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Price Dispersion and Differentiation in Online Travel: An Empirical
Investigation

Abstract
Previous research has examined whether price dispersion exists in theoretically highly efficient Internet
markets. However, much of the previous work has been focused on industries with low cost and
undifferentiated products. In this paper, we examine the presence of price dispersion and product
differentiation using data on the airline ticket offerings of online travel agents (OTAs). We find that different
OTAs offer tickets with substantially different prices and characteristics when given the same customer
request. Some of this variation appears to be due to product differentiation—different OTAs specialize by
systematically offering different trade-offs between ticket price and ticket quality (minimizing the number of
connections, matching requested departure and return time). However, even after accounting for differences
in ticket quality, ticket prices vary by as much as 18% across OTAs. In addition, OTAs return tickets that are
strictly inferior to the ticket offered by another OTA for the same request between 2.2% and 28% of the time.
Overall, this suggests the presence of both price dispersion and product differentiation in the online travel
market.
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Price Dispersion and Differentiation in On-Line Travel:  

An Empirical Investigation  

Abstract 

Previous research has examined whether price dispersion exists in theoretically highly efficient 

Internet markets.  However, much of the previous work has been focused on industries with low 

cost and undifferentiated products.  In this paper, we examine the presence of price dispersion 

and product differentiation using data on the airline ticket offerings of online travel agents 

(OTAs).  We find that different OTAs offer tickets with substantially different prices and 

characteristics when given the same customer request.  Some of this variation appears to be due 

to product differentiation -- different OTAs specialize by systematically offering different 

tradeoffs between ticket price and ticket quality (minimizing the number of connections, 

matching requested departure and return time).  However, even after accounting for differences 

in ticket quality, ticket prices vary by as much as 18% across OTAs.  In addition, OTAs return 

tickets that are strictly inferior to the ticket offered by another OTA for the same request between 

2.2% and 28% of the time.  Overall, this suggests the presence of both price dispersion and 

product differentiation in the online travel market. 
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1. Introduction 

Since the beginning of Internet commerce, the impact of the Internet on pricing and 

competition has been actively debated by both practitioners and academics.  Some authors have 

argued that the increasing availability of price and product information in on-line markets will 

create highly competitive, “friction free” commerce.  For example, Combes and Patel (1997) 

describe the customer environment for Internet-based travel services: 

“...a whole new level of convenience and ubiquity to the shopping experience.  Consumers are 
empowered with the ability to price and compare features with ease.  They can inquire about 
various aspects of a travel destination without having to speak to a travel agent… or they can 
quickly and simply find the lowest fare to Las Vegas.” (italics added) 

These types of arguments have also been supported theoretically and by case examples in the 

context of Internet commerce (Malone, Yates and Benjamin 1987; Bakos 1991, 1997; Clemons 

and Hitt, 2001) and are consistent with predictions of the economic theory of search as search 

costs converge to zero (see e.g., Stigler, 1961; Salop and Stiglitz, 1976).  

In contrast, there is an emerging stream of research that suggests that there is some 

observed variation in prices across retailers (“price dispersion”) in Internet markets, even for 

commodities like books and music compact discs (CDs) (Smith and Brynjolfsson, 2001;  Bailey, 

Brynjolfsson and Smith, 1997).  Others have begun to investigate specific types of market 

imperfections that could lead to these results, such as customer learning (Johnson et. al., 2000), 

brand loyalty (Chen and Hitt, 2000), or systematic variations in the nature of products offered in 

online versus regular channels (Lee, 1998).  Understanding the presence or absence of 

exploitable imperfections in Internet markets and their implications for pricing strategy is critical 

for the long-term viability not only for Internet retailers, but also for firms that must compete in 

environments with increasingly informed consumers. 
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In this paper, we contribute to this latter stream of research in several specific ways.  

First, we consider the presence or absence of price dispersion in a complex product with multiple 

quality attributes.  Most previous work on price dispersion in Internet markets has been done on 

commodities such as books and CDs.  Second, because we consider complex products, we are 

able to investigate the role of product differentiation, where producers offer different 

combinations of product features to attract different customer segments, in contributing to price 

variation.   

We choose the online travel agent industry as the setting for study because travel is an 

important online market and the product is complex, yet fully describable, enabling products of 

differing qualities to be objectively and accurately compared. Using software agents, we made 

over 900 ticket requests (drawn from actual travel patterns at a traditional travel agent) 

identically and simultaneously to five online travel agents – four popular publicly available 

OTAs and one proprietary system.  We then examine the characteristics of the ticket 

recommendations they provided in response to our requests.   

Our data indicate that OTAs systematically provide ticket recommendations with 

different prices and qualities, and with average price s varying as much as 28% across OTAs for 

the same ticket requests.  When we account for variation in prices due to differences in quality 

using a hedonic price model, the price variation drops to about 18% across OTAs, suggesting 

some effects of product differentiation.  This is further supported by the observation that OTAs, 

given the same ticket request, return a ticket unambiguously inferior to one offered by another 

OTA between 2.2% and 28% of the time, depending on which two OTAs are compared.   Our 

results suggest that this industry is characterized by both product differentiation and random 

error in product selection.  



 

- 3 - 

2. Pricing in Online Travel 

2.1. The Online Travel Market 

Online travel agents (OTAs) provide a point of contact via the World Wide Web (WWW) 

to enable customers to search for appropriate flights and fares and make a selection, which is 

then booked and ticketed by the OTA.  There are dozens of OTAs representing on-line travel 

agents, airlines, traditional travel agents, and computerized reservation systems, although the top 

two agents accounted for 60% of all traffic in 2001.  According to Forrester research, total on-

line travel sales are growing 60% per year and are expected to total 12% of the travel market by 

2003. 

The operational process of an OTA is straightforward.  It collects information from the 

customer, principally departure and arrival cities (airports) and preferred flight times.  The OTA 

then takes this request and some additional parameters set by the OTA and submits these to a 

computerized reservation system (CRS), which searches for relevant flights from the collection 

of offerings from all airlines.  The agent then takes the collection of flights returned by the CRS, 

selects one or more flights for presentation to the customer and sorts the final output.  When the 

customer chooses to purchase a ticket, the OTA processes the booking with the CRS and 

receives a commission from the airline in return.1  An important feature of this process is that 

OTAs have to pay the CRS a fee for each request,2 but only collect revenue if the customer 

books a flight.  Since only 1-5% of “browsers” actually make a reservation (Machlis, 1997), 

targeting segments of customers to increase purchase probability is crucial to maximizing profits. 

