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GEOMETRIC INFLUENCES II: CORRELATION INEQUALITIES AND

NOISE SENSITIVITY

NATHAN KELLER∗, ELCHANAN MOSSEL †, AND ARNAB SEN ‡

Abstract. In a recent paper, we presented a new definition of influences in product spaces
of continuous distributions, and showed that analogues of the most fundamental results on
discrete influences, such as the KKL theorem, hold for the new definition in Gaussian space.
In this paper we prove Gaussian analogues of two of the central applications of influences:
Talagrand’s lower bound on the correlation of increasing subsets of the discrete cube, and
the Benjamini-Kalai-Schramm (BKS) noise sensitivity theorem. We then use the Gaussian
results to obtain analogues of Talagrand’s bound for all discrete probability spaces and to
reestablish analogues of the BKS theorem for biased two-point product spaces.

1. Introduction

Definition 1.1. Consider the discrete cube {−1, 1}n endowed with the uniform measure
ν⊗n = (12δ−1 +

1
2δ1)

⊗n, and let f : {−1, 1}n → R. The influence of the i-th coordinate on f
is defined as

Ii(f) := Eν

[

∣

∣f(X)− f(X [i])
∣

∣

]

, (1.1)

where X = (X1, . . . ,Xn) is a random vector in {−1, 1}n distributed according to the measure

ν⊗n, and X [i] denotes the vector obtained from X by replacing Xi by −Xi and leaving the
other coordinates unchanged. The subscript ν in Eν emphasizes the fact that the expectation
is taken w.r.t. the measure ν⊗n. For a subset A of the discrete cube {−1, 1}n, we write Ii(A)
as a shorthand for Ii(1A), and refer to it as the influence of the i-th coordinate on A.

The notion of influences of variables on Boolean functions is one of the central concepts in
the theory of discrete harmonic analysis. In the last two decades it found several applications
in diverse fields, including Combinatorics, Theoretical Computer Science, Statistical Physics,
Social Choice Theory, etc. (see, for example, the survey articles [18, 29]).

Two of the central applications are Talagrand’s lower bound on the correlation between
increasing subsets of the discrete cube [31] and the Benjamini-Kalai-Schramm (BKS) theorem
on noise sensitivity [4].

Talagrand’s result is an improvement over the classical Harris-Kleitman correlation in-
equality [15, 25] stating that any two increasing (see Definition 4.1 below) subsets of the
discrete cube are non-negatively correlated.
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2 NATHAN KELLER∗, ELCHANAN MOSSEL †, AND ARNAB SEN ‡

Theorem 1.2 (Talagrand). For any pair of increasing subsets A,B ⊂ {−1, 1}n,

ν⊗n(A ∩B)− ν⊗n(A)ν⊗n(B) ≥ cϕ

(

n
∑

i=1

Ii(A)Ii(B)

)

,

where ϕ(x) = x/ log(e/x), and c > 0 is a universal constant.

The BKS theorem deals with the sensitivity a of Boolean function (or equivalently, a subset
of the discrete cube) to a small random perturbation of its input.

Definition 1.3. For a function f : {−1, 1}n → R, and for η ∈ (0, 1), let

Z(f, η) = E[f(X)f(Xη)],

where X = (X1, . . . ,Xn) is uniformly distributed in {−1, 1}n and Xη = (Xη
1 , . . . ,X

η
n) is a

(1−η)-correlated copy of X. (This means that for j ∈ {1, 2, . . . , n}, Xη
j = Xj with probability

1−η andXη
j = X ′

j with probability η, independently for distinct j’s, whereX ′ = (X ′
1, . . . ,X

′
n)

is an i.i.d. copy of X). Following Benjamini, Kalai and Schramm [4], we denote

VAR(f, η) = Z(f, η)− E[f(X)]2.

For a set B ⊆ {−1, 1}n, and for η ∈ (0, 1), we write

Z(B, η) = Z(1B , η) and VAR(B, η) = VAR(1B , η).

A sequence of sets Bℓ ⊆ {−1, 1}nℓ is said to be asymptotically noise sensitive if

lim
ℓ→∞

VAR(Bℓ, η) = 0 for each η ∈ (0, 1). (1.2)

In a seminal paper, Benjamini, Kalai and Schramm [4] proved that a sequence of sets
Bℓ ⊆ {−1, 1}nℓ is asymptotically noise sensitive if the sum of the squares of the influences
∑nℓ

i=1 Ii(Bℓ)
2 goes to zero as ℓ→ ∞. Recently, Keller and Kindler [22] obtained a quantitative

version of the BKS theorem.

Theorem 1.4 (Quantitative BKS theorem). For any n, for any function f : {−1, 1}n →
[0, 1], and for any η ∈ (0, 1),

VAR(f, η) ≤ c1 ·
(

n
∑

i=1

Ii(f)
2

)c2·η

,

where c1, c2 are positive universal constants.

The basic results on influences were obtained for functions on the discrete cube, but some
applications required generalization of the results to more general product spaces. Unlike the
discrete case, where there exists a single natural definition of influence, for general product
spaces several definitions were presented in different papers, see for example [8, 16, 20].
In [23], we presented a new notion of influences in product spaces of continuous distributions,
which we called geometric influences, and proved analogues of the fundamental results on
influences, such as the Kahn-Kalai-Linial (KKL) theorem [17] and Talagrand’s influence sum
bound [30], for geometric influences.

In this paper we prove analogues of Talagrand’s lower bound on the correlation of increasing
sets (Theorem 1.2 above) and of the quantitative BKS theorem (Theorem 1.4 above), that
hold for the standard Gaussian measure in Rn with respect to geometric influences.

Definition 1.5. Let µ(dx) = (1/
√
2π) exp(−x2/2)dx be the standard Gaussian measure on

R. Let φ (resp. Φ) be the density (resp. distribution function) of the Gaussian measure µ on
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R, and denote Φ̄(x) = 1 − Φ(x). Given a Borel-measurable set A ⊆ R, its lower Minkowski
content µ+(A) is defined as

µ+(A) := lim inf
r↓0

µ(A+ [−r, r]) − µ(A)

r
.

For any Borel-measurable set A ⊆ Rn, for each 1 ≤ i ≤ n and an element x = (x1, x2, . . . , xn) ∈
Rn, the restriction of A along the fiber of x in the i-th direction is given by

Ax
i := {y ∈ R : (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ A}.

The geometric influence of the i-th coordinate on A is

IGi (A) := Ex[µ
+(Ax

i )],

that is, the expectation of µ+(Ax
i ) when x is chosen according to the measure µ.

We note that the geometric meaning of the influence is that for a monotone (either in-
creasing or decreasing) set A, the sum of influences of A is equal to the size of its boundary
with respect to a uniform enlargement (see [23]).

In the sequel, whenever we talk about sets or functions in Rn, we implicitly assume that
they are Borel measurable. Our first result is a lower bound on the correlation between two
increasing bounded functions in the Gaussian space.

Theorem 1.6. Let ϕ(x) = x/ log(e/x). There exists a universal constant c > 0 such that

for any n ∈ N and for any two increasing subsets A and B of Rn, we have

µ⊗n(A ∩B)− µ⊗n(A)µ⊗n(B) ≥ cϕ
(

n
∑

i=1

IGi (A)I
G
i (B)

)

.

We show that the assertion of the theorem is tight, up to the constant factor. The proof
of Theorem 1.6 uses Talagrand’s result for the discrete cube, along with appropriate limit
arguments. By appealing to direct Gaussian arguments, we obtain another lower bound on
the correlation between a pair of increasing subsets in the Gaussian space.

Theorem 1.7. There exists a universal constant c > 0 such that for any n ∈ N and for any

two increasing subsets A and B of Rn, we have

µ⊗n(A ∩B)− µ⊗n(A)µ⊗n(B) ≥ c
n
∑

i=1

IGi (A)I
G
i (B)

√

log(e/IGi (A)) log(e/I
G
i (B))

.

