for cases 5 to 8, we assume the customer valuation for each goods is i.i.d. 

exponential distribution with parameter 1. For each of these test sets, we change the number of 

potential customers I and the number of goods J. Without loss of generality, we set number of 

goods J as 30% of the number of potential customers I; in these cases, we also set marginal menu 

cost M and marginal bundle cost Bj as 0. The sensitivity of the number of optimal bundles to the 

menu cost and marginal bundle cost will be discussed in section 4.3 and 4.4. 

The row “# of customized bundles offered” in Table 2 shows the number of different bundles to 

be offered based on our algorithm. “Best customized bundling profit,” “Best pure bundling profit” 

and “Best individual sale profit” list the net profit that could be made with our customized 
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bundling strategy, pure bundling strategy (as shown in Bakos and Brynjolsson, 1999) and 

individual sale strategy (set a profit maximization price for a single good; customers will buy many 

goods so long as her individual reservation price is higher than the set price). “Profit improvement 

from pure bundling to customized bundling” and “Profit improvement from individual sale to 

customized bundling” compares the customized bundling strategy to pure bundling and individual 

sale strategies respectively.  

From Table 2, it is clear that when customer valuation is i.i.d., the customized bundling 

strategy will result in a number of different bundles being offered. The profit is no worse than the 

pure bundling strategy, and both of these strategies strictly dominate the individual sale strategy, 

suggesting that pure bundling strategy is not the unique optimal solution for the iid cases, the 

customized bundling strategy is also one of the optimal solutions. Note that in Table 2, although 

the profits we get from our customized bundling strategy and the pure bundling strategy are not 

exactly the same, the differences are negligible and are due to randomly generated customer 

reservation prices and the convergence behavior of our algorithm.1    

 

Table 2 Summary --- Total profit of the customized bundling problem (i.i.d. cases) 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 
Customer’s reservation price for the 

goods Vik 
i.i.d. 

U(0,1) 
i.i.d. 

U(0,1) 
i.i.d. 

U(0,1) 
i.i.d. 

U(0,1) 
i.i.d. 

Exp(1) 
i.i.d. 

Exp(1) 
i.i.d. 

Exp(1) 
i.i.d. 

Exp(1) 
# of potential customers I 100 200 500 1000 100 200 500 1000 

# of goods J 30 60 150 300 30 60 150 300 
# of customized bundles offered 14 6 4 11 2 7 11 4 
Best customized bundling profit 1208.3 5119.3 32836.7 138533.5 2155.2 9368.2 63333.8 263281.6 

Best pure bundling profit 1197.4 5078.3 32960.3 138930.6 2157.2 9394.7 63510.9 263633.9 
Best individual sale profit 753.9 2970.2 18626.6 75219.8 1114.8 4439.9 18667.9 110767.4 

Profit improvement from pure 
bundling to customized bundling 

0.9 % 0.8 % -0.3 % -0.3 % 0 % -0.2 % -0.2 % -0.1 % 

Profit improvement from individual 
sale to customized bundling 

60.3 % 72.4 % 76.3 % 84.2 % 93.3 % 110.5 % 127.1 % 137.7 % 
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4.2. When Customer’s Reservation Price for the Goods is Non-i.i.d. 

From cases 1 to 4 in Table 3, we considered non-i.i.d. customer valuations where consumers 

positively value only a portion of all information goods: for each customer i, we randomly pick an 

integer k between 1 and J for her. This k presents the number of information goods in the pool this 

customer will positively value. We then generate k random number out of U(0,1) to represent these 

positive values. For the remaining goods, we assume the customer will only put zero value on 

them.  

As shown in Table 3, when customer valuation is non-i.i.d., offering multiple customized 

bundles is always more profitable than pure bundling and individual sales. And from cases 3 and 4, 

we know that pure bundling strategy is no longer always better than individual sale strategy. It is 

also interesting to note that the profit improvement of customized bundling over pure bundling 

strategy tends to increase as the size of the problem increases (from case 1 to case 3). 

 

Table 3 Summary --- Total profit of the customized bundling problem (non-i.i.d. cases) 

 Case 1 Case 2 Case 3 Case 4 
Customer’s reservation price for the goods Vik Non i.i.d. Non i.i.d. Non i.i.d. Non i.i.d. 

