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not take advantage of the potential for learning between tests, thus resulting in a larger number of tests. We
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strategy as a function of testing cost, prior knowledge, and testing lead time. Using information theory to
measure the test efficiency, we further show that in the case of imperfect testing (due to noise or simulated test
conditions), the attractiveness of parallel strategies decreases. Finally, we analyze the relationship between
testing strategies and the structure of design hierarchy. We show that a key benefit of modular product
architecture lies in the reduction of testing cost.
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Abstract

An important managerial problem in product design is the extent to which testing
activities are carried out in parallel or in series. Parallel testing has the advantage
of proceeding more rapidly than serial testing but does not take advantage of the
potential for learning between tests, thus resulting in a larger number of tests. We
model this trade-off in form of a dynamic program and derive the optimal testing
strategy (or mix of parallel and serial testing) that minimizes both the total cost
and time of testing. We derive the optimal testing strategy as a function of testing
cost, prior knowledge, and testing lead-time. Using information theory to measure
the amount of learning between tests, we further show that in the case of imper-
fect testing (due to noise or simulated test conditions) the attractiveness of parallel
strategies increases. Finally, we analvze the relationship between testing strategies
and the structure of design hierarchy. We show that a key benefit of modular product
architecture lies in the reduction of testing cost.

KEYWORDS: testing, prototyping, learning, optimal search, modularity



1 Introduction

Beginning with Simon (1969), a number of innovation researchers have studied the role of
testing and experimentation in the research and development process (Simon, 1969; Allen,
1977; Wheelwright and Clark, 1992; Thomke, 1998; Iansiti, 1999). More specifically,
Simon first proposed that one could “...think of the design process as involving, first, the
generation of alternatives and, then, the testing of these alternatives against a whole array
of requirements and cconstraints. There need not be merely a single generate-test cycle,

but there can be a whole nested series of such cycles” (Simon, 1969, 1981, p. 149).

The notion of “design-test” cycles was later expanded by Clark and Fujimoto (1989) to
“design-build-test” to emphasize the role of building prototypes in design, and to “design-
build-run-analyze” by Thomke (1998) who identified the analysis of a test or an experiment
to be an important part of the learning process in product design. These results echoed
earlier empirical findings by Allen (1977; p. 60) who observed that research and devel-
opment teams he studied spent on average 77.3% of their time on experimentation and
analysis activities which were an important source of technical information for design en-
gineers. Similarly, Cusumaneo and Selby (1996) later observed that Microsoft’s software
testers accounted for 45% of its total development stafl. Since testing is so central to prod-
uct design, a growing number of researchers have started to study testing strategies, or to

use Simon’s words once more, optimal structures for nesting a long series of design-test

cycles (Cusumano and Selby, 1996; Thomke and Bell, 1999).

Integral to the structure of testing is the extent to which testing activities in design
are carried out in parallel or in series. Parallel testing has the advantage of proceeding
more rapidly than serial testing but does not take advantage of the potential for learning
between tests - resulting in a larger number of tests to be carried out. As real-world testing

strategies are combinations of serial and parallel strategies, managers and designers thus



face difficult choices in formulating an optimal policy for their firms. This is particularly
important in a business context where new and rapidly advancing technologies are changing

the economics of testing.

The purpose of this paper is to study the fundamental drivers of parallel and sequential
testing strategies and develop optimal policies for research and development managers. We
achieve this by formulating a model of testing that accounts for testing cost and lead-time,
prior knowledge and learning between tests. We show formally under which conditions
it is optimal to follow a more parallel or a more sequential approach. Moreover, using a
hierarchical representation of design, we also show that there is a direct link between the
optimal structure of testing activities and the structure of the underlying design itself; a
relationship that was first explored by Alexander (1964) and later reinforced by Simon

(1969, 1981).

Our analysis yields three important insights. First, the optimal mix of parallel and se-
quential testing depends on the ratio of the [financial] cost and [cost of| time of testing:
More expensive tests make sequential testing more economical. In contrast, slower tests

make parallel testing more attractive for development managers(see Section 3).

Second, imperfect tests reduce the amount of learning between testing sequential design
alternatives. Using information theory to measure the amount of learning between tests, we
show that such imperfect tests increase the attractiveness of parallel testing strategies(see

Section 4).

Third, the structure of design hierarchy influences to what extent tests should be carried
out in parallel or sequentially. We show that a modular product architecture can radically
reduce testing cost compared to an integral architecture. We thus suggest a link between
the extensive literature on design architecture and the more recent literature on testing

(Section 5).



2 Parallel and Sequential Testing in Product Design

Design can be viewed as the creation of synthesized solutions in the form of products,
processes or systems that satisfy perceived needs through the mapping between functional
elements (FEs) and physical elements (PEs) of a product. Functional elements are the
individual operations and transformations that contribute to the overall performance of the

product. Physical elements are the parts, components, and sub-assemblies that implement,

the product’s functions (Ulrich and Eppinger 1995, p. 131; see also Su 1990, p. 27).

To illustrate this view of product design, consider the following simple example. Assume
that we are interested in designing the opening and closing mechanism of a door which
has two FEs: the ability to close it (block it from randomly swinging open), with the
possibility of opening from either side, and the ability to lock it (completely disallowing
opening from one side or from both sides). The physical elements, or design alternatives,
include various options of shape and material for the handle, the various barrels, and the

lock (see Figure 1).
Insert Figure 1 about here

An integral characteristic of designing products with even moderate complexity is its
iterative nature. As designers are engaged in problem-solving, they iteratively resolve
uncertainty about which physical elements satisly the perceived functional elements. We

will refer to the resolution of this uncertainty as a test or a series of tests.

It is well-known that product developers generally do not expect to solve a design problem
via a single Iteration, and so often plan a series of design-test cycles, or experiments, to
bring them to a satisfactory solution in an efficient manner (Allen, 1966; Simon, 1969;
Smith and Eppinger, 1997; Thomke, 1998). When the identification of a solution to a

design problem involves more than one such iteration, the information gained from a



previous test(s) may serve as an important input to the design of the next one. Design-
test cycles which do incorporate learning derived from other cycles in a set are considered
to have been conducted in series. Design-test cycles that are conducted according to an
established plan that is not modified as a result of the finding from other experiments are

considered to have been conducted in parallel.