In fact, we prove functional versions of the above two theorems (see Theorem 2.1 and
Theorem 3.1), which, with a little bit of extra work, can then be applied to deduce the
results for the characteristic functions of increasing sets.

Theorem 1.7 is neither uniformly stronger nor uniformly weaker than Theorem 1.6, as
there are cases where each one beats the other. It should be noted that while Talagrand’s
lower bound uses the classical Bonami-Beckner hypercontractive inequality [5, 3], the proof
of Theorem 1.7 uses Borell’s reverse hypercontractive inequality [6]. It will be interesting
to find out whether hypercontractivity and reverse hypercontractivity can be combined to
obtain a new lower bound that will enjoy the benefits of both Theorems 1.6 and 1.7.

Recall that the classical Gaussian FKG inequality [12] asserts that for any pair of coordinate-
wise increasing functions f, g : Rn → R, we have

Eµ[fg] ≥ Eµ[f ]Eµ[g]

Hence, Theorems 1.6 and 1.7 (or more appropriately their functional versions) provide quan-
titive versions of the Gaussian FKG inequality.
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Our second result is a Gaussian analogue of the noise sensitivity results of Benjamini-
Kalai-Schramm [4].

Definition 1.8. LetW,W ′ be i.i.d. standard Gaussian vectors on Rn and letW ρ =
√

1− ρ2W+
ρW ′. For a function f : Rn → R, and for ρ ∈ (0, 1), let

ZG(f, ρ) = E[f(W )f(W ρ)],

provided E[|f(W )|2] <∞. Denote

VARG(f, ρ) = ZG(f, ρ)− E[f(W )]2.

For a set A ⊂ Rn, and for ρ ∈ (0, 1), we write

ZG(A, ρ) = Z(1A, ρ), and VARG(A, ρ) = VARG(1A, ρ).

A sequence of sets Aℓ ⊆ Rnℓ is said to be asymptotically Gaussian noise-sensitive if

lim
ℓ→∞

VARG(Aℓ, ρ) = 0 for each ρ ∈ (0, 1). (1.3)

Theorem 1.9. For any n ≥ 1, for any set A ⊂ Rn, and for any ρ ∈ (0, 1),

VARG(A, ρ) ≤ C1 ·
(

n
∑

i=1

IGi (A)
2

)C2ρ2

,

where C1, C2 are positive universal constants.

The proof of Theorem 1.9 again relies upon an appropriate limit argument and uses The-
orem 1.4 as a blackbox.

Theorems 1.6 and 1.7 allow us to obtain analogues of Talagrand’s lower bounds for any
discrete product probability space (see Theorem 5.2), where the lower bound involves a
discrete variant of the geometric influence, called h-influence. Theorem 1.9 can be used to
obtain an analogue of the BKS theorem in the case of the discrete hypercube {0, 1}n endowed
with a biased product measure (see Theorem 5.4). We note that for the biased product
measures on the discrete hypercube, these results were previously obtained in [21, 22] by
different methods. Comparison of our results with the results of [21, 22] suggests that, in
some sense, the h-influence obtained from the geometric influence is more natural than the
notion of influences used for the biased measure in previous works.

This paper is organized as follows. In Section 2 we prove functional versions of Theo-
rem 1.6 and Theorem 1.9. In Section 3, we present a functional version of Theorem 1.7 using
the Ornstein-Uhlenbeck semigroup theory. In Section 4 we give an argument to suitably
approximate the characteristic functions of monotone sets by smooth functions and apply it
to deduce Theorems 1.6, 1.7 and 1.9 from their functional counterparts. We also discuss how
Theorem 1.6 and Theorem 1.7 compare against each other. Finally, we deduce the analogous
statements for discrete product probability spaces in Section 5, and conclude the paper with
a few open problems in Section 6.

2. Refined Gaussian FKG Inequality and Gaussian BKS Theorem

The main goal of this section is to we prove the following two theorems which are functional
forms of Theorem 1.6 and Theorem 1.9. Note that the role of Gaussian influences is now
played by the L1 norm of the partial derivatives of the functions.
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Theorem 2.1. Let ϕ(x) = x/ log(e/x). There exists a universal constant c > 0 such that for

any n ≥ 1 and for any two increasing continuously differentiable functions f, g : Rn → [−1, 1],
we have

Eµ[fg]− Eµ[f ]Eµ[g] ≥ cϕ
(

n
∑

i=1

Eµ[∂if ]Eµ[∂ig]
)

,

where Eµ stands for integration w.r.t. µ⊗n.

Theorem 2.2. For any n ≥ 1, for any continuously differentiable function f : Rn → [−1, 1],
and for any ρ ∈ (0, 1),

VARG(f, ρ) ≤ C1 ·
(

n
∑

i=1

Eµ[|∂if |]2
)C2ρ2

,

where C1, C2 are positive universal constants.

The proof strategy is to approximate the functions in the “Gaussian world” by sequences
of functions defined on the discrete cubes {−1, 1}nℓ (where nℓ → ∞), and to deduce the
assertions of the theorems by an appropriate limit argument from the corresponding theorems
in the “discrete world”.

For a function f : Rn → R, we construct a sequence {f̌m}∞m=1 of functions as fol-
lows. For each m ∈ N, we denote elements in {−1, 1}mn by vectors (x1, x2, . . . , xn), where
each xi = (xi1, xi2, . . . , xim) is a vector in {−1, 1}m. We write si = si(m) as a short-

hand for m−1/2
∑m

j=1 xij and let s = (s1, . . . , sn) ∈ Rn. Then, we define the function

f̌m : {−1, 1}mn → R by f̌m(x1, . . . , xn) = f(s1, . . . , sn). In order to simplify the nota-
tion, we leave the dependence of s on m implicit in some of the places, and alert the reader
that in the sequel, s always depends on m. The next lemma is our main tool for transferring
the results from the discrete world to the Gaussian world.

Lemma 2.3. Fix n ≥ 1 and 1 ≤ i ≤ n. Let f and g be two continuously differentiable

functions on Rn such that the partial derivatives ∂if and ∂ig are bounded. Then
m
∑

j=1

Iij(f̌m)Iij(ǧm) → 4Eµ[|∂if |]Eµ[|∂ig|], as m→ ∞.

Proof. Since the functions f̌m and ǧm are invariant under permutations of the coordinates
{xij}1≤j≤m for each fixed i, it follows that

∑m
j=1 Iij(f̌m)Iij(ǧm) = mIi1(f̌m)Ii1(ǧm). Thus, it

suffices to show that
√
mIi1(f̌m) → 2Eµ[|∂if |] and similarly for g. Without loss of generality,

we take i = 1. We have

I11(f̌m) = Eν

[

∣

∣f(s′1 +m−1/2, s2, . . . , sn)]− f(s′1 −m−1/2, s2, . . . , sn)
∣

∣

]

,

where s′1 = m−1/2
∑m

j=2 x1j . By the Mean Value Theorem,

f(s′1 +m−1/2, s2, . . . , sn)− f(s′1 −m−1/2, s2, . . . , sn)

2m−1/2
= ∂1f(s

′
1 + ǫm, s2, . . . , sm),

where ǫm is an error term that depends on s′1, s2, . . . , sn, and whose absolute value is bounded

by m−1/2. Therefore, we obtain
√
mI11(f̌m) = 2Eν

[

∣

∣∂1f(s
′
1 + ǫm, s2, . . . , sm)

∣

∣

]

.

Since (s′1 + ǫm, s2, . . . , sm) converges in distribution to µ⊗n, and since ∂1f is a continuous,
bounded function, we conclude that

lim
m→∞

√
mI11(f̌m) = 2Eµ[|∂1f |].
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The assertion of the lemma follows. �

To prove Theorem 2.1, we will need the following functional version of Talagrand’s inequal-
ity on the discrete cube.

Theorem 2.4. For any n ≥ 1 and for any pair of increasing functions f, g : {−1, 1}n → [0, 1],

Eν [fg]− Eν [f ]Eν[g] ≥ cϕ

(

n
∑

i=1

Ii(f)Ii(g)

)

,

where ϕ(x) = x/ log(e/x), and c > 0 is a universal constant.