# of potential customers I 100 200 500 1000 
# of goods J 30 60 150 300 

# of customized bundles offered 8 13 15 16 
Best customized bundling profit 432.4 1884.6 11932.2 43169.6 

Best pure bundling profit 379.9 1594.4 9809.4 37385.1 
Best individual sale profit 361.1 1522.2 9855.0 37447.8 

Profit improvement from pure bundling to customized bundling 13.8 % 18.2 % 21.6 % 15.5 % 
Profit improvement from individual sale to customized bundling 19.8 % 23.8 % 21.1 % 15.3 % 

 

4.3. Sensitivity of the Number of Optimal Bundles to the Menu Cost 

We also examined the sensitivity of the number of optimal bundles to the menu cost (both i.i.d. 

and non-i.i.d. cases). For each of these, two test examples are presented here. For the i.i.d. cases, as 

                                                                                                                                                              
1 Since we only run a finite number of iterations; but as the number of iterations increases, the difference will shrink. 
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shown in Fig. 1, test example 1 is i.i.d. Exp(1) with I = 120, J = 60, Bj = 0.1 while test example 2 is 

i.i.d. U(0,1) with I = 200, J = 30, Bj = 0. For the non-i.i.d. cases, as shown in Fig. 2,  test example 1 

is non-i.i.d. with I = 1000, J = 100, Bj = 0.1 while test example 2 is i.i.d. U(0,1) with I = 200, J = 

100, Bj = 0.1.  

From Fig. 1 and Fig. 2, we can see that when menu cost increases, the vender should decrease 

the number of bundles offered, no matter the customer valuation is i.i.d. or not. As also evident 

from the figure, i.i.d. cases are much more sensitive to the menu cost, in the sense that the number 

of optimal bundles drops faster with small increase of menu cost, and therefore we use different 

scales in Fig. 1 and Fig. 2. Interestingly, even when the menu cost is zero, our customized bundling 

strategy will not include all kinds of possible bundles, but only chooses to offer a reasonably small 

number of choices. For example, in test example 2 of Fig. 2, our customized bundling strategy 

chooses to offer the bundles of size 1, 2, 3, 5, 11, 14, 29, 49, and 100 with 13.6 % profit 

improvement from the pure bundling strategy. Note that this is only 9 % of the 100 possible bundle 

choices. 
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Figure 1.  Relationship of Number of Bundles to Menu Cost (i.i.d. customers).  
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Figure 2.  Relationship of Number of Bundles to Menu Cost (non i.i.d. customers). 

 

4.4. Sensitivity of the Number of Optimal Bundles to the Marginal Bundle Cost 

In this section, we consider the relationship between the number of optimal bundles and the 

marginal bundle cost Bj. Since if marginal bundle cost is increasing in number of goods in the 

bundle (when marginal production cost for each good is non-zero), pure bundling is clearly worse. 

We consider the case when the marginal production cost for each good is zero and that marginal 

bundle cost Bj is the same for any kind of bundles for vendors, even individual sales.2 This is the 

case when marginal production cost for each good is zero, and marginal bundle cost consists of 

only transaction cost or distribution cost which is independent of number of goods in the bundle.3 

When the marginal bundle cost is near zero, the vender is willing to provide several different sizes 

of bundles, as shown in Table 1 and 2. But when the marginal bundle cost is high, the vendor will 

have less incentive to sell small size bundles. Because only when the size of the bundle is large, the 

customers will attach large enough valuation for the bundle, which will then in turn gives the 

vender some room to set a profitable price. As the marginal bundle cost increases to some point, 

                                                 
2 This can be the case when marginal bundle cost is dominated by distribution cost or transaction cost associated with 
the bundle rather than marginal production cost for each good in the bundle.  
3 For example, a CD with one song in it and with 10 songs in it may have the same marginal bundle cost, since the 
marginal cost for copying one more song to the CD is negligible, and most of the bundle cost arises from the CD (the 
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the vender will be only willing to offer the pure bundle as this is the only profitable bundle. 

We demonstrate this idea with a non-i.i.d. case with I = 100, J = 30, and M = 0 in Table 4. We 

can clearly see that as marginal bundle cost increases, both the number of optimal bundles and the 

profit decrease, and our customized bundling strategy will get the same results as the pure 

bundling strategy when the marginal bundle cost is large enough.     