3.2 Application of the Theory of Search and Product Differentiation to OTAs 

Competing OTAs have to take into account the search behavior of their customers.  It has 

been argued that greater market transparency in electronic markets would lead to greater price 
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competition (Bakos, 1991; Benjamin and Wigand, 1995).  With vanishing search costs, 

competing firms offering undifferentiated products have to charge the same competitive price 

(Bertrand 1883).  Undoubtedly, electronic markets on the Internet have made it far easier for 

consumers to search for services from various OTAs.  However, initial evidence (Bailey et al., 

1997; Bailey, 1998; Smith and Brynjolfsson, 2001) suggests that this does not hold for near-

commodity products like books, CDs, and software.  While we cannot determine whether all 

costs associated with online search have disappeared, we can certainly observe if market 

participants behave as if search costs were zero, by utilizing results from well-established 

economic models. 

In addition, the OTA environment has several unique competitive characteristics.  First, 

OTAs can only select tickets from the (possibly large) available set offered from the airlines – 

they do not have the ability to alter prices or other product features.  OTAs compete for 

consumers by striving to select the best available tickets according to their preferences, 

attempting on the consumers’ behalf to offset non-competitive pricing by airlines (Borenstein, 

1991).   However, serving potential customers is not without costs for OTAs.  Exhaustive search 

through computer reservation systems may prove to be too costly, hence, OTAs may choose to 

specialize and serve a limited number of segments.  Any systematic variation in ticket selection 

would imply a horizontal form of differentiation among OTAs. 

Second, because we are considering a good with multiple characteristics and 

heterogeneous consumer preferences over these characteristics, all comparisons must be made 

relative to one or more specifications of preferences. While there can be a wide range of 

consumer preferences for airline tickets, we follow industry practice of considering two specific 

groups:  price-sensitive leisure travelers and time-sensitive business travelers.  By offering 
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multiple choices for a given request, OTAs can attempt to serve multiple customer groups 

simultaneously. 

The central question we analyze in this paper is whether OTAs, given the same request, 

provide the same ticket recommendations.  To the extent that this is not true, we further try to 

distinguish between two alternative explanations:  1) that differing ticket selection is due to 

systematic attempts at product differentiation, and 2) that differing ticket selection represents 

errors on the part of the OTAs.  The economic theory of search suggests that when customers are 

well informed about available prices and face few barriers to searching multiple providers, 

equilibrium prices will converge to marginal cost, eliminating price dispersion, even in markets 

where goods are horizontally differentiated (Bakos, 1997).3  In our setting, given that there are 

few barriers to searching multiple travel sites and the good is sufficiently expensive to justify 

significant search effort, an analogous prediction is that all OTAs should provide a similar set of 

“efficient” recommendations.  We define efficiency here as selecting a ticket that offers the 

bundle of attributes (price, connections, timeliness, etc.) that maximizes utility for a given 

consumer segment. 

In this paper we focus on testing two hypotheses.  First, to the extent that ticket selection 

is “efficient” in our sense and they share a common pool of tickets to choose from, we would 

generally expect: 

Hypothesis 1 (H1):  For a given customer request and specification of consumer 
preferences, the selected recommendation for each OTA will have the same 
characteristics (including price and non-price attributes) 

To the extent this is not true, we can then explore whether these different 

recommendations are efficient in the sense of offering maximum utility for different segments.  

To make this comparison, it is useful to create a single index of utility in which we compute a 
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“quality-adjusted” price for a ticket following methods used in hedonic price analysis (Griliches, 

1961; Chow, 1967).  Thus, we also test: 

Hypothesis 2 (H2): For a given customer request and specification of consumer 
preferences, all OTAs will return identical ticket prices after controlling for price 
variation due to ticket characteristics. 

2.3 Relevant Attributes of Airline Tickets 

Airline tickets are complex but unambiguously describable.  A ticket for a direct flight can be 

fully described by specifying the airline, departure and arrival airport, departure and arrival time, 

price, class of service, and fare restrictions.  Tickets for connecting flights have additional 

information related to each segment, but the salient features can be summarized by the number of 

connections, the total connection time, and the total duration of the trip.  The principal concern 

of our analysis is isolating the relevant ticket attributes that can vary across the selections of 

various OTAs.  Of the list of possible attributes, some are held constant across OTAs by study 

design, others are fixed due to technological constraints, and some can vary based on design 

choices by the OTA.  In our ticket requests to the OTAs we specify departure and arrival airport 

(“citypair”), service class (all tickets are coach class), and travel dates and times, eliminating 

variations across OTAs from these sources.  Technological limitations of the OTAs or legal 

restrictions on their behavior eliminate variations due to fare restrictions and airline.4  Our 

software agents make simultaneous reservations on all OTAs, eliminating variations in fare 

structure over time or time to departure.  Thus, of the universe of ticket characteristics described 

above, the principal ticket characteristics that can vary by OTA in our study are: 

• Timeliness:  an inquiry for a specific flight includes the desired departure time for both 
legs of the flight.  An OTA is not bound to report only flights that meet the time 
requirements specified by the traveler, but can also select other flights, which might be 
less expensive. 
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• Number of connections:  connections often permit more options to be considered, which 
may make a flight less expensive, and may sometimes be necessary to ensure the 
timeliness of the flight. 

• Length of connections:  an OTA has to make the decision about the duration of a connection 
that is acceptable for the customer, given his or her priorities for time and price. 

• Flight Duration: although principally a function of connections and connection time, an 
OTA can choose a more complex, longer routing in an attempt to save cost. 

• Price:  OTAs can select tickets with different characteristics even on the same routing which 
leads to differences in fares. 

 

This list represents the exhaustive list of dimensions upon which tickets can vary by OTA and 

will form the basis for a set of comparisons that attempts to determine whether OTAs offer 

optimal or inferior flight offerings when provided the same request.  It should also be noted that 

this list includes all available preferences that can currently be expressed by the consumer to the 

OTA as well as preferences that the OTAs can express to the CRS to guide ticket selection.  We 

therefore believe that we are able to either control for or measure all the fundamental quality 

attributes that consumers are currently able to use to describe airline tickets.   

3. Data and Methodology 

3.1. Data Sources and Collection Methods 

Our analysis begins with a data set of actual tickets written by a major corporate travel 

agent in the U.S. for five corporate clients in the month of April 1997.5  By using a base of actual 

tickets for the analysis we are able to make comparisons among OTAs under a scenario that 

closely matches how they would be used by a group of travelers.  To ensure that all systems 

could process these tickets, we applied a number of screening rules to eliminate problematic 

tickets.6  The five online travel agents to be studied are selected based on recommendation of 

market participants and represent relatively large OTAs.7  Three of the five OTAs provide users 
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with the option to indicate a preference for either price or time.  We treat each OTA that offer the 

ability to choose between time preference and price preference as two separate OTAs, which 

results in our studying eight OTAs. 