This version is obtained by following Talagrand’s proof step-by-step, using the fact that for
a monotone function f , Ii(f) is equal in absolute value to the coefficient f̂({i}) in the standard
Fourier-Walsh expansion of f . The exact proof (of a slightly more general statement) appears
in [19].

Proof of Theorem 2.1. Note that since f, g are increasing and bounded, by the Fundamental
Theorem of Calculus, ∂if, ∂ig are nonnegative and integrable. In particular, we have 0 ≤
Eµ[∂if ],Eµ[∂ig] < ∞ for all i. First we assume that f, g are increasing C1 functions on Rn

such that both f, g take values in [0, 1] and ‖∂if‖∞, ‖∂ig‖∞ < ∞ for all i. It follows from
Theorem 2.4 that there exists a universal constant c > 0 such that for each m ∈ N, we have

∫

f̌mǧmdν
⊗nm −

∫

f̌mdν
⊗nm

∫

ǧmdν
⊗nm ≥ cϕ

(

n
∑

i=1

m
∑

j=1

Iij(f̌m)Iij(f̌m)
)

. (2.1)

By the Central Limit Theorem, s(m) = (s1, . . . , sn) converges in distribution to µ⊗n as
m → ∞. Thus, the left hand side of (2.1) converges to Eµ[fg] − Eµ[f ]Eµ[g] as m → ∞. On
the other hand, by letting m → ∞ and applying Lemma 2.3 to the right hand side of (2.1),
we obtain

Eµ[fg]− Eµ[f ]Eµ[g] ≥ cϕ
(

n
∑

i=1

Eµ[∂if ]Eµ[∂ig]
)

. (2.2)

We can easily extend the above inequality, with the constant c replaced by a new constant
c/(1 + log 2), to increasing C1 functions f, g such that both f, g take values in [−1, 1] and
‖∂if‖∞, ‖∂ig‖∞ <∞ for all i. To do that we apply (2.2) for the functions (1+f)/2, (1+g)/2
and note that 2ϕ(x/2) ≥ 1

1+log 2ϕ(x) for all x ∈ [0, 1].

Now we want to remove the condition that the partial derivatives of f, g are bounded. Let
f, g be as given in the hypothesis of Theorem 2.1. For K > 0, set JK = [−K,K]n,MK =
f(K, . . . ,K), and mK = f(−K, . . . ,−K). Since f is increasing, MK = maxx∈JK f(x) and
mK = minx∈JK f(x). Let fK = min(max(f,mK),MK). Hence, fK ≡ f inside JK . Let

η ∈ C∞(Rn) be the standard mollifier, that is, η(x) = C exp
(

1
|x|2−1

)

1|x|≤1, where the

constant C > 0 is selected so that
∫

Rn η(x)dx = 1. For each ǫ > 0, set ηǫ(x) := ǫ−nη(x/ǫ).
Finally, define fK,ǫ = fK ∗ ηǫ =

∫

Rn fK(x − y)ηǫ(y)dy. From the standard properties of the
mollifier, it follows that fK,ǫ ∈ C∞(Rn), fK,ǫ is increasing and |fK,ǫ| ≤ 1. Note that for any
h ∈ R, for any z ∈ Rn,

0 ≤ fK(z + eih)− fK(z)

h
≤ f(z + eih)− f(z)

h
,

ei being the ith coordinate vector in Rn. It follows that 0 ≤ ∂ifK,ǫ ≤ ∂i(f ∗ ηǫ) = ∂if ∗ ηǫ.
Given δ > 0, we claim that there exist K > 0 and ǫ > 0 such that

∫

Rn |fK,ǫ − f |2dµ⊗n < δ
and

∫

Rn |∂ifK,ǫ − ∂if |dµ⊗n < δ. To prove the claim, first find K > 0 large such that



GEOMETRIC INFLUENCES II: CORRELATION INEQUALITIES AND NOISE SENSITIVITY 7

|
∫

Jc
K−1/2

∂ifdµ
⊗n| < δ/3. For 0 < ǫ < 1/2, ∂ifK = 0 outside JK+1/2 and we estimate

∫

Rn

|∂ifK,ǫ − ∂if |dµ⊗n ≤
∫

JK+1/2

|∂ifK,ǫ − ∂if ∗ ηǫ|dµ⊗n +

∫

JK+1/2

|∂if ∗ ηǫ − ∂if |dµ⊗n

+

∫

Jc
K+1/2

∂ifdµ
⊗n.

Note that whenever ǫ ∈ (0, 1/2), ∂ifK,ǫ = ∂if ∗ ηǫ on JK−1/2. Hence,

∫

JK+1/2

|∂ifK,ǫ − ∂if ∗ ηǫ|dµ⊗n ≤
∫

JK+1/2∩Jc
K−1/2

|∂if ∗ ηǫ|dµ⊗n.

By the well-known property of the mollifier, ∂if ∗ ηǫ Lp

→ ∂if for any 1 ≤ p < ∞ over com-
pact sets. Thus, by choosing ǫ > 0 small we can make

∫

JK+1/2
|∂if ∗ ηǫ − ∂if |dµ⊗n < δ/3

and
∫

JK+1/2∩Jc
K−1/2

|∂if ∗ ηǫ|dµ⊗n ≤
∫

JK+1/2∩Jc
K−1/2

|∂if |dµ⊗n + δ/3 and hence,
∫

Rn |∂ifK,ǫ −
∂if |dµ⊗n < δ.

On the other hand, note that
∫

Rn

|fK,ǫ − f |2dµ⊗n ≤ 2

∫

Rn

|fK,ǫ − f ∗ ηǫ|2dµ⊗n + 2

∫

Rn

|f ∗ ηǫ − f |2dµ⊗n.

For ǫ > 0 fixed,
∫

Rn |fK,ǫ − f ∗ ηǫ|2dµ⊗n → 0 as K → ∞ by dominated convergence. Since
f ∗ηǫ → f pointwise as ǫ→ 0, the second integral also goes to zero by dominated convergence.
Thus we establish our claim.

Now note that (2.2) holds for functions fK,ǫ and gK,ǫ. We complete the proof of the
theorem by approximating the original functions f and g by fK,ǫ and gK,ǫ with suitably large
K and small ǫ. �

Now we prove Theorem 2.2, thus obtaining a Gaussian analogue of the quantitative BKS
theorem [22].

Proof of Theorem 2.2. Assume first that f is continuously differentiable with bounded partial
derivatives. We apply Theorem 1.4 to the approximating functions f̌m : {−1, 1}nm → [0, 1]
to obtain, for any η ∈ (0, 1) and any m ≥ 1,

VAR(f̌m, η) ≤ c1 ·





n
∑

i=1

m
∑

j=1

Iij(f̌m)2





c2·η

, (2.3)

where c1 > 0, c2 > 0 are universal constants. We claim that VAR(f̌m, 1 −
√

1− ρ2) →
VARG(f, ρ) as m → ∞. Let x = (xij)1≤i≤n,1≤j≤m and y = (yij)1≤i≤n,1≤j≤m be

√

1− ρ2

correlated vectors that are uniformly distributed in {−1, 1}mn. Set s(m) = (s1, . . . , sn) and

sρ(m) = (sρ1, . . . , s
ρ
n) where si = m−1/2

∑m
j=1 xij and sρi = m−1/2

∑m
j=1 yij. By definition,

Z(f̌m, 1 −
√

1− ρ2) = Eν [f(s(m))f(sρ(m))]. By the Central Limit Theorem, (s(m), sρ(m))
converges in distribution to (W,W ρ) as m → ∞. Since the map (z, z′) 7→ f(z)f(z′) is

bounded and continuous on R2n, it follows that limm→∞ Z(f̌m, 1 −
√

1− ρ2) = ZG(f, ρ).
That Eν [f̌m(x)] = Eν [f(s(m))] converges to Eµ[f(W )] as m → ∞ is again an immediate
consequence of the Central Limit Theorem. This proves the claim. By letting m → ∞ in