Table 4.  Relationship of number of optimal bundles to marginal bundle cost 

 Bj = 0 Bj = 5 Bj = 10 Bj = 15 
# of customized bundles offered 7 4 3 1 
Best customized bundling profit 432.4 161.5 37.9 3.2 

Best pure bundling profit 379.9 155.3 36.0 3.2 
Best individual sale profit 361.1 0 0 0 

Profit improvement from pure bundling to customized bundling 13.8 % 4.0 % 5.2 % 0 % 
Profit improvement from individual sale to customized bundling 19.8 % N.A. N.A. N.A. 

 

5. Concluding Remarks 

In this paper we demonstrate how to solve the customized bundling pricing problem by 

determining what bundle size(s) to offer and at what price(s) for a monopolist selling a large 

number of information goods. This research not only adds to the information goods pricing 

literature but also is of high practical use in guiding firms how to bundle and price information 

goods given their demand and cost structure. 

Our model can accommodate any kind of demand distribution or valuation function. Moreover, 

we consider not only the marginal bundle cost of a bundle but also menu cost for offering one more 

bundle. Given that the variables in our model grow only linearly with the number of goods, our 

model can solve any feasible number of information goods and can determine how many bundles 

an information goods provider should offer and what price it should charge for each bundle. The 

numerical analyses show that when customer valuation is i.i.d., pure bundling is one of the optimal 

                                                                                                                                                              
distribution media) itself. 
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solutions. When, however, customer valuation is non-i.i.d., offering multiple customized bundles 

is a better choice. We also demonstrate the sensitivity of the number of optimal bundles to the 

menu cost as well as marginal bundle cost and show that number of bundle offered is a decreasing 

function of menu cost and marginal bundle cost. 

Our model also offers a mechanism to decide whether we should add a certain good to the 

selection pool from which customers could select up to a certain number of goods. Comparing the 

largest profits we can extract from selling a selection pool of n goods plus one more goods sold 

individually with selling a selection pool of n+1 goods directly could give us some insight into 

deciding which goods are better offered as a pool, and what goods are better sold individually. The 

research on this part in currently in progress. 

 

References 

1. Bakos, Y. and E. Brynjolfsson. “Bundling Information Goods: Pricing, Profits and 

Efficiency”. Management Science 45, 1999.  

2. Chuang, C. I. and M. A. Sirbu, “Optimal Bundling Strategy for Digital Information Goods: 

Network Delivery of Articles and Subscriptions”. Information Economics and Policy, 

1999. 

3. Bertsekas, D. Nonlinear Programming, Athena Scientific, pp. 609-618, 1999.  

4. Hanson, W. and R.K. Martin. “Optimal bundle pricing”. Management Science 36 (2), 

155-74,1990. 

5. Hitt, Lorin M. and Pei-Yu Chen. “Customized Bundling:  Effective Pricing Strategies for 

Goods with Low Marginal Costs”. Working paper, The Wharton School, 2001. 

 22



6. King, D.W. and J.M. Griffiths. “Economic Issues Concerning Electronic Publishing and 

Distribution of Scholarly Articles”. Library Trends 43 (4), pp. 713-740, 1995. 

7. Shugan, Steven M. “The Cost of Thinking”. Journal of Consumer Research 7 (September) 

99-111, 1980. 

8. Stigler, G. “United States vs Loew’s Inc.: A Note on Block Booking”, Supreme Court 

Review, Vol. 152, pp 2-12, 1963. 

 23


	University of Pennsylvania
	ScholarlyCommons
	3-2008

	Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-Integer Programming Approach
	Shin-yi Wu
	Lorin. M. Hitt
	Pei-yu Chen
	G. Anand Anandalingan
	Recommended Citation

	Customized Bundle Pricing for Information Goods: A Nonlinear Mixed-Integer Programming Approach
	Abstract
	Keywords
	Disciplines
	Comments


	Optimal Customized Bundle Pricing for Information Goods
	Shin-yi Wu
	Operations and Information Management
	The Wharton School
	G. Anandalingam
	August 2002
	Optimal Customized Bundle Pricing for Information Goods
	Abstract

	Given Parameters
	Decision Variables
	Problem LR
	
	
	
	
	
	
	
	References