For example, one might carry out a pre-planned “array” of design experiments, analyze
the results of the entire array, and then carry out one or more additional verification
experiments as it is the case in the field of formal “design of experiments (DOE)” methods
(Montgomery 1991). The design-test cycles in the initial array are viewed as being carried
out in parallel, while those in the second round are carried out in series with respect to
that initial array. Such parallel strategies in R&D have been first suggested by researchers
as far back as Nelson (1961) and Abernathy and Rosenbloom (1968), and more recently,

by Thomke et al. (1998), and Dahan (1998).

Specifically, there are three important factors that influence optimal testing strategies:
cost, learning between tests, and feedback time. First, a test’s cost typically involves the
cost of using equipment, material, facilities, and engineering resources. This cost be very
high, such as when a prototype of a new car is used in destructive crash testing, or it can
be as low as a few dollars, such as when a chemical compound is used in pharmaceutical
drug development and is made with the aid of combinatorial chemistry methods and tested
via high-throughput screening technologies (Thomke ef al. 1998). The cost to build a test
prototype depends highly on the available technology and the degree of accuracy, or fidelity,
that the underlying model is intended to have (Bohn 1987). For example, building the
physical prototype used in automotive crash tests can cost hundreds of thousands of dollars
whereas a lower-fidelity “virtual” prototype built inside a computer via mathematical

modeling can be relatively inexpensive after the initial fixed investment in model building



has been made.

Second, the amount of learning that can be incorporated in subsequent tests is a function
of several variables, including prior knowledge of the designer, the level of instrumentation
and skill used to analyze test result, and, to a very significant extent, the topography of
the “solution landscape” which the designer plans to explore when seeking a solution to
her problem (Alchian, 1950; Kauffman and Levin, 1987; Baldwin and Clark, 1997a). In
the absence of learning, there is no advantage of carrying out tests sequentially, other than

meeting specific constraints that a firm may have (e.g. limited testing resources).

Third, the amount of learning is also a function of how timely feedback is received by
the designer. It is well-known that misperceptions and delays in feedback from actions
in complex environments can lead to suboptimal behavior and diminished learning. The
same is true for noise which has shown to reduce the ability to improve operations (Bohn
1995). Thus, the time it takes to carry out a test and obtain results not only allows design

work to proceed sooner but also influences the amount of learning between sequential tests.

3 A Model of Perfect Testing

We start our analysis by focussing on the optimal testing strategy in the design of one
single physical element (PE). Consider for example the PE “locking mechanism” from
Figure 1, for which there exist a number of design alternatives, depicted in Figure 2.
Three different geometries of the locking barrel might fulfill the functional element (FE)
“lock the door”. Based on her education and her previous work, the design engineer forms
prior beliefs, e.g. “a cylinder is likely to be the best solution, however, we might also look

at a rectangular prism as an alternative gecmetry”.

Insert Figure 2 about here



More formally, the engineer’s prior beliefs can be represented as a set of probabilities p;
defined over the alternatives 1..N where p; = Pr{candidate i is the best solution}. In order
to resolve the residual uncertainty, cne geometry i is tested. Once the engineer can observe
the result of the test, she gains additional information on whether or not this geometry is
the best solution available. If a test resolves the uncertainty corresponding to a sclution
candidate completely, we refer to this test as a perfect test (imperfect testing will be
analyzed in Section 4). Based on a test outcome, the designer can update her beliefs. If
the tested candidate turns out to be the best solution, its probability gets updated to 1
and the other probabilities are renormalized accordingly. Otherwise, p; is updated to 0.
This updating mechanism represents learning in the model. It implies that a test reveals

information on a solution candidate relative to the other candidates!.

We assume that there is a fixed cost ¢ per test as well as a fixed lead-time 7 between the
beginning of test-related activities and the observability of the newly generated informa-
tion. The lead-time is important, as in presence of a delay, it can be beneficial to order
several tests in parallel. Let ¢, be the cost of delay for the time-period of length 7. Testing
thus “buys” information in form of updated probabilities at the price of nc + ¢, where n

is the number of tests the engineer orders in one period.

For the special case n = 1, i.e. tests are done fully sequential, our testing problem can
be seen as a search problem, similar to Weitzman (1979). In a result that is known as

“Pandora’s rule”, Weitzman shows that if there are N “boxes” to be opened, box 7 offering

areward R with probahility p;, the box with the lowest “cost” }l)’a"c) should be opened first?.

1This corresponds to a situation where the design engineer can "tell the winner when she sees it”. As

discussed above, this is one of many possible intermediate updates of the solution landscape.

2This review of Weitzman's result has been adapted to correspond to our situation. In our problem,
we consider less general rewards than in Weitzman’s Pandora’s rule (in our model, a candidate is either

right or wrong, there is no generally distributed reward).



Here, | A; | is the number of objects in the box, ¢ the search cost per object, and p(A;)
the probability that the box contains the reward. Note that if all sets have equally many
elements (in particular, if each solution candidate alone forms a set), this rule suggests to

test the most likely candidate first.

However, Weitzman assumes that only one box can be opened at a time (n = 1), which
ignores the aspect of testing lead-time. In most testing situations, the designer not only
needs to decide which test to run next, but also hew many tests should be run in parallel.
On the one hand, parallel tests are attractive, as they resolve uncertainty in less time
than sequential tests. In the extreme case where tests are carried cut for every design
alternative in parallel, the design problem is sclved after one round of testing. On the
other hand, parallel testing increases the number of tests as it fails to take advantage of
the potential for learning from a test before running the next one. Learning is foregone
as the designer commits to all tests at the same time. For a development manager, this

creates an interesting trade-off between cost and time, which we will now explore further.

The described testing problem can be seen as a dynamic program, where the state of the
system is the set .S of remaining potential sclution candidates with their probabilities.
The decision to be made in each stage of the dynamic program is the set of states to be
tested next, call it A. The immediate cost of this decision is | A | ¢+ ¢,, and the resulting
state is the empty set with probability p(A) = ¥,c4pi, and it is S — A with probability
2 ie(s—A) Pi- A testing policy is optimal for a given set of solution candidates with attached
probabilities p;, if it minimizes the expected cost (testing and delay) of reaching the target

state S = {}.