(2.3) with η = 1 −
√

1− ρ2 ∈ (0, 1) and by virtue of the above claim and Lemma 2.3, we
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obtain the following inequality for the function f with C2 = c2 and C ′
1 = 4c1,

VARG(f, ρ) ≤ C ′
1 ·
(

n
∑

i=1

Eµ[|∂if |]2
)C′

2(1−
√

1−ρ2)

. (2.4)

Extending (2.4) to C1 functions f with bounded partial derivatives which take values in
[−1, 1] instead of [0, 1] is fairly straightforward and can be achieved (with C1 = 2C ′

1) by
arguing with the function (1 + f)/2 which now takes values in [0, 1]. If

∑n
i=1 Eµ[|∂if |]2 ≤ 1,

then by observing the simple fact that 1−
√

1− ρ2 ≥ ρ2/2 for all ρ ∈ (0, 1), we get the desired
inequality (with C2 = C ′

2/2) for the function f . On the other hand, if
∑n

i=1 Eµ[|∂if |]2 > 1,

then the assertion of the theorem trivially holds for f since VARG(f, ρ) ≤ |f | ≤ 1.
Now take a general C1 function f : Rn → [−1, 1]. If Eµ[|∂if |] = ∞ for some i, then the

theorem holds trivially. So, assume that Eµ[|∂if |] <∞ for all i. Let η, ηǫ and JK be as above.
Define fK = f1JK and fK,ǫ = fK ∗ ηǫ. Clearly, fK,ǫ is C∞ and |fK,ǫ| ≤ 1 and |∂ifk,ǫ| are
bounded for all i (since fK,ǫ is compactly supported). Note that as K → ∞, ǫ → 0, fK,ǫ(z) →
f(z) pointwise, and hence by dominated convergence, VARG(fK,ǫ, ρ) → VARG(f, ρ). Next
we prove that Eµ[|∂ifK,ǫ − ∂if |] → 0 as K → ∞, ǫ→ 0. Towards this end, we bound

Eµ[|∂ifK,ǫ − ∂if |] ≤ Eµ[|∂ifK,ǫ − ∂if |1JK−ǫ
] + Eµ[|∂ifK,ǫ − ∂if |1JK+ǫ∩Jc

K−ǫ
]

+ Eµ[|∂ifK,ǫ − ∂if |1Jc
K+ǫ

]

≤ Eµ[|∂i(f ∗ ηǫ)− ∂if |1JK ] + Eµ[|∂ifK,ǫ|1JK+ǫ∩Jc
K−ǫ

] + Eµ[|∂if |1Jc
K
].

(2.5)

Note that ∂ifK,ǫ(x) =
∫

fK(y)∂iηǫ(x−y)dy = ǫ−1
∫

∂iη(z)fK(x−ǫz)dz. Since |fK | is bounded
by 1, and

∫

|∂iη(z)|dz <∞, we have |∂ifK,ǫ| ≤ C ′ǫ. Thus the second expectation in (2.5) can
be bounded above by C ′ǫ−1µ⊗n(JK+ǫ ∩ Jc

K−ǫ)) ≤ C ′′φ(K), where the constant C ′′ does not
depend on K or ǫ. The third expectation in (2.5) can be made arbitrarily small by taking K
sufficiently large and the first expectation can be made as small as we want choosing ǫ > 0
sufficiently small. Therefore, Eµ[|∂ifK,ǫ|]− Eµ[|∂if |] → 0 as K → ∞, ǫ → 0.

Clearly, the statement of the theorem holds for each fK,ǫ. Taking K → ∞, ǫ → 0, we
obtain the desirable conclusion for the original function f . �

3. A Direct Gaussian Approach via the Ornstein-Uhlenbeck Semigroup

In this section we prove a functional version of Theorem 1.7 (Theorem 3.1 below) and an
inverse Gaussian BKS theorem using tools from the “Gaussian world” without appealing to
the corresponding results for the discrete cube as we did in the previous section.

Theorem 3.1. Let f, g : Rn → [−1, 1] be increasing continuously differentiable functions.

Then

Eµ[fg]− Eµ[f ]Eµ[g] ≥ c
n
∑

i=1

Eµ[∂if ]Eµ[∂ig]
√

log(e/Eµ[∂if ]) log(e/Eµ[∂ig])
,

where c > 0 is a universal constant.

We start with a few standard definitions and simple lemmas related to the Ornstein-
Uhlenbeck semigroup. For a more detailed treatment of these notions, the reader is referred
to [10, 26].

Definition 3.2. Let (Pt)t≥0 be the Ornstein-Uhlenbeck semigroup associated with the gen-
erator L = ∆− x · ∇ on Rn. This semigroup acts on the functions on Rn as follows:

Ptf(x) =

∫

f(e−tx+
√

1− e−2ty)µ⊗n(dy), x ∈ Rn.
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It is well known that (Pt)t≥0 is reversible with the invariant measure µ⊗n. For t > 0, the
operator Pt maps bounded measurable functions to C∞ functions. It also maps an increasing
function to an increasing function. The following simple properties of the operator Pt will be
very useful for later purposes:

Observation 3.3. Let g : Rn → R be a smooth function. Then:

i.
∂iPtg = e−tPt∂ig ∀t ≥ 0. (3.1)

ii. If |g(x)| ≤ 1 for all x, then

|∇Ptg| ≤
1√
t

0 < t ≤ 1/2. (3.2)

iii. If g is increasing, then
∂iPtg ≥ 0 ∀t ≥ 0. (3.3)

Lemma 3.4. Let g be a smooth function with |g(x)| ≤ 1 for all x, and let t ∈ (0, 1/2].

(i) For p ≥ 1, we have ‖∂iPtg‖p ≤ t−(p−1)/2pe−t/p‖∂ig‖1/p1 .
(ii) Assume further that g is increasing. Then for 0 < p < 1, we have ‖∂iPtg‖p ≥

t(1−p)/2pe−t/p‖∂ig‖1/p1 .

Proof. (i) By (3.1) and (3.2), we have

‖∂iPtg‖pp ≤ t−(p−1)/2‖∂iPtg‖1 = t−(p−1)/2e−t‖Pt(∂ig)‖1 ≤ t−(p−1)/2e−t‖∂ig‖1,
where in the last inequality we use the fact that Pt : L

1(µ⊗n) → L1(µ⊗n) is a contraction.
(ii) Again using (3.1) and (3.2), we obtain

‖∂iPtg‖1 ≤ t−(1−p)/2‖∂iPtg‖pp.
Note that since g is increasing,

‖∂iPtg‖1 = Eµ[∂iPtg] = e−tEµ[Pt∂ig] = e−tEµ[∂ig] = e−t‖∂ig‖1.
Hence, we have e−t‖∂ig‖1 ≤ t−(1−p)/2‖∂iPtg‖pp, as desired. �

3.1. An Alternative Refined Gaussian FKG Inequality. In order to prove Theorem 3.1,
we need the following identity for the covariance of a pair of functions w.r.t. the Gaussian
measure, which follows from [9, Lemma 3.3] using the polarization identity: 2Cov(f, g) =
Var(f + g) −Var(f)−Var(g).

Proposition 3.5. Let f, g : Rn → R be two absolutely continuous functions and suppose that

‖∇f‖22, ‖∇g‖22 ∈ L2(µ⊗n). Then

Eµ[fg]− Eµ[f ]Eµ[g] =

n
∑

i=1

∫ ∞

0
e−tEµ

[

∂ifPt∂ig
]

dt. (3.4)

Note that if f, g are increasing, then the RHS is clearly non-negative, and hence, Eµ[fg]−
Eµ[f ]Eµ[g] ≥ 0. This already implies the Gaussian FKG inequality [12]. Moreover, the
proposition gives a precise expression for Cov(f, g). However, as the precise expression is
not so convenient to work with, we replace it by a more convenient lower bound to obtain
Theorem 3.1.