Using this screened sample of tickets, the reservations are then replicated on each of the 

OTAs using intelligent agents.  This ensures high data quality and allows simultaneous data 

collection across all agents, virtually eliminating the chance of fare changes influencing the 

results.  The set of flight alternatives offered by OTAs are stored in a database.  Based on the 

input of market participants, we apply two different decision rules to select a single flight from 

the set of alternative flights offered.  In our first decision rule, we emulate the preferences of 

business travelers by making timeliness our top priority.  Of all flights offered, we select those 

flights that depart in the time window of one hour before or after the specified departure time for 

the departure and return flight (these guidelines are those typically used by travel agents in 

determining timeliness).  A ticket that meets the time window constraint in one leg is preferred to 

a ticket that does not meet the time window constraint at all.  If a ticket meets the time window 

in only one leg, the tickets where the time window is met in the departure leg was given 

preference.  In case of a tie, the cheaper ticket is given preference.  The second decision rule 

reflects the consumer preferences of price sensitive leisure travelers.  Hence, price is the top 

priority, with timeliness (meeting the time window) as the tiebreaker.  For discussion purposes, 

we label these the time-priority and price-priority data sets.  We also collect other data, such as 

the difference of the desired and actual departure time as well as the length of the connections. 

We ran our intelligent agents for four consecutive days for 24 hours.  Each day, our set of 

intelligent agents made reservations for flights that were originally made on that weekday with 

the same number of days to departure, seeking to replicate travel attributes such as trip duration 
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and departure times.  On average, each of our agents made between 300 and 500 reservation 

requests per day.  The total number of reservation requests that the intelligent software agents 

made depended highly on the availability of the OTAs8 and the response time of the slowest 

OTA.  In order to obtain a consistent data set, we discard all reservations where one or more 

OTA made no recommendation.  This reduces our data set to 939 unique tickets for which we 

have reservation recommendations from all eight OTAs. 

3.2. Data Characteristics 

Table 1 shows some basic statistics of our sample.  Overall, we have a total of 7512 

tickets with an average price of $557 in the time priority data set and $515 in the price priority 

data set.9  The tickets otherwise show similar characteristics between the two data sets except for 

the percentage of flights meeting the time window.  The price priority data set contains more 

than twice as many tickets that violate the time window.  There is large variation across the 

sample in prices, primarily due to route differences.  The standard deviation of price is nearly 

$400 and the tickets range in price from $81 to $2118. 

4. Empirical Analysis and Hypothesis Testing 

4.1. Model Formulation 

They key challenge in empirically testing our predictions is properly modeling the 

relationship between ticket quality and price so that we can create a single index of ticket utility.  

The critical dimensions that affect ticket prices are the route (embodying characteristics such as 

distance, competition, and demand), timing (especially “Saturday night stay”, advance 

purchases, and constraints on departure and arrival time) and the characteristics of connections 

(including number and length, as well as overall flight duration).  These characteristics span most 
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of the relevant characteristics and are consistent with our earlier discussion of factors the OTA 

can control, as well as all the features that the customer can request.  To this base model of ticket 

prices we include dummy variables for each OTA – the coefficients on these dummy variables 

represent the average quality-adjusted price of the OTAs ticket selections, which can be 

interpreted as average utility levels.   

There is substantial debate in the literature on hedonic price models as to the functional 

form of the price-characteristic relationship.  For our context, we adopt the log-linear form, 

which has been extensively used in the airline economics literature (Borenstein 1989; 1991; 

Evans and Kessides 1993).  In this formulation, characteristics lead to a percentage increase in 

the base price rather than an absolute increment.  This appears more consistent with actual 

pricing behavior in the market (e.g. permitting a connection on a $1000 flight could reduce the 

price by $200, while permitting a connection to a $150 flight may only save $30).  In addition, 

the combination of city-pair fixed effects and the log-linear model virtually eliminates the 

heteroskedasticity that is present due to the fact that higher price tickets have more price 

variation (the remaining heteroskedasticity is not economically meaningful and is addressed by 

the use of White Robust standard errors).10  Thus, the general model we estimate is: 

( ) 1 2

3 4 5 6

7 8 9

log * *

* * * 7 * 14

* 21 * 28 * *

OTA j j departure return
j

departure return

i i
i

p OTA TimeWindow TimeWindow

Connection Connection DD DD

DD DD Saturday Citypair

β δ δ

δ δ δ δ

δ δ δ γ ε

= + + +

+ + + +

+ + + + +

∑

∑
  (1) 

For our main formulation, all variables are binary.   TimeWindowdeparture and 

TimeWindowreturn are 1 if the time window is met on departure and return respectively, and zero 

otherwise. Connectiondeparture and Connectionreturn are 1 if there is a connection on departure and 

return respectively, and zero otherwise.  Saturday is 1 if there is a Saturday night stay and zero 
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otherwise.  The variables Citypairi represent a dummy variable for each of the 436 combinations 

of departure and return cities in our dataset (we estimate this as a fixed effect model).  The 

variables of the form DDnn, represent a dummy variable capturing the number of days to 

departure (with nn representing the minimum number of days before departure in that bucket – 

for example, DD7 is 1 if days to departure is greater than 7 but less than 14).  We also explore 

models in which we examine deviation from desired time window and length of connection (both 

measured in minutes) with virtually identical results.11  We thus conduct all the analysis using 

the simpler model because it is more easily interpreted and compared with our frontier analysis 

in Section 4.5. 

In interpreting the coefficients of Equation 1, it is important to consider the interaction 

between the quality characteristics and the city-pair characteristics.  In this model, the quality 

characteristics do not represent the pure difference due to connections or time, but the 

differential when the number of connections is above the norm for that route.  For example, if a 

route always has connections, then there will be no premium attributed to a connection on that 

route.  In essence this formulation accurately removes variation in ticket prices due to these 

characteristics, which is our primary objective.  However, these coefficients should not be 

interpreted as the simple price premium or discount due to these quality characteristics in 

isolation, although they usually are in the same general direction as the unconditional 

relationship. 

4.2. Baseline Comparison 

Our analysis begins with a relatively simple log-linear model that relates the log of the 

ticket price to the identity of the OTA and the city pair but omitting the quality variables for 

connection and timeliness, which is the appropriate model for investigating price in Hypothesis 
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1.  We drop the dummy variable for OTA1 (on average, the lowest price OTA) to avoid 

multicollinearity with the intercept term so all coefficients can be interpreted as differences in 

average price compared to OTA1.  Therefore, if H1 were true, we would expect 

2 3 4 5 6 7 8 0β β β β β β β= = = = = = = .  In other words, on average, the OTAs should provide 

tickets with the same prices.   