Theorem 1: To obtain the optimal testing policy, order the solution candidates in de-
creasing order of probability such that p; > p;,;. Assign the first candidates to set A;, the

“batch” to be tested first, until its target probability specified in Equation (2) is reached.



Assign the next candidates to set A, to be tested next (if the solution is not found in 4,),

and so on, until all N leaves are assigned to n sets Ay,..., A4,. The optimal number of
sets® is

n = min {N;max{l,[ %+ %Jrzziv ]} e (1)
where [...| denotes the integer part of a number. The sets are characterized by their

probabilities p(A4;) = X ca, P

1 e n+1 2(n — i)

p(Ai):E_’_W 5 —i):n—)- (2)

It is interesting to note that the batch probabilities are described as a deviation from the
average 1/n: the first batches have a higher probability, the last batches a lower probability
than the average. Note that this does not imply that the number of sclution candidates
in the first batches tested is also higher: if probabilities initially fall off steeply with 4, the
first batch tested may have a lower number of solution candidates than the second batch.
If the total number of candidates NV is very large, the difference in probability among the

batches shrinks.

The policy in Theorem 1 behaves as we would intuitively expect. When the testing cost
¢ is very large, the batches shrink to 1, n = N, and testing becomes purely sequential in
order to minimize the probability that a given candidate must be tested. If ¢, approaches
infinity, n approaches 1: testing becomes purely parallel in order to minimize time delay.
When the total number of solution candidates N grows, the number of batches grows with

v N. We describe this extreme behavior more precisely in the following corollary.

Corollary 1: If % << i < %, the optimal expected testing time is ”?H, and the

expected total testing cost is selnbljondd), 1 =

= optimal testing is fully parallel

L
N

3The number of batches includes the last (n-th) set, which is empty. Thus, the de facte number of sets

isnn— 1.



(n = 1), the testing time is 1, and the optimal total testing cost is (¢, + Nc). If = > %,
optimal testing is fully sequential, and the optimal total cost is »;ip;(c + ¢,). If all

candidates are equally likely, this becomes %(c +e).

In addition to defining the optimal testing policy, Theorem 1 provides an interesting strue-
tural insight concerning when to perform parallel search. Earlier studies have proposed
that new testing technologies have significantly reduced the cost of testing, thus increas-
ing the attractiveness of parallel strategies (e.g. Ward et al. 1995, Terwiesch et al. 1999,
Thomke 1998). Our results clearly demonstrate this - as test cost decreases, the optimal
batch size goes up. For the extreme case of ¢ = 0, the above corollary prescribes a fully
parallel search. This is precisely what happened in the pharmaceutical industry, when
new technologies such as combinatorial chemistry and high-throughput screening reduced
the cost of making and testing a chemical compound by orders of magnitude. Instead
of synthesizing and evaluating, say, 5-10 chemical compounds per testing iteration, phar-
maceutical firms now test for hundreds or thousands of compounds per test batch in the

discovery and optimization of new drug molecules.

However, as the model shows, looking primarily at the cost benefits of new technologies
ignores a second improvement, opportunity. To fully understand the impact of new testing
technologies on testing cost and search policy, one must consider that the results not only
come at less cost, but that they also come in less time. In the automotive industry, for
example, new prototyping technologies such as CAD based simulation or stereolithography
have reduced the lead-time of a test to virtually zero. Thus, not only changes ¢, but so

does e.,.
Insert Figure 3 about here

If both parameters change simultaneously, the amount of parallel testing might go down

or up. This interplay between testing cost and information turnaround times is illustrated



in Figure 3. The coordinates are speed (é ) and cost effectiveness (1) of tests. The
diagram in the lower left corner of the Figure represents testing economics with relatively
low speed and cost eflectiveness, resulting in some optimal combination of parallel and
sequential testing as described in Theorem 1. Moving toward the lower right of the Figure
corresponds to a reduction in testing cost, moving up to a reduction in testing time {or
urgency). If a testing cost improvement outweighs a time improvement the test batches

should grow, search becomes more parallel, as in the pharmaceutical example above.

If, in contrast, the dominant improvement is in the time dimension, the faster feed-
back time allows for learning between tests. The optimal search policy becomes “fast-
sequential”. In this case, total testing cost and total testing time can decrease: total
testing time because of shorter test lead-times and total testing cost because of “smarter”
testing (based on the learning between tests, resulting in less wasted prototypes). Thus,
in the evaluation of changing testing economics, a purely cost-based view may lead to an

erronecus conclusion.

4 Imperfect Testing

Real-world testing is often carried out using simplified models of the test object (e.g.
early prototypes) and the expected environment in which it will be used (e.g. laboratory
environments). This results in imperfect tests. For example, aircraft designers often carry
out tests on possible alrcraft design alternatives using scale prototypes in a wind-tunnel
- an apparatus with high wind velocities that partially simulate the aircraft’s intended
operating environment. The value of using incomplete prototypes in testing is two-fold:
to reduce investments in aspects of 'reality’ that are irrelevant for the test, and to control

out noise in order to simply the analysis of test results. We model the effect of incomplete

10



tests and/or noise as residual uncertointy that remains after a design alternative has been

tested (Thomke and Bell 1999). Such a test will be labeled as imperfect.

We assume that a test of design candidate i gives cne of only two possible signals: ¢ =1
indicates “candidate 7 is the best design”, and = 0 indicates “candidate ¢ is not the best
design”. An imperfect test of fidelity f is characterized by the conditional probabilities
pix=1]i=1} =051+ f), and p{z =1 |i =0} = 0.5(1 — f). The latter represents
a “false positive,” and Pr{test= 0t = 1} = 0.5(1 — f) a “false negative”. To simplify
exposition, we assume symmetry between the two errcrs. The test fidelity f captures the
information provided by the test (f = 0: uninformative, f = 1: fully informative, perfect
test). When f < 1, the probabilities can not be updated fully to 0 or 1, as we had assumed

In Section 3.