Proof of Theorem 3.1. First of all, note that since f are increasing and |f | ≤ 1, we have
∫

Rn ∂if(z)dz ≤ 2 for all i. Hence, Eµ[∂if ] ≤ 1. The same conclusion also holds for g.
To prove the theorem, we will use Borell’s reverse hypercontractive inequality [6] which

implies the following result. (See Corollary 3.3 of [28] for a discrete version of the result. The
Gaussian version presented here follows immediately by a CLT argument.) Let f1, f2 : R

n →
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R+ be smooth bounded functions, then for any p, q ∈ (0, 1) such that e−2t ≤ (1 − p)(1 − q),
the following inequality holds:

Eµ[f1Ptf2] ≥ ‖f1‖p‖f2‖q. (3.5)

Here the norms are taken w.r.t. the Gaussian measure µ⊗n. Fix 1 ≤ i ≤ n. Using (3.1) and
the fact that Pt is reversible w.r.t. µ⊗n, we have

∫ ∞

0
e−tEµ

[

∂ifPt∂ig
]

dt ≥
∫ ∞

1
e−(t−1)Eµ

[

∂iP1/2fPt−1∂iP1/2g
]

dt

=

∫ ∞

0
e−tEµ

[

∂iP1/2fPt∂iP1/2g
]

dt

=

∫ 1

0
Eµ

[

∂iP1/2fTs∂iP1/2g
]

dt [Ts := Plog(1/s)]. (3.6)

By (3.5) and Lemma 3.4, we deduce that

Eµ

[

∂iP1/2fTs∂iP1/2g
]

≥ ‖∂iP1/2f‖p‖∂iP1/2g‖q ≥ (2e)
−( 1

2p
+ 1

2q
)‖∂if‖1/p1 ‖∂ig‖1/q1 , (3.7)

for s > 0 such that s2 ≤ (1 − p)(1 − q). Optimizing the RHS of (3.7) over p, q ∈ (0, 1)
satisfying s2 ≤ (1− p)(1− q), we obtain

Eµ

[

∂iP1/2fTs∂iP1/2g
]

≥ exp

(

−1

2

a2i + 2saibi + b2i
1− s2

)

,

where ai, bi > 0 are such that (2e)−1/2‖∂if‖1 = e−a2i /2 and (2e)−1/2‖∂ig‖1 = e−b2i /2. Hence,
by (3.6),

∫ ∞

0
e−tEµ

[

∂ifPt∂ig
]

dt ≥
∫ 1

0
exp

(

−1

2

a2i + 2saibi + b2i
1− s2

)

ds

≥ ǫ exp

(

−1

2

a2i + 2ǫaibi + b2i
1− ǫ2

)

, (3.8)

for any ǫ ∈ (0, 1). We are interested in finding a lower bound of the RHS of (3.8) when ai
and bi are large. Note that the derivative of the RHS of (3.8) as a function of ǫ vanishes
approximately at ǫ ≈ 1/aibi. Plugging in ǫ = 1/aibi in (3.8), we obtain

1

aibi
exp

(

−1

2

a2i + 2ǫaibi + b2i
1− ǫ2

)

≥ 1

aibi
exp

(

−1

2
(a2i + 2ǫaibi + b2i )(1 + ǫ2 +O(ǫ4))

)

≥ c1
aibi

e−(a2i+b2i )/2 ≥ c1e ·
‖∂if‖1‖∂ig‖1

√

log(e/‖∂if‖1) log(e/‖∂ig‖1)
, (3.9)

where c1 > 0 is a universal constant. In the second inequality above, we used the fact
ǫ2(a2i + b2i ) = O(1). This is because ai, bi are bounded from below, which follows from the
fact ‖∂if‖1, ‖∂ig‖1 ≤ 1. Now we conclude the proof by combining Proposition 3.5 and the
bounds (3.8) and (3.9) and by taking c = c1e. �

3.2. A direct approach towards inverse Gaussian BKS. In this subsection we aim to
prove a Gaussian analogue of the inverse BKS theorem (see Proposition 1.3 of [4]).

Proposition 3.6. Let f : Rn → R be a continuously differentiable increasing function such

that ‖∇f‖22 ∈ L2(µ⊗n). Then for any ρ ∈ (0, 1),

VARG(f, ρ) ≥ (1− ρ2)

n
∑

i=1

Eµ[∂if ]
2.
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Proof. First we show that for if f is as given in the proposition, then

Varµ(f) ≥
n
∑

i=1

Eµ[∂if ]
2. (3.10)

Taking f = g in Proposition 3.5, we have

Varµ(f) =

n
∑

i=1

∫ ∞

0
e−tEµ[∂ifPt∂if ]dt. (3.11)

We claim that Eµ[∂ifPt∂if ] is a nonincreasing function of t. Indeed,

d

dt
Eµ[gPtg] = Eµ[gPt

n
∑

j=1

(∂2j g − xj∂jg)] =
n
∑

j=1

Eµ[gt∂
2
j g − xjgt∂jg],

where gt = Ptg. Integration by parts yields

Eµ[gt∂
2
j g − xjgt∂jg] = Eµ[g∂

2
j g − ∂j(gt∂jg)] = −Eµ[∂jgt∂jg] = −e−tEµ[∂jgPt∂jg] ≤ 0,

and hence,

d

dt
Eµ[gPtg] =

n
∑

j=1

Eµ[gt∂
2
j g − xjgt∂jg] ≤ 0.

Therefore,

Eµ[∂ifPt∂if ] ≥ Eµ[∂ifP∞∂if ] = Eµ[∂if ]
2. (3.12)

Combination of (3.11) with (3.12) yields (3.10).
By (3.10) and (3.1),

Varµ(Ptf) ≥
n
∑

i=1

Eµ[∂iPtf ]
2 =

n
∑

i=1

e−2tEµ[Pt∂if ]
2 = e−2t

n
∑

i=1

Eµ[∂if ]
2.

Note that by the definition of the Orenstein-Uhlenbeck operator, we have

VARG(f, ρ) = Eµ[fPtf ]− Eµ[f ]
2 = Varµ(Ptf). (3.13)

This completes the proof. �

As a corollary (which we will prove in the next section), we obtain an inverse Gaussian
BKS theorem for increasing functions.

Corollary 3.7. Let {Aℓ ⊆ Rnℓ} be a sequence of increasing sets. If {Aℓ} is asymptotically

Gaussian noise sensitive, then
∑nℓ

i=1 I
G
i (Aℓ)

2 → 0 as ℓ→ ∞.

4. Smooth approximation of characteristic functions of monotone sets

In this section, we prove a result that connects the partial derivative of the characteristic
function of an increasing set after being smoothed by the action of Ornstein-Uhlenbeck op-
erator Pt to its geometric influence as t ↓ 0. This will help us in deriving various theorems
presented in the introduction, which involve sets, from the respective theorems involving C1

functions.
Recall that as defined in the introduction, for any set A ⊆ Rn, for each 1 ≤ i ≤ n and

an element x = (x1, x2, . . . , xn) ∈ Rn, the restriction of A along the fiber of x in the i-th
direction is given by

Ax
i := {y ∈ R : (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ A}.
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Definition 4.1. A set A ⊂ Rn is called increasing (decreasing) if its characteristic function
1A is an increasing (decreasing) function in each coordinate. For any increasing set A ⊂ Rn

and for any x ∈ Rn, define

ti(A;x
(−i)) := inf{y : y ∈ Ax

i } ∈ [−∞,∞],

where x(−i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 and we use the convention that the
infimum of the empty set is +∞.

Note that ti(A; ·) is a decreasing function of x(−i) for any increasing set A. Also, for an in-

creasing set A, its geometric influence is given by IGi (A) =
∫

Rn−1 φ(ti(A; z
(−i)))µ⊗n−1(dz(−i)).

Lemma 4.2. Let A be a monotone subset of Rn. Then, for each i ∈ {1, . . . , n}, we have

Eµ[∂iPt1A] → IGi (A) as t ↓ 0.