The first column of Table 2 depicts the coefficients for the time-priority data set, while 

the second column depicts the coefficients for the price-priority data set.  In both models, we can 

clearly reject hypothesis H1, that prices are equal across OTAs (for time-priority data set, F7, 7069 

= 65.50, p<.0001; for price-priority data set, F7, 7069 = 79.31, p<.0001). 

OTA4 shows the greatest price variation from OTA1, with β4= 27.8% for the time-priority data 

set and β4= 25.9% for the price-priority data set.  All coefficients are significant at a p<.001 

level.  Interestingly, OTA2 is the only OTA whose deviation from the average price noticeably 

changes when applying a different decision criterion.  For the time-priority data set, OTA2 is 

about 17.2% more expensive than OTA1, while it is only 5.2% more expensive for the price-

priority data set.  This suggests that OTA2 is the only agent that returns substantially different 

offerings to appeal separately to time vs. price sensitive travelers.  Moreover, we actually find 

that preference specification (price, time) on systems that allow this (OTA2, OTA3, and OTA4), 

actually has no effect on quoted prices – p-values for tests of equality across systems are all 

above .85, and there is no significant difference in the orderings of tickets offered.12 

When coding the intelligent agents, we discovered that OTA2 and OTA3 appear to share 

a common search engine.  This suggests that they could offer similar tickets.  To verify this in 

our data, we tested whether OTA2 and OTA3 quoted identical prices (the actual test is OTA2time 

= OTA2price = OTA3time = OTA3price).  The results suggest that these two systems and their 
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time/price options are virtually identical (F3,7069=.051, p>.98 for the time priority data set; 

F3,7504=.002, p>.99 for the price priority data set).   

Because the time/price options and OTA2/OTA3 data appear to be redundant and 

including them in the analysis would only increase the power of our statistical results (perhaps 

artificially), we take a conservative approach and delete the redundant systems from the analysis.  

We then repeat the baseline analysis (Table 2, columns 3 and 4) on the four remaining OTAs and 

find similar results – a price dispersion of approximately 28% between the highest and lowest 

price OTA for both decision criteria.   

4.3. Variations in Characteristics of Selected Tickets 

Tickets in our sample have four key characteristics indicative of “quality”: meeting time 

window requirements on departure, meeting time window requirement on return, having no 

connection on departure, and having no connections on return.  This yields 16 possible types of 

tickets.  In Tables 3a and 3b, we count the number of ticket recommendations from each OTA of 

each quality.  For example, the first row of Table 3a indicates that OTA2 quoted 5 ticket 

recommendations that had no connections but failed to meet the time window requirements on 

both departure and return.  OTA1 quoted 54 ticket recommendations, OTA4 quoted 14 ticket 

recommendations and OTA5 quoted only 1 ticket recommendation with these characteristics.   

To examine whether there are systematic variations across OTAs in the type of tickets they issue, 

we employ the simple sign tests and the Wilcoxon signed rank tests to evaluate whether the 

distributions across ticket types are the same for all OTAs.  This is a test of the latter part of 

hypothesis H1.  Moreover, given our earlier results, we can check to see if the systems with 

higher prices also tend to yield tickets with higher quality, which would be indicative of 

differentiation.   
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Our results (Tables 4a and 4b) suggest that in both data sets, OTA5 and OTA4, the 

highest price OTAs, are quite similar ( p >.10 for sign and Wilcoxon test for time and price 

priority data set) and that they are different from OTA1 (at least p <.05  for the sign test for both 

data sets and at least p <.10 for the Wilcoxon test for both data sets) which offers the lowest 

quality tickets.  In some cases we can also distinguish OTA5 and OTA4 from OTA2.  We also 

find that OTA1 and OTA2 are similar in the price priority data set but not in the time priority 

data set ( p >.10 for the price priority data set and p <.10 for the time priority data set).  Overall 

this is consistent with the idea that variation in prices is matched to variation in ticket quality.  

Moreover, the results appear to be fairly robust to alternative priority criteria (price/time) and 

statistical tests (Wilcoxon/simple sign test). 

4.4. Testing for Price Variation Across OTAs Accounting for Ticket Quality 

The previous results suggest that different OTAs appear to be targeting different price-

quality segments among consumers.  In this section we estimate the full hedonic price model 

including the terms for time window, connections, and Saturday night stay.  The specific model 

is shown in Equation 1.  

The results of the full model are shown in Table 2 columns 5 and 6.  First, we should note 

that the signs on the quality control variables are consistent with prior expectations:  refusing to 

accept flights outside the time window makes travel between 7.9% and 11.6% more expensive 

than accepting them; refusing to accept a connection can increases prices up to 17% on a route 

that normally has connections.  Saturday night stays decrease the ticket price by up to 30.9%.  

Similar results hold if we do not include the OTA dummy variables and just estimate the hedonic 

model alone.13  Overall, this provides some confidence that the model is directionally correct. 
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Using the reduced set of OTAs as in the previous analysis, we are able to reject equality 

of the OTA effects in all models at p<.0001 level, suggesting that quality variation is not the only 

source of price variation in the sample.  However, the estimates show that price variation across 

OTAs is reduced; for the time and price regressions, the price variation are 18.1% and 19% 

respectively as opposed to 27.8% for the base regression model.  This suggests that product 

differentiation accounts for some of the previously observed price variation.  To gauge the 

robustness of this result, we estimate an even more general model that includes interactions 

between the quality attributes and the city-pair variable – this allows the quality effects to vary 

by route (regression results not shown).  Even in this model, price dispersion is still evident.  For 

the time-priority data set, OTA2time was 9.9% more expensive than OTA1, OTA4time and OTA5 

were 16.3% and 13.4% more expensive than OTA1.  Similar results are found for the price 

priority dataset. 

Overall, this suggests that product differentiation accounts for at least 10% of the 

variation in actual ticket price between OTAs.  This represents a variation of about $50 in the 

price of an average ticket, or about 35% of the overall price dispersion across OTAs.  We cannot 

conclude for certain that these estimates represent the true contribution of product differentiation 

since this calculation requires that there is no specification error in the hedonic model that is 

correlated with a specific OTA.  However, it does suggest that there is a significant contribution 

of product differentiation to overall price dispersion across OTAs as well as some price 

dispersion.  In the next section, we consider an alternative approach to demonstrate the presence 

of the price dispersion that does not rely on the accuracy of the hedonic model. 