This implies the following marginal probabilities of the signal from testing candidate i

with fidelity f:

1—f(2p:i— 1)) (3)

b =

1+ f(2p: — 1)]; pi{z:=0}=

(NSRS

p{fﬁi = 1} =

The posterior probabilities of all design candidates can be written as:

L Qe P o g 0D
pli=llei=1}) = 5= —5y pli=ll@i=0 =175 =5 )
pli=1lei=1} = el pli—1]m =0} = s G 2000

If a test is perfect { f = 1), these posterior probabilities are the same as in the previous sub-
section. If a test is not perfect, it only reduces the uncertainty about a design alternative.
It takes an infinite number of tests to reduce the uncertainty to zero (bring one p; to 1).
Therefore, the designer can cnly strive to reduce uncertainty of the design to a “suflicient
confidence level (1 — «)” in the design, where one p, > (1 —a) , and 3, p; < . Thisis
one of the reasons why a designer “satisfices”, as opposed to optimize, a product design

(Simon 1969).
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We first concentrate on a situation where only one alternative can be tested at once (se-
quential testing, Theorem 2a), turning to testing several alternatives in parallel afterward
(Theorem 2b). The designer’s problem is to find a testing sequence that reaches a suffi-
cilent confidence level at the minimum cost. As all information available to the designer
is encapsulated in the system state S = p = {p1,...,px} and the transition probabilities
(4) and (5 ) depend only on S, we can formulate the problem as a dynamic program: At
each test, pay an immediate cost of (¢+¢,) (for executing the test and for the time delay).

Find a policy m(p) that chooses a solution candidate ¢ € {1,..., N} in order to minimize:

V(p) = (ct+e)+ Mindple = BV (pli= 1|z =Lhpli =1 | @ =1} Vj #9)

+p{zi =0V (p{i =1z =0}p{j =1 |z =0} Vj# i)}, (6)
where V(p) = 0 if and only if a design of sufficient confidence level has been found.

While we cannot. write down the optimal testing cost for this problem, we can identify the

optimal policy, showing that it has the same structure as for perfect tests.

Theorem 2a: If testing is performed sequentially, that is, one design alternative at a

time, it s optimal to always test the candidate with the largest p;.

Standard dynamic programming techniques cannot establish optimality of a myopic policy
as stated in the theorem because the transition probabilities are state-dependent. There-
fore, we use information thecry as a tool to express the uncertainty reduction, or learning,
offered by imperfect tests (Su 1990, Reinertsen 1997). This theory is based on Shannon
(1948) and states that the entropy of a system indicates the amount of “choice” or un-
certainty in that system. In particular, we define the entropy of the i*" design alternative

and the entropy of the entire design problem, respectively, as

H;, = —p:logp;, (7)

- > (8)

12



The entropy captures knowledge about the alternative intuitively: It is maximal when
p; = 1/2, in which case H; = log2 = 1 bit. That is, the uncertainty about design
alternatives is maximal when all alternatives are equally likely to be the solution. H; =0
if p; = 0 or if p; = 1, that is, if it is known precisely whether the candidate leads to the

solution or not.

The entropy H of the entire problem measures the uncertainty of the entire design. It is
jointly concave in the p; and maximal at Nlog N = N bits if all candidates are equally
likely to be the best solution. H = 0 if and only if there is one candidate & with pp = 1
(and thus, all other candidates are eliminated). Using the design problem’s entropy, we

can prove the Theorem (see Appendix).

Thecrem 2a establishes that sequential testing with an imperfect fidelity f produces the
same optimal order of alternatives to be tested — in order of decreasing probability. How-
ever, this order may change over the course of the testing procedure as the probabilities

are updated.

Recall that a testing policy provides an assignment of testing candidates to time periods, or
test batches (e.g. in the form of prototype sets). For perfect testing, this assignment could
be done ex-ante, with the only exception being that the search should stop immediately
after a positive test (see Theorem 1). The case of imperfect tests is harder, as the more
complex updating of the probabilities makes an ex-ante assignment of tests to batches

impossible. This is why Theorem 2a provides a dynamic policy.

We now relax the condition of sequentiality and allow the simultanecus testing of several
design alternatives. We exclude multiple simultaneous tests of the same alternative*. We

assume that the outcome of testing alternative ¢ depends only on its own properties, but,

LThe situation does not correspond to, for example, consumer focus groups, where the same design

alternative is shown to different consumers (which would increase the fidelity of the test).

13



not on any other alternative. The test outcomes are independent because of simultaneity
— no learning takes place until after a test iteration has been completed. For parallel

imperfect testing of this kind, we can prove the following result.

Theorem 2b: Assume n different design alternatives are tested simultaneously as de-
scribed ahove. Then it 15 optimal to always test the alternatives with the largest probabili-
ties p;. A higher number of parallel tests, n, reduces the entropy with diminishing returns,
and there is an optimaol number of parallel tests. If the test fidelity f decreases, the optimal

number of parallel tests increases.

Theorem 2b identifies an additional factor (to a lower ratio C%) why parallel testing may
be more economical. A lower testing fidelity diminishes the uncertainty reduction that
can be gained from sequential tests. For any given size of a test batch, this increases the
number of sequential rounds necessary to reach the target design confidence. As a result,
a lower test fidelity, holding the testing cost ¢ constant, increases the relative delay cost,
and therefore increases the benefit of parallel testing. In the context of Figure 3, lower
fidelity de facto reduces design speed, forcing more tests before finding the best alternative.

Therefore, lower fidelity testing can lead to more parallelism.

5 Testing and the Structure of Design Hierarchy

A number of researchers have studied the role of design structure in the innovation process
and have found it to matter significantly (Baldwin and Clark 1997a, Clark 1985, Marples
1961, Smith and Eppinger 1997, Simon 1969, Ulrich 1995). More specifically, it has been
proposed that designs with smaller subsystems that can be designed and changed inde-
pendently but function together as whole - a structure often referred to as modular - can

have far-reaching implications for firm performance, including the management of prod-

14



uct development activities. This approach has been first explored by Alexander (1964)
and was later reinforced by Simon (1969, 1981): “To design [such| a complex structure,
one powerful technique is to discover viable ways of decomposing it into semi-independent
components corresponding to its many function parts. The design of each component can
then be carried out with some degree of independence of the design of other, since each
will affect the others largely through its function and independently of the details of the
mechanisms that accomplish the function” (Simon 1981, p. 148). In this section, we will

explore the relationship between design structure and optimal testing.