Remark 4.3. Lemma 4.2 does not hold in general without the monotonicity assumption. For
example, take n = 1 and define A = Q, the set of rational numbers. Then Pt1A = 0 for any
t > 0 and hence limt→0+ Eµ[∂iPt1A] = 0 but it can be easily checked that IG1 (A) = ∞.

In order to prove Lemma 4.2 we need the following standard lemma. For sake of complete-
ness, we present its proof.

Lemma 4.4. Let f : Rn → R be a monotone function. Then the set of discontinuities of f
has Lebesgue measure zero.

Proof. The n-dimensional space Rn can be represented as a disjoint union of straight lines
⋃

{z∈Rn:zn=0} lz, where each line is defined as lz = z + t(1, 1, . . . , 1), t ∈ R. We would like

to show that the set of discontinuities of f on each line lz is of Lebesgue measure zero, and
then, the assertion of the lemma would follow by a standard application of Fubini’s theorem.

For each such line lz, the restriction of f to lz can be represented by a one-dimensional
function fz : R → R defined by fz(a) = f(z + (a, a, . . . , a)). Note that if f is not continuous
at some x ∈ ℓz, then

lim
ǫ→0+

(

sup
y∈x+[−ǫ,ǫ]n

f(y)− inf
y∈x+[−ǫ,ǫ]n

f(y)

)

> 0,

which implies, by monotonicity of f , that

lim
ǫ→0+

f(x+ (ǫ, . . . , ǫ))− f(x− (ǫ, . . . , ǫ)) 6= 0.

Hence, each discontinuity x of f corresponds to a discontinuity of the one-dimensional func-
tion fz. Therefore, the set of discontinuities of f on a line lz can be embedded into the set of
discontinuities of the function fz. However, for a fixed z, fz is a monotone function on the
real line, and thus, the set of its discontinuities is countable, and, in particular, of Lebesgue
measure zero. Thus, the set of discontinuities of f on each line lz is of Lebesgue measure
zero, which completes the proof. �

Proof of Lemma 4.2. Without loss of generality, we assume that A is an increasing set. Let
W = (W1, . . . ,Wn) be a standard Gaussian vector on Rn and define Yt = e−tx+

√
1− e−2tW .

Then we can write

Pt1A(x) = Eµ[1A(Yt)] = Eµ

[

Φ̄

(

ti(A;Y
(−i)
t )− e−txi√
1− e−2t

)]

,

which, taking partial derivative w.r.t. xi, yields

∂iPt1A(x) = E
e−t

√
1− e−2t

φ

(

ti(A;Y
(−i)
t )− e−txi√
1− e−2t

)

≥ 0.
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Therefore,

Eµ[∂iPt1A] =

∫

Rn

EW

[

e−t

√
1− e−2t

φ

(

ti(A;Y
(−i)
t )− e−txi√
1− e−2t

)]

n
∏

j=1

φ(xj)dx

= EW

∫

Rn

φ(u)φ

(√
1− e−2tu+ ti(A;Y

(−i)
t )

e−t

)

du ·
∏

j 6=i

φ(xj)dx
(−i), (4.1)

where in the last step we make a change of variable u =
e−txi−ti(A;Y

(−i)
t )√

1−e−2t
. Note that by

Lemma 4.4, we have ti(A;Y
(−i)
t ) → ti(A;x

(−i)) in distribution as t → 0+. Hence, taking
limit as t→ 0+ in (4.1), we obtain, by the Bounded Convergence Theorem,

Eµ[∂iPt1A] =

∫

Rn

φ
(

ti(A;x
(−i))

)

du ·
∏

j 6=i

φ(xj)dx
(−i) = IGi (A).

This completes the proof of the lemma. �

As a consequence of Lemma 4.2, Theorems 1.6 and 1.7 can now be easily derived from
their functional counterparts.

Proof of Theorems 1.6 and 1.7. For t > 0, define ft = Pt1A and gt = Pt1B for increasing
sets A,B of Rn. Note that ft and gt are increasing C∞ functions which are bounded by 1.
Thus we can apply Theorems 3.1 and 2.1 with f = ft and gt and then let t → 0+. In view
of Lemma 4.2, the right hand sides of the inequalities converge to appropriate quantities
involving the geometric influences of the sets A and B. Again by Lemma 4.2, 1A and
1B are almost surely continuous, hence ft → 1A and gt → 1B in probability. Therefore,
Eµ[ftgt] − Eµ[ft]Eµ[gt] → µ⊗n(A ∩ B) − µ⊗n(A)µ⊗n(B) by dominated convergence, which
completes the proofs of the theorems. �

Note that above proof technique can not be immediately applied to deduce Theorem 1.9
from Theorem 2.2 since Lemma 4.2 does not hold for general non-monotone sets. We overcome
this obstacle by establishing a shifting lemma, which implies that it will be sufficient to prove
our theorem for increasing sets. This shifting lemma is a Gaussian analogue of Lemma 2.7
in [4].

Definition 4.5. For i ∈ {1, 2, . . . , n}, the i-shift operator Mi acting on subsets of Rn is
defined by:

Mi(A) = {x ∈ Rn : xi ≥ Φ̄−1(µ(Ax
i ))}.

The shifting operator M is defined as M =M1 ◦M2 ◦ . . . ◦Mn.

Lemma 4.6. Let A ⊆ Rn. For any i ∈ {1, 2, . . . , n} and for any ρ ∈ (0, 1), we have:

(i) M(A) is increasing.

(ii) µ⊗n(M(A)) = µ⊗n(A).

(iii) IGi (M(A)) ≤ IGi (A).
(iv) ZG(M(A), ρ) ≥ ZG(A, ρ).

Proof. The proofs of (i) and (ii) are standard (see [13]).
In order to prove (iii), we recall the notion of h-influences defined in [20] and its relation to

geometric influences. For a function h : [0, 1] → [0, 1], the h-influence of the i-th coordinate
on A (in the Gaussian space) is defined as

Ihi (A) :=

∫

h(µ(Ax
i ))µ

⊗n(dx),
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where Ax
i is the restriction of A along the fiber of x in the i-th direction. It was shown in

previous work that:

• If the function h is concave and continuous, then h-influences of any set can only
decrease under the action of the shifting operator M on that set (see Theorem 2.2 of
[20]).

• For h(t) = φ(Φ−1(t)) (which is concave and continuous), we have IGi (A) ≥ Ihi (A) for

any set A, and IGi (A) = Ihi (A) for monotone increasing sets (see Lemmas 3.5 and 3.7
of [23]).

Combining these two facts, we have

IGi (M(A)) = Ihi (M(A)) ≤ Ihi (A) ≤ IGi (A),

as asserted in (iii).
To prove (iv), it is sufficient to show that ZG(Mj(A), ρ) ≥ ZG(A, ρ) for each j ∈ {1, 2, . . . , n}.

Let W,W ′ be two i.i.d. standard Gaussian vectors on Rn and set W ρ =
√

1− ρ2W + ρW ′

(as defined above). We have

ZG(A, ρ) = E[1AW
j
(Wj)1AWρ

j
(W ρ

j )]

= EW (−j),W ′(−j)

[

E
[

1AW
j
(Wj)1AWρ

j
(W ρ

j )
∣

∣W (−j),W ′(−j)]
]

. (4.2)

By Borell’s isoperimetric inequality [7], amongst all pairs of subsets S, T of the real line such
that µ(S) = a and µ(T ) = b, the joint probability P[Wj ∈ S,W ρ

j ∈ T ] is maximized when

S = [Φ̄−1(a),∞) and T = [Φ̄−1(b),∞). This implies that

E[1Ax
j
(Wj)1Ay

j
(W ρ

j )] ≤ E[1Mj(A)xj
(Wj)1Mj(A)yj

(W ρ
j )] ∀x, y ∈ Rn. (4.3)

Assertion (iv) follows immediately by plugging Equation (4.3) into Equation (4.2). �

Proof of Theorem 1.9. By Lemma 4.6, it is sufficient to prove the theorem for increasing sets.
Now we can follow the proof of Theorems 1.6 and 1.7 to complete the proof. We omit the
details. �

We point out that a Gaussian analogue of the original BKS theorem follows immediately
from Theorem 1.9.