4.5  Frontier Analysis 
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An alternative way of gauging inefficiency of OTAs is to compare the best ticket 

offerings for each request to see the extent to which some OTAs offer tickets that are 

demonstrably inferior to a selection provided by another OTA.  While this relies on having a 

proper characterization of the underlying dimensions of quality, it is not subject to issues of 

functional form or specification error as in the earlier analysis.  To implement this analysis, for 

each ticket request for each pair of OTAs, we categorize the relationships as either: 1) identical – 

the OTAs give the same ticket, 2) one OTA strictly dominates another – an OTA provides a 

ticket which was at least as good on all characteristics (time window, connection, price) and 

strictly better on at least one, or 3) non-comparable – one OTA gives a ticket that was superior in 

one dimension, while the other returns a ticket superior on another dimension.  We focus 

particularly on dominated tickets since this is a clear example of inefficiency and independent of 

the decision rule (if a ticket is dominated, it is necessarily dominated for both decision rules). 

An analysis of dominated tickets for each pair of OTAs is presented in Tables 5a and 5b. 

To interpret the results, consider the relationship between OTA2 and OTA1.  OTA2time strictly 

dominates OTA1 82 times, but OTA1 strictly dominates OTA2time 122 times.  When comparing 

the strict dominance of all OTA pairs, we observe that OTA1 is least often strictly dominated; 

this may be attributable to their strategy of finding low ticket prices making it unlikely that they 

are dominated on price.  However, we cannot find any OTA pair for which we can clearly state 

that one clearly dominates the other.14 

While this does not provide an indication of the presence of differentiation, it does 

strongly suggest the presence of inefficiencies.  Moreover, since all OTAs offer a significant 

number of dominated tickets, it also suggests a component of randomness in the error.  However, 
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systems that aggressively pursue high quality tickets tend to make these “mistakes” with greater 

frequency. 

5. Discussion 

Overall, we find that different OTAs offer different types of tickets and that they do so at 

substantially different prices.  Our analysis suggests the presence of horizontal product 

differentiation in the sense that different providers offer tickets of systematically different quality 

and that price variation across OTAs in the hedonic model is reduced when we include controls 

for quality.  Another way to view this result is to plot the average ticket price and quality (along 

different dimensions) for each OTA.  The plot for price satisfaction (ratio of the prices of each 

OTA to OTA1) vs. connection satisfaction (percentage of flights without connections) is shown 

in Figure 1a and a similar plot for price versus timeliness is shown in Figure 1b.  The graphs 

clearly show that OTAs tend to “specialize” on particular ticket characteristics – OTA1 is clearly 

the price leader with OTA4 and OTA5 focusing on connections and timeliness, respectively.  We 

also note that no single OTA is clearly inferior in both analyses.   

These graphs are consistent with our regression and frontier analyses that suggest that the 

variance in ticket prices across OTAs is partially due to quality variation and partially due to 

inefficiency.  While one could generally rationalize a finding of product differentiation with the 

existence of entry barriers in an otherwise efficient market, it is harder to rationalize why firms 

offer inefficient recommendations.  In the remainder of this section, we explore three possible 

explanations:  technological constraints related to implementing differentiation, agency 

problems, and attempts at price discrimination through OTA design.  

5.1. Technological Constraints 
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OTAs achieve product differentiation through parameterization of their requests to the 

CRS.  Each OTA uses a specific set of decision rules to identify which tickets will or will not be 

considered in the search process – altering these criteria causes different tickets to be offered.  

Interviews with a system designer suggest that the key parameters relate to: permitted deviation 

from requested departure or return time, minimum savings required to justify a connection, 

maximum duration of a connection, and minimum distance before a connection is considered.  

While we cannot observe directly the choices different OTAs make on these dimensions, we 

attempt to infer the choices on these parameters through their selection behavior. To accomplish 

this examination, we extend the model in Equation (1) to include interaction terms between the 

quality attributes (connections, timeliness) and the OTA (we center the interaction terms so that 

the coefficients on other terms are comparable to our previous regressions).  Intuitively, this is a 

crude measure of the “shadow cost” of deviations from ideal ticket characteristics imposed by 

the parameter settings chosen by the OTA.15  To reduce the number of coefficient estimates, we 

aggregate the TimeWindow and Connection variables to represent the meeting of both time 

windows (departure and return) or having any connections.  The results are shown in Table 6. 

Overall, there is a wide variation in the effects of connections and satisfaction of time 

window requirements across OTAs.  For the time-priority data set, OTA4time’s ticket prices 

decrease by only 4.4% when a connection is involved (not significant)16, while all other OTAs 

reduce the prices by 10.9% to 21.3% (all estimates are significant at the p<.001 level).  OTA5’s 

ticket prices are actually 11.7% cheaper when they leave on time than when they leave outside of 

the specified time window.  OTA4time’s prices increase by 6.9% (significant at p<.01 level) for 

flights that leave on time, while OTA2 time and OTA1 have an increase of 9.8% and 22.4%, 

respectively (all significant at p<.0001 level).  Similar results are found for the price-priority data 
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set.  The high variation in the coefficients for the interaction terms of OTA and ticket 

characteristics reflects the differences in the set of parameters that an OTA has chosen.  For 

example, OTA5 requires the highest saving to justify a connection and OTA1 allows for the 

highest deviation from the specified time of departure.  To the extent that these settings are not 

ideal for all flights, this may explain at least some of the price dispersion we observe.  

5.2. Agency Problems 

Given that agents are representatives of the airlines and not the consumer, it is possible 

that agents offer higher price tickets in an effort to increase their own revenue (or the revenue of 

their owners for those OTAs affiliated with airlines).  While a fully efficient market would cause 

consumers to avoid agents that offer unnecessarily expensive tickets, limited search, advertising, 

brand loyalty, or other market imperfections may allow this behavior.  To investigate this 

possibility we examined the various commission structures in place for OTAs at the time of our 

study.  While there is a substantial variation across different airlines in commission structure, 

making such a comparison difficult, one OTA (OTA5) performs their services entirely on a flat 

fee basis for their customers and rebates all commissions.  Thus, of all the systems, they should 

have no incentive to offer tickets with inflated prices.  If agency problems were the only concern, 

then we would expect OTA5 to have lower ticket prices on average.  However, our data suggest 

that OTA5 offers tickets with the second highest average price, even after controlling for quality.  

While this does not completely rule out possible agency effects, this provides limited evidence 

against the hypothesis that agency problems lead to the price dispersion we observe.  