A simple search model might capture the testing process related to one single physical
element (PE) and a single functional element (FE), but in general, product design is
concerned with more complex systems. The design structure links the product’s various
FEs to its PEs. In the case of an uncoupled design, each FE is addressed by exactly one
PE. Designs can also be coupled, in which case the mapping from FEs to PEs is more

complex.
Insert Figure 4 about here

Consider the two different door designs illustrated in Figure 4. The design on the left of
Figure 4 is uncoupled, that is, each FE is addressed by exactly one physically separate
component. Closing is performed by a handle that moves a blocking barrel (which inserts
into the door frame), and locking is carried out by turning a key that moves a second
barrel. If the design is uncoupled, each FE is fulfilled by one PE, and each PE contributes
to one FE. We call this separation of FEs functional independence of the design®. Designs

that are functionally independent, are also called modular (Ulrich and Eppinger 1995).

°In addition to functional dependencies, elements can also dependent on each other because of their
physical attributes which we will refer to as technical dependence. The interdependence between PEs can

be captured in the design structure matriz (DSM) (Steward 1981, Eppinger et al. 1994).
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The design on the right in Figure 4 is coupled. Closing is implemented by a doorknob, the
turning of which moves a blocking barrel. Locking is enacted by a button in the center
of the doorknob that blocks the deorknob from turning. The locking function uses both
physical components, in particular, the same rod moving the barrel when opening/closing

the door is blocked from moving when locking the door.

The architecture of the product has a fundamental influence on the testing process. In the
case of functional independence between closing and locking the door, the corresponding
subsystems (PEs) can be tested independently. If there are three candidates for the
barrel (Figure 4) and two candidates for the lock, a total of 34+2=5 tests would cover
the total search space. If, however, the closing and locking are coupled, testing requires
a specification of both PEs, closing barrel and locking barrel. If the cutcome of the test
is negative (FEs were not fulfilled), learning from the failure is more complex. E.g., if
the closing FE was fulfilled, but not the locking FE, the engineer can not infer whether
she should just change the locking barrel, or also the closing barrel. An exhaustive search

requires 3*¥2=6 tests®.

An intermediate case between coupled design and uncoupled design results, if the PEs
contributing to the first FE can be determined without specifying the PEs contributing

to the second FE, but not vice versa. In this case, we speak of sequential dependence, and

5Simon (1969) illustrates this point very nicely with the following example, which was originally sup-
plied by W. Ross Ashby. "Suppose that the task is to open a safe whose lock has 10 dials, each with 100
possible settings, numbered from 0 to 99. How long will it take to open the safe by a blind trial-and-error
search for the correct setting? Since there are 100! possible settings, we may expect to examine about one
half of these, on average, before finding the correct one [..]. Suppose, however, that the safe is defective,
so that a click can be heard when anyone dial is turned to the correct setting. Now each dial can be
adjusted independently and does not need to be touched again while the others are being set. The total

number of ssttings that have to be tried is only 10 x 50, or 500.”
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it is possible to test the first PE/FE before addressing the second.

We see that functional and technical structure influences testing in two ways. First, it
influences the number of tests required for an exhaustive search (3*2 vs 342 in the door
example). Second, it influences the timing of the tests. If the design is uncoupled, tests
can be done in parallel (without any additional cost). In the case of sequential dependence,
parallel testing is possible, but only up to a certain level. Coupled designs however, cause
the search space to grow exponentially without opportunities for parallel testing (other
than the parallel testing where the designer precommits to several prototypes at once).

The resulting effect of product architecture on testing cost is analyzed in Theorem 3 below.

For simplicity of exposition, assume a symmetric situation where each PE has N solution
alternatives of equal probability, and there is one PE for each of M functional require-
ments. We consider the three generic architectures independent (modular), sequentially
dependent (any two PEs have an upstream-downstream relationship), or integrated (each
PE impacts all other PEs). Clearly, most complex systems include aspects of all three
of these categories, but in the interest of a clear comparison, it is most useful to analyze

them as three distinct types along a spectrum of structural possibilities.

Theorem 3: Suppose a design has M PEs with N equally likely solution candidates each,

and a test costs ¢ and takes one time unit costing ¢,.. Then the expected testing costs for

the three architectures are (where n (N) =1/2 + 4/1/4 4+ 2eN/e, from Theorem 1):

Parallel,n(N) =1 Intermediate Sequential,n(N) = N
(<% (¥ <& <) = =5

Cunt < | x4 WM Me, 389 + eonnem-am [ o o 4 g

Coequ < | Mer + NMe M 2N -2/3) NELM (er + c)

o | & + NM¢ 2 n(NM) + 1][n(NM) — 2] Nt (e, + ¢)
(f £ < ) (if For < £ < 251 (it 252 < 2)
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Corollary 2: The testing costs are affected by the product architecture as follows: C,0q <

C

sequ =< Cing-

The Theorem shows that in a modular architecture, the expected testing costs grow sub-
linearly with the number of PEs; the costs grow linearly in a sequentially dependent archi-
tecture, and they grow ezponeniially in an integrated architecture. Thus, the Theorem
explains that festing effort contributes to the benefits of a modular product architecture,

simplifying the development process and often leading to lower total development time

and cost. Figure 5 summarizes the connection between architecture and testing.
Insert Figure 5 about here

The results of Theorem 3 are consistent with similar propositions in the literature. Ulrich
(1995) noted that for modular architectures, the design of each module can proceed almost
independently and in parallel. System-level product testing would be limited to detecting
unanticipated interactions, or areas where the system is not perfectly modular. The result
of our analysis shows this to be true if modularity can be established in the functional
and physical domains and if there is a direct one-to-one mapping between functional and
physical elements (FEs and PEs). In such an extreme case of functional and technical
modularity, there is no need for system-level testing. However, if there is at least one FE
that is impacted by all PEs, the benefits of modularity are substantially reduced. In fact,
all design alternatives and their impact on this FE would have tc be considered for testing
- a number that would increase very rapidly as Thecrem 3 shows. If designers know little
about functional [customer| elements and their interactions - not an unusual real-world
dilemma - the value of modularity in testing quickly disappears. Indeed, as Baldwin and
Clark (1997b) have shown, the presence of many modules can lead to a combinatorial
explosion of testing and experimentation if the system-level impact on markets (or, in our

definition, on the functional user domain) is highly uncertain.
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6 Conclusion

In this paper, we have shown that the extent to which testing activities are carried it
out in parallel and series can have a significant impact on design performance. Parallel
testing has the advantage of proceeding more rapidly than serial testing but does not take
advantage of the potential for learning between tests, thus resulting in a larger number
of tests. We model this trade-off in form of a dynamic program and derive the optimal
testing strategy (or mix of parallel and serial testing) that minimizes both, the total cost

of testing and time. More specifically, our paper shows three results.