Corollary 4.7. Let Aℓ ⊆ Rnℓ be a sequence of sets and suppose that
∑nℓ

i=1 I
G
i (B)2 → 0 as

ℓ→ ∞. Then {Aℓ} is asymptotically Gaussian noise-sensitive.

Proof of Corollary 3.7. Again, we can follow the proof of Theorems 1.6 and 1.7 to show that,
for any increasing set A ⊆ Rn,

VARG(A, ρ) ≥ (1− ρ2)

n
∑

i=1

IGi (A)
2.

The assertion of the corollary follows immediately. �

4.1. Comparison Between Theorems 1.6 and 1.7. Let us compare the performances of
Theorems 1.6 and 1.7 in two important special cases.

• Threshold sets in Rn. Let A = {x ∈ Rn : n−1/2
∑n

i=1 xi > −t} and B = {x ∈ Rn :

n−1/2
∑n

i=1 xi > t}. In this case, µ(A) = ǫ and µ(B) = 1 − ǫ where ǫ = Φ−1(−t),
and hence, µ⊗n(A ∩ B) − µ⊗n(A)µ⊗n(B) = ǫ2. It is easy to show that IGi (A) =

IGi (B) ≍ n−1/2ǫ
√

log(1/ǫ) for each i. Thus, Theorem 1.6 gives a lower bound of order
ǫ2 whereas Theorem 1.7 yields a lower bound of order ǫ2/ log n. Therefore, in this
example, Theorem 1.6 is tight as t → ∞ (ǫ → 0) up to a constant factor for any n,
while Theorem 1.7 is off by a factor of log n.
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• Sets that depend on a single coordinate. Let n = 1 (which is equivalent to
the case when both sets depend on a single coordinate). In this case, Theorem 1.7
is strictly stronger than Theorem 1.6. Indeed, for n = 1, the bounds given by the
theorems are (up to a constant):

IG(A)IG(B)
√

log(e/IG(A)) log(e/IG(B))
and

IG(A)IG(B)

log(e/IG(A)IG(B))
.

Since

log(e/IG(A)IG(B)) ≥ 1

2

(

log(e/IG(A)) + log(e/IG(B)
)

,

the left bound is always greater then the right one by the inequality between the
arithmetic and geometric means. Moreover, it can be shown that the bound of The-
orem 1.7 is asymptotically tight for any choice of the sets A,B, while Theorem 1.6 is
not tight for A = (−t,∞), B = (et,∞) as t→ ∞.

5. Other Probability Spaces

In this section, we show how one can use the Gaussian Talagrand bounds obtained in the
previous sections to prove analogous bounds for other product spaces, including all discrete
product spaces, the space [0, 1]n endowed with the Lebesgue measure, etc. Next we will
deduce a BKS theorem for the product biased measure on the discrete cube {−1, 1}n from
its Gaussian counterpart. We should mention here that it is not clear if it is possible to find
a reduction from the Gaussian BKS theorem to an analogous BKS theorem for a general
discrete product space ([q]n, γ⊗n). Indeed, while the Ornstein-Uhlenbeck semigroup action is
same as adding ‘small’ amount of noise to every coordinate, the standard noise operator (on
a discrete product space) amounts to adding ‘big’ noise to a small number of coordinates.
That they are equivalent is far from obvious.

Since there is no single natural definition of influences for such spaces, we formulate the
results in terms of the h-influences defined in [20] (which turns out to be the most natural way
to state them), and then mention the formulation with respect to more common definitions
of influences. First we recall the definition of h-influences.

Definition 5.1. Let Ω be a probability space endowed with a probability measure γ. For a
function h : [0, 1] → [0, 1], the h-influence of the i-th coordinate on a set A in the product
space (Ωn, γ⊗n) is defined as

Ihi (A) := Eγ [h(γ(A
x
i ))],

where Ax
i is the restriction of A along the fiber of x in the i-th direction and Eγ , as always,

denotes the expectation w.r.t. the product measure γ⊗n.

Throughout this section, we consider h-influences with respect to the function h(t) =
φ(Φ−1(t)). For sake of simplicity, we formulate the results for discrete probability spaces.
The results for other spaces, such as the space [0, 1]n endowed with the Lebesgue measure,
can be derived similarly.

For q > 1, let [q] = {1, 2, . . . , q}, and let γ be a probability measure on [q]. Without loss of
generality, we assume that γ(i) > 0 for all i ∈ [q] and denote the smallest atom in ([q], γ) by
α = mini∈[q] γ(i). In order to obtain the reduction from ([q]n, γ⊗n) to (Rn, µ⊗n), we define

ψ : R → [q] to be an increasing function such that the push forward µ ◦ ψ−1 has law γ. For
example, ψ(u) = min{i ∈ [q] : F (i) > Φ(u)}, where F is the distribution function of γ. Define
ψ⊗n : Rn → [q]n by ψ⊗n(u1, . . . , un) = (ψ(u1), . . . , ψ(un)), and set AG := (ψ⊗n)−1(A).

Obviously, µ⊗n(AG) = γ⊗n(A) for any A ⊆ [q]n. Moreover, a similar equality holds with
respect to the restriction along fibers: If u ∈ Rn such that ψ⊗n(u) = J ∈ [q]n, then the fibers
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(AG)
u
i and AJ

i satisfy:

(AG)
u
i = ψ−1(AJ

i ).

Consequently, µ((AG)
u
i ) = µ(ψ−1(AJ

i )) = γ(AJ
i ). This allows us to relate the geometric

influences of AG to the h-influences of A. Indeed, it was shown in [23] that for h(t) =

φ(Φ−1(t)), we have IGi (B) ≥ Ihi (B) for any set B ⊆ Rn, and IGi (B) = Ihi (B) for monotone
increasing sets (see Lemmas 3.5 and 3.7 of [23]). Hence, for any A ⊆ [q]n and for any
1 ≤ i ≤ n,

IGi (AG) ≥ Ihi (A). (5.1)

This allows us to obtain analogues of Gaussian correlation bounds for the product space
([q]n, γ⊗n).

Theorem 5.2. Let A,B be two increasing subsets of [q]n. Then,

γ⊗n(A ∩B)− γ⊗n(A)γ⊗n(B) ≥

cmax





n
∑

i=1

Ihi (A)I
h
i (B)

√

log(1/Ihi (A)) log(1/I
h
i (B))

, ϕ
(

n
∑

i=1

Ihi (A)I
h
i (B)

)



 ,

where c > 0 is a universal constant, h(t) = φ(Φ−1(t)), and ϕ(x) = x/ log(e/x).

Proof. Since the functions x 7→ x/
√

log(1/x) and x 7→ x/ log(e/x) are increasing in (0, 1), the
assertion follows by applying Theorem 1.6 and Theorem 1.7 to the increasing sets AG, BG ⊆
Rn coupled with the observation (5.1). �

An interesting special case is the discrete cube {−1, 1}n endowed with the product biased
measure ν⊗n

α , where να = αδ1 + (1 − α)δ−1 (w.l.o.g. for 0 < α < 1/2). In this case, the
h-influence with h(t) = φ(Φ−1(t)) satisfies

Ihi (A) = α
√

log(1/α)Ii(A),

where Ii(A) is defined similarly to (1.1) (but instead of taking the expectation w.r.t. the
uniform measure ν⊗n, we use the product biased measure ν⊗n

α ). Hence, Theorem 5.2 gives
the bound

ν⊗n
α (A ∩B)− ν⊗n

α (A)ν⊗n
α (B) ≥ cϕ

(

α2 log(1/α)
n
∑

i=1

Ii(A)Ii(B)

)

,

which was already shown in [21, Proposition 3.12]. We note that unlike the result of [21], in
Theorem 5.2 the h-influences in the RHS appear without a “scaling factor” depending on α.
This shows that in some sense, this h-influence, which is the discrete variant of the geometric
influence, is more natural than the definition of influence used in [21] for the biased measure.