5.3. Price Discrimination 

The strategy of the two OTAs that are operated by the same company, namely OTA4 and 

OTA1, is interesting.  In this case, one company offers two different on-line services with 
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different interface characteristics and very different prices.  OTA1 offers the cheapest tickets 

with lowest convenience and OTA4 offers the most expensive tickets with highest convenience.  

Simultaneously, the front-end for OTA1 can be best described as archaic, while the front-end for 

OTA4 is state-of-the-art.  Since one would generally believe a better interface is preferable for 

the consumer, a possible explanation for this behavior is that the traveler’s willingness to pay is 

correlated with their valuation of interface quality.  For time-sensitive travelers it can certainly 

be argued that they do not have the patience to work through the unintuitive mainframe menu of 

OTA1, while price-sensitive travelers may endure the procedure.  In other words, the difficulty 

in using OTA1’s user interface serves as a screen to prevent the time-sensitive travelers from 

exercising personal arbitrage.  Further, a traveler who is willing to learn OTA1’s user interface 

can be assumed to be computer-savvy and therefore more likely to be knowledgeable about 

alternative OTAs and their interfaces.  This type of behavior is widespread and has a long 

history.  Perhaps the most famous example is discussed by Dupuit (1849) on price discrimination 

in the French railroad system: 

It is not because of the few thousand francs which would have to be spent to put a roof over the 
third-class seats that some company or other has open carriages with wooden benches…  What the 
company is trying to do is prevent the passengers who can pay the second-class fare from traveling 
third-class; it hits the poor, not because it wants to hurt them, but to frighten the rich…  And it is 
again for the same reason that the companies, having proved almost cruel to third-class passengers 
and mean to second-class ones, become lavish in dealing with first-class passengers.  Having 
refused the poor what is necessary, they give the rich what is superfluous (p. 23). 
 
In the OTA context, whether this is a deliberate strategic choice or the result of historical 

accident is not clear.  OTA1 is originally developed as proprietary software and is designed to 

connect to a mainframe.  OTA4 is built with the interactivity in mind that the World Wide Web 

provides.  This results in two systems that couple the ticket selection behavior with customer 

segmentation through interface design, consistent with a price discrimination explanation. 
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5.4. Conclusion 

Our results suggest that even in a market with a potentially low degree of search costs 

and strong incentives for consumer search, there exists persistent price dispersion across service 

providers.  One possible explanation is that search costs prevalent in traditional markets are 

replaced by new types of costs.  For example, OTAs may create switching costs by requiring the 

customer to "sign-up" by entering personal information that later reduces the time to find and 

book flights.  When non-zero switching and search costs are combined with uncertainty about 

which OTAs will truly provide the best flight for the consumers’ preference, it may be optimal 

for consumers to limit their search to a single or to a few OTAs.  If this is the case, then 

consumers would be unambiguously better off using a “Super OTA” that searches all available 

OTAs and returns their flight recommendations.  One system indeed saw this opportunity and 

offered to search four different OTAs for the best fare.  Of those four OTAs, two OTAs – OTA2 

and OTA3 – are in our sample.  The “Super OTA” itself was operated by the same company that 

operated OTA2 and OTA3.  But even before this system was upgraded from a limited beta 

version to a full version, the two other systems were withdrawn, claiming they already offered 

the best prices. The two remaining systems offer, according to our analysis, the same flight 

recommendations.  More recently, some Internet firms provide this service on an independent 

basis and appear to generate improved recommendations.  This suggests that our findings of 

price dispersion are robust to a substantial amount of innovation in price search capability that 

has occurred in the two years following our data collection.  That is, significant price dispersion 

appears to continue to exist. 

Our results also show that service differentiation is a key strategic component of online 

sellers that offer access to heterogeneous goods.  While this may appear unusual for markets that 
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should theoretically have greater information transparency, it mirrors behavior in non-electronic 

markets: by exploiting consumers’ heterogeneity in tastes and uncertainty of vendor quality, 

vendors can ease price competition by segmenting the market.  Moreover, with a product with 

little cost of differentiation, new strategies may emerge; for example, creating “Sister OTAs” 

strategically to capture different customer segments and utilizing user interface quality to 

segment the market.  However, at least in this setting, differentiation strategies are not without 

costs – our results suggest that some of the inefficiency in selection may be due to imperfect 

implementation of differentiation strategies. 
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Tables 

Table 1: Ticket Characteristics  

Characteristic Time Priority Price Priority 

Total Tickets 7,512 7,512 
Average Price $557 $515 
Standard Deviation $395 $376 
Tickets with connections 38.0% 40.8% 
Tickets not w/in time window 17.6% 38.8% 

Table 2: Price Differences Among OTAs (Baseline Regression) 

VARIABLE Log-linear 
TIME 
Full  
Data Set 

Log-linear 
PRICE 
Full  
Data Set 

Log-linear 
TIME 
Reduced Data 
Set 

Log-linear  
PRICE 
Reduced Data 
Set 

Log-linear 
TIME  

Log-linear 
PRICE 

Intercept 5.768*** 
(0.097) 

5.731*** 
(0.040) 

5.851*** 
(0.168) 

5.695*** 
(0.059) 

5.764*** 
(0.146) 

5.651*** 
(0.053) 

DD7 0.468*** 
(0.018) 

0.490*** 
(0.017) 

0.460*** 
(0.025) 

0.487*** 
(0.024) 

0.460*** 
(0.026) 

0.486*** 
(0.025) 

DD14 0.175*** 
(0.019) 

0.219*** 
(0.018) 

0.206*** 
(0.027) 

0.238*** 
(0.026) 

0.205*** 
(0.027) 

0.237*** 
(0.026) 

DD21 0.077*** 
(0.020) 

0.087*** 
(0.018) 

0.085*** 
(0.028) 

0.087*** 
(0.026) 

0.084*** 
(0.027) 

0.088*** 
(0.026) 

DD28 0.090*** 
(0.022) 

0.093*** 
(0.022) 

0.078** 
(0.031) 

0.090*** 
(0.031) 

0.083*** 
(0.032) 

0.091*** 
(0.031) 

OTA2time 0.172*** 
(0.014) 

0.052*** 
(0.012) 

0.172*** 
(0.014) 

0.052*** 
(0.013) 

0.112*** 
(0.014) 

0.048*** 
(0.012) 

OTA2price 0.172*** 
(0.014) 

0.052*** 
(0.012) 

    

OTA3time 0.175*** 
(0.014) 

0.052*** 
(0.012) 

    

OTA3price 0.178*** 
(0.014) 

0.053*** 
(0.012) 

    

OTA4time 0.278*** 
(0.015) 

0.259*** 
(0.012) 

0.278*** 
(0.014) 

0.259*** 
(0.014) 

0.181*** 
(0.015) 