First, the optimal mix of parallel and sequential testing depends on the ratio of testing
cost and time: More expensive tests make sequential testing more economical. In contrast,
slower tests or an increasing opportunity cost of time make parallel testing more attractive

for development managers.

Second, imperfect tests reduce the amount of learning between testing sequential design
alternatives and thus increase the attractiveness of parallel testing strategies. This is
particularly important for managers who consider switching to early and less complete

prototypes and/or the use of less controlled test environments.

Third, the design structure influences to what extent tests should be carried out in parallel
or sequentially. We show that an important benefit of a modular product architecture
comes from reduced testing cost, because it allows parallel testing without an increase
in the number of test combinations. Thus, architecture can be an important lever for

decreasing test cost.

As part of our testing model, we were also able to extend an Important search model
developed by Weitzman (1979). Whereas Weitzman studied sequential search, we included

the option of carrying out search {or, in our case, testing) in parallel. We derived policies
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that would not only prescribe an optimal sequence of search but also inform decision-
makers about the degree to which such searches should be carried out in parallel. We
expanded our analysis to include imperfect testing and, using principles from information
theory to model uncertainty reduction, examined the impact of reduced learning on testing.
Qur last theorem also confirmed that there is an important relationship between two

streams of research (design structure and testing) which we tried to establish more formally.

To conclude this paper, we propose three promising directions for further research that
build directly on the findings presented here. First, it has been empirically observed that,
iterative testing can not only influence development cost and time but also the quality
of the design solution. It has been found that less costly and faster iterations through
advanced technologies such as computer simulation can actually result in more experi-
mentation, leading to novel solution concepts that could be not be reasonably tested for
with slower and more costly technologies. In the present paper, we have focused on the
cost and time aspects, holding design solution quality constant. But it i1s possible to make
N, the number of design alternatives tested, an explicit decision variable in our model.
Expanding the search space will increase the testing costs, but also improve the design
quality (possibly with diminishing returns). This future work relates our current model

to the literature on set-based product development (e.g., Ward 1995).

Second, in the case of sequential dependence, it might be beneficial to start the testing of
the second module before the testing for the first module has been finalized, i.e. to overlap
the two testing processes, in the spirit of concurrent engineering (Loch and Terwiesch
1998). Finding the optimal level of overlap between tests is thus a second opportunity for

further research.

Third, we have shown learning between tests to be the primary advantage of sequential

testing. In this paper, we have modeled the consequences of learning (uncertainty reduc-
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tion through probability updating) but have not explicitly taken advantage of what is
known about the different factors that influence learning. For example, a solution land-
scape represents the arena that the designers search to identify a sclution to their problem.
The probability of finding a sclution increases as one aseends the “hills” in the landscape,
and so the designer’s goal is to devise a series of tests that will enable them to identify
and explore those hills in an efficient manner. The amount that can be learned between
tests then relates directly to the topography of the landscape. Very little can be learned
by a designer about the direction of her search if, for example, the sclution landscape is
absolutely flat for all combinations except the carrect one. In contrast, suppose that the
solution landscape is a hill with only a single peak and sides that extend to all edges of
the landscape’. In such a case a strategy of serial testing may be the most efficient choice,
because the information gained from each step taken is so useful in guiding the direction

of the next trial step that the correct solution is often found after only a few trials.

Certainly, knowledge about the topology of solution landscapes will make sequential test-
ing more attractive to designers. It is thus not surprising that well-studied engineering
design problems tend to follow more sequential plans than, say, the early search for drug
candidates in a relatively unknown sclution space such as Alzheimer’s disease, even after
the cost and time of each test is accounted for. Some of these factors that influence learn-
ing can be included more explicitly in our model of parallel and sequential testing and
thus provide further leverage in the formulation of optimal testing strategies for superior

product development performance.
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Appendix

Proof of Theorem 1. If the solution is not found within the set A4; , the next set
1-3"%_ p(4;
must be tested, which happens with probability 1—2“;’%1}](—3) (the denominator updates

—2 o (4

the probabilities of the remainign sets to sum to 1). Thus, we can write the total expected
search cost as
1 —p(A1) — p(A2)
EC = |Aj|et+e+(1—plA Ao e+ e+

| Ay | (L —plA)| Az | Cr T~ p(A1)
1— p(Al) _ p(AQ) — p(AS)[ o m

1 —p(A1) — p(A2)

H AS |C+CT

+
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= S (Aot e S HA) | ©)
i=1

j=i
The fact that the design alternatives should be assigned in decreasing order of probability
follows from an exchange argument: Assume that there are two alternatives 7 € A; and
k € A;y with py > p;. Exchange the two (test & before j). The resulting change in total

expected cost is, from (9), (e,+ | Aiq |)(p; — pr) < 0. Thus, the candidates should be

assigned as stated.