In order to obtain an analogue of Theorem 1.9 for the biased cube ({−1, 1}n, ν⊗n
α ), we need

to find the exact relation between Gaussian noise sensitivity and discrete noise sensitivity (as
defined in the introduction but now both X and Xη are distributed (marginally) as ν⊗n

α ).

Lemma 5.3. Consider the probability space ({−1, 1}n, ν⊗n
α ). Let A be a subset of {−1,+1}n

and let AG be as defined above. Then for any ρ ∈ (0, 1)

VARG(AG, ρ) = VAR(A, η),

for η = η(ρ, α) =
P[W1<Φ−1(α),W ρ

1 >Φ−1(α)]
α(1−α) , where (W1,W

ρ
1 ) is a bivariate normal random

vector with mean zero, unit variance and correlation
√

1− ρ2.
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Proof. Let X and Xη be two (1− η)-correlated vectors on ({−1,+1}n, ν⊗n
α ) and let (W,W ρ)

be Gaussian vectors on Rn as defined in Definition 1.8. Clearly, µ⊗n(AG) = ν⊗n
α (A). To

equate Z(A, η) to ZG(AG, ρ), we want to choose ρ > 0 such that the random vectors (X,Xη)
and

(

ψ⊗n(W ), ψ⊗n(W ρ)
)

have the same distributions on {−1, 1}n×{−1, 1}n. Note that this
is equivalent to the condition

P[X1 = −1,Xη
1 = −1] = P[W1 < Φ−1(α),W ρ

1 < Φ−1(α)],

which is same as
α− α(1− α)η = P[W1 < Φ−1(α),W ρ

1 < Φ−1(α)].

The lemma now follows immediately. �

Theorem 5.4. Consider the product space ({−1, 1}n, ν⊗n
α ). For any n, for any set A ⊂

{−1, 1}n, and for any η ∈ (0, 1),

VAR(A, η) ≤ C1 ·
(

n
∑

i=1

Ihi (A)
2

)C2ρ2

,

where h(t) = φ(Φ−1(t)), ρ is as defined in Lemma 5.3, and C1, C2 > 0 are universal constants.

Proof. Consider the set AG defined as above, and the corresponding “monotonized” set
M(AG) (see Lemma 4.6 above). By Lemma 4.6(iv) and Lemma 5.3,

VARG(M(AG), ρ) ≥ VARG(AG, ρ) = VAR(A, η). (5.2)

On the other hand, by properties of the monotonization operator M , we have:

IGi (M(AG)) = Ihi (M(AG)) ≤ Ihi (AG) = Ihi (A) (5.3)

(see the proof of Lemma 4.6(iii) above). Applying Corollary 1.9 to the set M(AG), we get:

VARG(M(AG), ρ) ≤ C1 ·
(

n
∑

i=1

IG(M(AG))
2

)C2ρ2

. (5.4)

Combination of (5.4) with (5.2) and (5.3) yields the assertion. �

Let’s compare the above bound to the following bound obtained in [22, Theorem 7] in the
regime when η > 0 is small but fixed and α→ 0:

VAR(A, η) ≤ c′1 ·
(

α(1− α)

n
∑

i=1

Ii(A)
2

)β(η,α)·η

,

where β(η, α) · η ≍η 1/ log(1/α). Note that after switching back to ordinary influences,
Theorem 5.4 reads:

VAR(A, η) ≤ C1 ·
(

α2 log(1/α)
n
∑

i=1

Ii(A)
2

)C2·ρ(η,α)2

, (5.5)

We are interested in finding a reasonable lower bound (up to a constant that may depend on

η) on ρ(η, α). Set t = Φ̄−1(α) ≍
√

log(1/α). Note that,

P[W1 > t,W ρ
1 < t] ≤ P[W1 > t]P[t

√

1− ρ2 + ρW ′
1 < t]

= αP

[

W ′
1 <

t(1−
√

1− ρ2)

ρ

]

≤ αP[W ′
1 < tρ].

Since both P[W1 > t,W ρ
1 < t] and αP[W ′

1 < tρ] are increasing functions of ρ, a lower bound
on ρ(η, α) can be achieved by solving ηα(1 − α) = αP[W ′

1 < tρ], which yields tρ ≍η 1, or,
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ρ2 ≍η 1/ log(1/α). So, the asymptotic performance of Theorem 5.4 matches with that of [22]
(which was shown in [22] to be essentially tight).

We now relate our results to more common definitions of influences in the product spaces
([q]n, γ⊗n).

Variance Influence. This notion, used e.g. in [16, 27], is defined as:

IVari (A) := Eγ [Var(1Ax
i
)].

It is clear that the variance influence coincides with the h-influence for h(t) = t(1 − t),
and hence, it is always smaller (up to a constant factor) than the h-influence with h(t) =
φ(Φ−1(t)). Hence, Theorem 5.2 holds without change for the variance influences. In order to
find a lower bound of variance influence in terms of h-influence, we consider the contribution
of a single fiber to Ihi (A) and to IVari (A). If µ(Ax

i ) = t ≤ 1/2, then these contributions are

t
√

log(1/t) and t(1− t), respectively. Note that if α is the size of the smallest atom in ([q], γ),
then either t ∈ {0, 1} or t ∈ [α, 1− α]. In both cases,

t
√

log(1/t)

t(1− t)
≤ 2
√

log(1/α).

Hence, for any A and i,

Ihi (A) ≤ 2
√

log(1/α)IVari (A),

and thus, Theorem 5.4 holds (for q = 2) with 4 log(1/α)
∑

i I
Var
i (A)2 in place of

∑

i I
h
i (A)

2.

BKKKL Influence. This influence, used in [8, 16] is given by:

IBKKKL
i (A) := Eγ [h(µ(A

x
i ))],

where h(t) = 1 if t ∈ (0, 1), and h(t) = 0 if t ∈ {0, 1}. This definition coincides with
Ii(A) for q = 2 and we have already seen in (5.5) how Theorem 5.4 should look in this
case. As for Theorem 5.2, since the contribution of each fiber to Ihi (A) is either zero or at

least α
√

log(1/α), it follows that the theorem holds with α2 log(1/α)IBKKKL
i (A)IBKKKL

i (B)

instead of Ihi (A)I
h
i (B).

6. Open Problems

We conclude the paper with a few directions for further research suggested by our results
and by recent related work.

(1) The first issue left open in this paper is to prove a quantitative BKS theorem for all
other discrete product spaces. In fact, we weren’t able to deduce it by a reduction
from the Gaussian version even for the simplest case ([q]n, λ⊗n) where q > 2 and λ
is the uniform measure on [q]. We note that we have a direct proof of quantitative
BKS for all discrete spaces, using a generalization of the techniques used in [22], along
with hypercontractive estimates for general discrete measures obtained by Wolff [33].
However, the proof is cumbersome and the result is not tight, and hence, a reduction
from the Gaussian case is more desirable.

(2) It would be interesting to find alternative “direct” proofs of Theorems 1.6 and 1.9,
which do not rely on their counterparts on the discrete cube. In particular, we wonder
whether one can combine the reverse hypercontractivity technique used in the proof of
Theorem 1.7 with the the classical hypercontractivity used in the proof of Theorem 1.6
to obtain a new lower bound that will enjoy the benefits of both theorems.
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(3) Probably the most interesting direction is to find applications of the results. Both
Talagrand’s lower bound and the BKS theorem have various applications, and even the
recent generalization of the BKS theorem to biased measures [22] was already applied
to percolation theory [2]. On the other hand, Gaussian noise sensitivity was recently
studied by Kindler and o’Donnell [24] and used to obtain applications to isoperimetric
inequalities and to hardness of approximation. Hence, it will be interesting to find
also applications of Talagrand’s lower bound or of the BKS theorem in the Gaussian
setting.

(4) Finally, our understanding of influences in product spaces is still very far from com-
plete. In particular, only a very few is known about influences with respect to non-
product measures, and it is even unclear what should be the natural definition of
influences in such a general setting (see [14]).
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