0.190*** 
(0.014) 

OTA4price 0.278*** 
(0.015) 

0.259*** 
(0.014) 

    

OTA5 0.252*** 
(0.016) 

0.208*** 
(0.015) 

0.252*** 
(0.015) 

0.208*** 
(0.014) 

0.155*** 
(0.016) 

0.153*** 
(0.014) 

Time Window  
Departure     

0.116*** 
(0.022) 

0.096*** 
(0.019) 

Time Window  
Return     

0.130*** 
(0.020) 

0.079*** 
(0.014) 

Connection 
Departure     

-0.006 
(0.030) 

0.005 
(0.030) 

Connection Return 
    

-0.170*** 
(0.033) 

-0.120*** 
(0.031) 

Saturday Night 
Stay 

-0.300*** 
(0.016) 

-0.330*** 
(0.016) 

-0.293*** 
(0.024) 

-0.310*** 
(0.020) 

-0.286*** 
(0.023) 

-0.308*** 
(0.022) 

N 7512 7512 3756 3756 3756 3756 
F 
(Prob>F) 

65.499  
p<0.0001 

79.315 
p<0.0001 

29.55 
p<0.0001 

34.66 
p<0.0001 

31.09 
p<0.0001 

35.93 
p<0.0001 

R2 80.56 83.39% 79.81% 82.26% 80.77% 82.92% 

White standard errors in parenthesis;  ***-p<.001, ** - p<.01, * - p<.05
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Table 3a: Ticket Characteristic Combinations by OTAs (Time Preference) 

TWD TWR CND CNR OTA1 
 

OTA2  
time 

OTA4  
time 

OTA5 Total 

    54 5 14 1 74 
    13 1 2 0 16 
    6 0 0 0 6 
    52 6 1 1 60 
    56 28 49 13 146 
    20 3 27 0 50 
    8 1 0 0 9 
    60 25 9 7 101 
    87 14 32 25 158 
    13 3 0 0 16 
    19 2 25 0 46 
    69 28 4 11 112 
    279 467 634 638 2018 
    15 24 6 0 45 
    19 21 9 0 49 
    169 311 127 243 850 

    939 939 939 939 3756 

 - Means that this criteria was met 

Table 3b: Ticket Characteristic Combinations by OTAs (Price Preferences) 

TWD TWR CND CNR OTA1 
 

OTA2  
time 

OTA4  
time 

OTA5 Total 

    79 44 32 18 173 
    13 3 2 0 18 
    6 3 1 0 10 
    68 69 1 15 153 
    54 40 62 67 223 
    22 3 22 0 47 
    6 4 0 0 10 
    72 66 12 36 186 
    84 76 61 68 289 
    13 5 1 0 19 
    9 10 15 0 34 
    74 116 5 27 222 
    267 287 593 520 1667 
    15 16 3 0 34 
    16 11 6 0 33 
    141 186 123 188 638 

   Total 939 939 939 939 3756 

  - Means that this criteria was met 
TWD (Time Window Departure) TWD is checked if the departure flight left within the time window (one hour before and after the desiredtime). 
TWR (Time Window Return) TWR is checked if the return flight left within the time window (one hour before and after the desiredtime). 
CND (Connection Departure) CND is checked if the departure flight involved at least one connection. 
CNR (Connection Return CNR is checked if the return flight involved at least one connection. 
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Table 4a: Distribution Tests for Similarity of Characteristics Across Systems (Time Preference) 

Sign Test 
TIME 

OTA1 OTA2 OTA4time OTA5 

OTA1 - n = 16 
M=4* 

n = 16 
M = 13** 

n = 16 
M=14*** 

OTA2 - - n = 15 
M = 8 

n = 15 
M = 13***

OTA4time - - - n = 12 
M = 9 

OTA5 - - - - 

 

Wilcoxon 
TIME 

OTA1 OTA2 OTA4time OTA5 

OTA1 - n = 16 
T = 35* 

n = 16 
T = 21** 

n = 16 
T = 31* 

OTA2 - - n = 15 
T = 6.5*** 

n = 15 
T = 23** 

OTA4time - - - n = 12 
T = 20.5 

OTA5 - - - - 
***-p<.01, ** - p<.05, * - p<.1 

Table 4b: Distribution Tests for Similarity of Characteristics Across Systems (Price Preference) 

Sign Test 
PRICE 

OTA1 OTA2 OTA4time OTA5 

OTA1 - n = 16 
M=5 

n = 15 
M = 12** 

n = 16 
M=13** 

OTA2 - - n = 16 
M = 12* 

n = 16 
M = 13** 

OTA4time - - - n = 15 
M = 9 

OTA5 - - - - 

 

Wilcoxon  
PRICE 

OTA1 OTA2 OTA4time OTA5 

OTA1 - n = 16 
T = 50 

n = 15 
T = 21.5** 

n = 16 
T = 33.5* 

OTA2 - - n = 16 
T = 42.5 

n = 16 
T = 29** 

OTA4time - - - n = 15 
T = 59 

OTA5 - - - - 
***-p<.01, ** - p<.05, * - p<.1 

  

Table 5a: Comparison of OTAs for Similar and Dominated Tickets (Time Preference) 

             Y   
 X Strictly 

Dominates Y 
OTA1 OTA2time OTA4time OTA5 

 OTA1 0 122 74 207 
X OTA2time 82 0 112 241 
 OTA4time 20 110 0 268 
 OTA5 103 193 199 0 

 

               
Y 

  

 X is equal 
to Y 

OTA1 OTA2time OTA4time OTA5 

 OTA1 939 297 337 161 
X OTA2time 297 939 430 266 
 OTA4time 357 430 939 316 
 OTA5 161 266 316 939 

 

Table 5b: Comparison of OTAs for Similar and Dominated Tickets (Price Preference) 

             Y   
 X Strictly 

Dominates Y 
OTA1 OTA2time OTA4time OTA5 

 OTA1 0 163 82 216 
X OTA2time 88 0 80 185 
 OTA4time 21 67 0 258 
 OTA5 102 122 177 0 

 

             Y   
 X is equal 

to Y 
OTA1 OTA2time OTA4time OTA5 

 OTA1 939 350 337 161 
X OTA2time 350 939 308 192 
 OTA4time 337 308 939 293 
 OTA5 161 192 293 939 
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Table 6: The Effect of Interactions between Ticket Characteristics and OTAs on Ticket Price 

VARIABLE Log-linear 
TIME 

Log-linear 
PRICE 

Intercept 5.961*** 
(0.145) 

5.761*** 
(0.060) 

DD7 0.455*** 
(0.026) 