To simplify exposition, assume [rom now on that N is sufficiently large and the p; small to
approximate them by a continuous distribution function F. Now we transform the space,
considering instead of the set sizes | A; | their probabilities a; = F(4;) — F(A;_,), with
3>;a; = 1. The set sizes a; correspond to fractions of N. In the transformed space, the
solution candidates have a uniform probability density of 1, and the testing cost becomes
Ne because the number of candidates has been compressed from N to 1. We can now state
the objective function to be minimized (where we leave out the constraint that n < N as

it can be easily incorporated at the end):

n i—1
Min,., > (e.+aNe)(l—> ay) (10)
i=1 =1
subject to SMa;=1; a;>0 Vi (11)
J

; ; . ” s ; : P-4
The Lagrangian of this objective function is L = ¢, > ;ia; + Ne Y3 a:(1 — P a;) — A(l—
> a;) — > pia;. The optimality conditions for the Lagrangian are aig—i = 0¥, ‘3—‘; =0,

and pi-% = (V4. These, in turn, yield the condition
ek + Neap, + A=0 for all £ such that a; > 0. (12)

Condition (12), first, implies that the second order condition is fulfilled {differentiating it
with respect to a; gives Ne > 0, so the solution found is a cost minimum). Second, (12)
implies that the sets a, are decreasing in size over &, so the first n* sels are non-empty,

and then no more candidates are assigned. Adding Equation (12) over all £ and using
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the fact that >, ap = 1 allows determining A, and substituting in A yields the optimal set
probability (2). Finally, when the set probabilities are known, we can use the fact that
Gp+ > 0 and a@(,41)- < 0 to calculate the optimal number of sets described in Equation (1):
If n* > N, then every solution candidate is tested by itself, which yields the largest number

of sets possible.
Proof of Theorem 2a: We prove the theorem in three steps.

Step 1. Equivalence to entropy reduction. As the immediate reward —{c+ ¢,) is constant,
the problem is to minimize the expected number of steps to go from the initial state to

V' = 0 (Bertsekas 1995, 300). Moreover, H{p) is unique given p, and there is a unique state

[e]

(up to permutations of the alternatives) producing the entropy Ho = H(l —a, %, ..., %),
namely the same state that that yields V' = 0. Thus, getting from V{p) to V= 0 is

equivalent to getting from H(p) to Hy.

Step 2: One-step entropy reduction. After testing design alternative i , we can write the

posterior entropy as (where “x; = a” is abbreviated as “a”):

Hpost = —plos=1}p{i=1]1}loglp{i=1[1}) +> p{j =1|1}log(p{j =1 |1})]
JFi
—p{z; = 0}[p{i = 1 | O}log(p{i = L | 0}) + > _p{j = 1 | 0}log(p{j = 1 | 0})]
JFi
1 (L+ f)pi (L+ F)p;
= —5lL+fp 1Og(m) + ;(l + fp; 1Og(m)
(L— i (L —p
+(1 = flp: log(m) + ;(1 — F)p; 10g(m)} (13)

N
= U010+ Dpyloa(( 4+ 1py) + (L~ Ppyloa(L— Hpy)]

Ji=1

+[1+4 7 (2pi — D]log[l + 7(2pi — )] +[1 — f(2pi — D)]log[l — f(2p:i — DI} (14)

(13) tells us that Hp, < H(p) no matter which candidate is tested. This is because Hpoo
is a symmetric-spread-out combination of the summands of H, which is smaller because

H is jointly concave.

(14) tells us that H,, is minimal if the candidate i is tested which has a probability closest
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to 1/2: the left summand is independent of which candidate i is tested (and it is smaller
tha H, again because of concavity). The right summand of (14) is a convez function of
p; of the form (1 4+ €)log(l +¢€) + (1 —€)log(l —¢€), where 1 > e = f | 2p; — 1 |> 0,
and moreover, the right-hand summand is zero if € = 0 or p; = 1/2. Therefore, the right

summand is smallest if p; is closest to 1/2.

To conclude step 2, we observe that p; being closest to 1/2 is equivalent to p; being the
largest: If all p; < 1/2, this is true trivially. If one pp > 1/2, then pp —1/2 =1/2-3% ... p;
which implies that py is closer to 1/2 than all the p;. This shows step 2. We now need to

show step 3, that this is also the optimal stationary policy.

Step 3: Optimal stationary policy. We examine the expected fweo-step entropy reduction
assuming that candidates i and then &k are tested, while j7 # 4, &k refers to all remaining
candidates. Four cases result, of the test signals being (1, 1}, (1,0), (0, 1), (0,0). Because
of renormalization, the updated prohbabilities are arithmetically messy, and we give them
only for the case (1,1) (the others are left to the reader or can be obtained from the

authors):

1=+ e

L+2f(1 - pi+pe) — F2 - F)

ploi =zn =1} = 1 Pi(post):4p{mi:mk:1},
putpost) = DCIIE, oy = S TC—THa (15
Db vesulting twostery postesor enlropy Tesmss
Hpowr = —30 T~ (142 (i +pe) — fllogll +2£(1 — F){p: + %) — 2~ 1)

—[A 4271+ £p: — 27(1 — Ppr — Flogl +27(1+ Hp; — 2f(1 — Plpe — F7]

—[1 = 27(1 = fpi + 27 (1 + Fpr — £ log[l — 27(1 — Ppi + 2f(1 + Ppr — £7]

—[1 = 2f(pi +p&) + fllog[l = 2f(1 + f)(pi +p&) + F2+ ) b (16)
where H = > {(1- f)%pmlog[(1— £)°pnil

+2(1 = F)(1+ Hpmlogl(l — A+ Flpm] + (1 + £)2pm log[(1+ £)%pm]}

Inspection shows that Hp.,2 is the same when the order of testing ¢ and k is exchanged.
By induction, this implies that any order of testing a given collection of candidates gives
in expectation the same posterior entropy. The result from step 2 that testing the largest

p; in the first round yields the largest entropy reduction, together with the result of step
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3 that the order of testing a given collection does not matter, implies that it is optimal to

test the largest p; in all rounds. This completes the proof of the theorem. 0

Proof of Theorem 2b: When we test design alternatives ¢ = 1,...,n in parallel, our
independence assumption implies that test outcome &; is determined by (3), no mat-
ter what the other alternatives and tests are. Therefore, the conditional probability of
(15 hn |i=1,...,n) = (1/22)(1 + f)™ (1 — f)"™, where n, is the number of tests
that give the “right” signal (z; = 1 ifl ¢ = 1), and n — n, the number of tests that give the
wrong signal. Recall that it is impossible that more than one of the alternatives is in fact

the right one.