0.488*** 
(0.025) 

DD14 0.202*** 
(0.027) 

0.236*** 
(0.026) 

DD21 0.080*** 
(0.027) 

0.084*** 
(0.026) 

DD28 0.077*** 
(0.032) 

0.090*** 
(0.032) 

OTA2time 0.105*** 
(0.014) 

0.039** 
(0.012) 

OTA4time 0.193*** 
(0.015) 

0.204*** 
(0.015) 

OTA5 0.176*** 
(0.017) 

0.145*** 
(0.014) 

OTA1 * (CN-CNavg) -0.109*** 
(0.025) 

-0.077*** 
(0.023) 

OTA2time * (CN-CNavg) -0.196*** 
(0.026) 

-0.124*** 
(0.024) 

OTA4time * (CN-CNavg) -0.044 
(0.034) 

-0.023 
(0.032) 

OTA5 * (CN-CNavg) -0.213*** 
(0.030) 

-0.162*** 
(0.027) 

OTA1 * (TW-TWavg) 0.224*** 
(0.021) 

0.189*** 
(0.020) 

OTA2time * (TW-TWavg) 0.098*** 
(0.033) 

0.086*** 
(0.021) 

OTA4time * (TW-TWavg) 0.069** 
(0.033) 

0.080*** 
(0.030) 

OTA5 * (TW-TWavg) -0.117** 
(0.049) 

0.076*** 
(0.025) 

Saturday Night Stay -0.285*** 
(0.024) 

-0.301*** 
(0.023) 

N 3756 3756 
F 
(Prob>F) 

31.14 
p<.0001 

35.82 
p<.0001 

R2 80.96% 83.02% 

 White standard errors in parenthesis;  ***-p<.001, ** - p<.01, * - p<.05 
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Figures 

Figure 1a: Efficient Frontier - Price Satisfaction vs. Connections 

Price Satisfaction = Price Price(OTA1)/Price(OTA);  Connection Satisfaction is the percentage 
of flights offered without connections. 
Figure 1b: Efficient Frontier: Price Satisfaction vs. Timeliness 

Efficient Frontier - Price vs. Connections

OTA1

OTA2

OTA5
OTA4

50%

60%

70%

80%

90%

100%

110%

50% 60% 70% 80% 90%

Connection Satisfaction

Pr
ic

e 
Sa

tis
fa

ct
io

n

Efficient Frontier - Price vs. Timeliness

OTA1

OTA2

OTA4 OTA5

50%

60%

70%

80%

90%

100%

110%

50% 60% 70% 80% 90% 100%

Time Satisfaction

Pr
ic

e 
Sa

tis
fa

ct
io

n



 

- 27 - 

  

                                                 

1 At the time of data collection (1997), the commissions ranged from roughly 5-8% of ticket price with an overall 

cap of about $50 to various flat fee schedules up to $35.  These commissions are similar but do vary by airline.  By 

the year 2000, most airlines had moved to a fixed commission schedule of about $15 for online bookings and some 

airlines have even explored eliminating commissions for online booking.  OTAs also earn revenues from banner 

advertisements, special promotional programs and the sale of packaged travel, although at the time of our study, 

regular air commissions were the dominant source of revenue. 

2 Conversations with OTA managers indicate that the fee depends on the revenue generated.  Since CRS’s also 

compete with each other, travel agents, who produce high volumes of bookings, will obtain the CRS service for free 

or even be paid for the bookings.  According to the interviewee, the OTAs at the point of the study did not cross the 

required threshold volume.  The website of the airline typically does not have to pay the fee as these websites are 

typically connected to their internal host. 

3 Horizontal differentiation is when different products are offered to target different consumer tastes (e.g. color) 

along non-quality dimensions.  This contrasts with vertical differentiation, where different price-quality 

combinations are offered (Beath and Katsoulacos, 1991). 

4 At the time of our study, OTAs could only offer a single fare class which was the lowest cost available at the time 

of ticketing (typically restricted Y-class tickets).  In November, 1984, following the Sabre-American Airlines 

antitrust suit with the Department of Justice, new rules were introduced that prohibited agents from biasing 

recommendations by airline without customer request.  Where available, our software agents specified “no 

preference” for airline choice in all requests. 

5 The reservation data only provide the input to the requests.  It is the specification of the traveler’s preference that 

allows us to verify the hypotheses for price sensitive as well as time sensitive travelers. 

6 Specifically, we required that all tickets to have either 2 or 4 segments, had the same departure and final 

destination, and represented travel entirely within the U.S. 

7 OTAs did not provide any market share data, hence we relied on industry participants to select significant 

competitors. 
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8 It was not uncommon for one or several of the OTAs to be unavailable.  In that case, the intelligent software agents 

stopped the reservation request after a specified waiting time and continued with the next reservation. 

9 While the difference between these means is significant, the time priority dataset is only 8% more expensive, 

reflecting the fact that on many routes lowest price and most timely flights are the same due to limited choice. 

10 The log-linear formulation reduced heteroskedasticity substantially compared to the linear formulation, resulting 

in a reduction of the R2 of the White Test regression from 12% to 0.9%.  Due to our large sample size, this is still 

statistically significant but not economically significant.  We therefore report White heteroskedasticity-consistent 

standard errors (White, 1980) in all the tables (which are essentially identical to the OLS errors).   

11 The OTA coefficients were typically within one percent of model (1).  Results are available from the authors upon 

request. 

12 We perform a t-test to explore whether or not the mean ranks of the systems with the option of indicating different 

preferences (e.g., OTA2time and OTA2price) are the same.  For the time-priority (price-priority) data set we obtain 

the following results: OTA2 t=0.10 (t=0.15), OTA3 t=0.31 (t=0.15) and OTA4 t=0 (t=0). 

13 Results are available from, the authors by request.   

14 We extended this analysis for all 16 possible subgroups of ticket categories to see whether or not an OTA is 

strictly dominant for specific ticket characteristics.  Our results did not indicate any strict dominance of an OTA for 

any subgroup. 

15 This measure is crude because it is only identified if the ticket set returned by an agent has substantial variation on 

these dimensions.  For example, to estimate the shadow cost of missing connections, we need to observe the same 

agent returning tickets with and without connections for a similar request.  For agents which aggressively optimize 

on a single dimension, there will be little variation in the sample set leading to potentially anomalous results.  

However, for agents which tend to trade off multiple dimensions, this analysis will more accurately reveal this 

tendency. 

16 This result is probably due to the fact that OTA4time offered the fewest connections of all OTAs.  After accounting 

for all ‘necessary’ connections through the city-pair variables, there is not enough data variation left to achieve 

statistical significance. 
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