Now consider an arbitrary profile of test signals x = (2, ..., z,). Denote by K the subset
of the n tested candidates for which the test signal is positive: xp = 1 for & € K, and write
the size of K as K. The marginal probability of the profile x is:

o K n—K
oy = LD a7)

2 2 m.
where R = [1+ fz’}“é’cpk le'i?cp

candidates have changed their probabilities. The posterior probabilities follow.

|. Tt represents a probability update after the tested

_ 0+ o g _ 0=Npy
x} = Y =0z pi{l =1 |x} = mm)

Z; not tested: plij=1|x} = % (19)

The posterior entropy of a tested candidate i must be taken over all possible signal profiles

x; tested: zp=lop{l=1|

X with any set K of K positive tests, for any number K of positive tests. With 7, we refer to
a not, tested candidate. Note that there are (}%’) different, sets K with K positive signals,

and > %, (}T(l') = 27. Thus, the denominator in the posterior entropy below represent a
normalization:
. =~ (L-HF (l+f)”K L+7. L-F
Hn(z) = Z { Z Z pzl g Pi]
K0 ok L f ;cg;cl"i'f L+ f
1+ f L= ¥
- > T—piloglR] — > —=piloglR]}; (20)
Kiek L-f Kigk L+ f
. S (L= 1+ ) K D;
() = -3 LD UE DT sty 1)
K= K

The total posterior entropy H, = ¥ {csted Hali) + Zj not tested Hnld). Analogous

to Theorem 2a, we can show that this expression is minimal if >0 ; p; is maximal, or
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eqivalently, closest to 1/2. The details are omitted here and can be obtained from the

authors.

To see the second claim of the thecrem, observe first that a larger f reduces the posterior
entropy H,(i). In addition, a larger number of parallel tests decreases the posterior entropy
convexely. We can show that 1 [H,(i) + H,42(i)] > Hap1(4). Moreover, [H, (i) — Hy1(i)]
increases in f: a higher fidelity enhances the entropy reduction effect of a given number of
tests. The proofs of these statements are messy and omitted here (they can be obtained

from the authors).

We can write the optimal dynamic programming recursion, assuming the optimal policy
of always testing the candidates with the largest probabilities, as: V(H) = min,{nc +
cr +V(H,)} As H, decreases convexely in n, there is a unique minimum n*. If we

approximate H, by a continuous function in n, the implicit function theorem implies

on*  O°H,/(dfon) 5
8f —  9%H,/on? —

n* increases weakly in f because it is integer. This proves the second claim of the Theorem.

Proof of Theorem 3. We first calculate an upper limit on C,,.¢. As the M independent
PEs can be tested in parallel, the costs of the tests simply add up. The time to test each
PE is a random variable that can vary between 1 (first batch contains the solution) and
n(N) (last batch contains the solution). The expected time to test M PEs in parallel is the
expectation of the maximum of these random variables. The expectation of the maximum
of M independent uniformly distributed random variables is Miﬂn From Corollary 1,
the testing time distribution is skewed to the left: expected testing time is (n(N) + 1)/3.
Thus, the expectation of the maximum is smaller than for a uniform distributicn. The test
costs simply add up for the M PEs. This gives the bound on the total cost in the middle

column. The extreme cases for parallel and sequential testing (left and right columns)

follow directly from Corollary 1.
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For estimating C'eqy, assume first that the A/ PEs are tested sequentially, upstream before
downstream. Then the total costs simply add up, both in time and in the number of tests,
which gives the middle row of the Theorem. This is larger than C,,; for any n because
n/(M +1) < (n+1)/3. It may be possible to reduce Cjg, by testing an upstream and a
downstream PE in an overlapped manner. The best that can be achieved by overlapping is
Cnad, provided that downstream picks the correct upstream alternative as the assumed so-
lution and tests only its own alternatives compatible with this assumed upstream solution.
In expectation, the overlapped cost is larger than C,,; because the assumed solution may
be wrong, or downstream must test its own candidates in multiple versions corresponding

to multiple upstream solutions. This proves the comparison statement in corollary 2.

Finally, we estimate Cj,. In the integral case, the solution of one PE depends on the
solutions of the others, and therefore, all combinations of alternatives must be tested. This
is equivalent to one PE with N* alternatives. This gives the third row of the Theorem.
The conditions for the extreme cases (parallel or sequential testing) change because the
number of alternatives is now diflerent; a PE of N candidates may be tested sequentially,

while it may be optimal to test partially in parallel in the PE of N* candidates.

Inspection shows that for QCNM/C.,. large, € > Ciegy- Numerical analyses show that
Cint > Caequ for all possible parameter constellations as long as 3/8N < ¢/c, holds (see
Corollary 1). When delay costs are so high that this condition is not fulfilled, tests are
performed in parallel (Corollary 1), and the total costs of testing multiple PEs become
the same in both cases®. Again, C,, is smallest, and C;,,; > Cega 1T i > W%;il—_M) It
¢/e-is even smaller, it is optimal to test sequentially dependent PEs in parallel, incurring

the extra cost of testing all combinations of alternatives in order to gain time. In this

extreme case, Cjpy = Csequ. This proves Theorem 3 and Corollary 2.0

8Here, we assume that 3/8Nf > ¢/e; also holds. If not, the integral design will not be tested fully in
parallel, which makes the argument slightly more complicated {omitted here).
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Physical elements
(parts, components)

I PE1: handle and barrel.
Functional Elements

FE1: close door.
FE2: lock door.

. PE2: locking mechanism.

Figure 1: FEs and PEs in the Design of a Door

PEZ: locking mechanism.

I PE1: handle and

barrel. . = ‘P
@¢E

p,;=0.6 p,=0.3 p;=01

Figure 2: Solutions for the PE “locking mechanism™ to fulfill the FE “lock the door™

“Fast sequential”:
If ¢ fc increases: testing becomes
more sequential; some speed of
completion is traded for more
learning and lower cost.

Speed (1/¢c,)

Combination of

sequential and parallel “Highly Parallel”
: If e /e decreases: testing
Test batch 1 becomes more parallel. some

learning and cost reduction is

Test batch 2 traded for faster completion.

Test batch 3

P

Cost effectiveness (1/c)

Figure 3: Impact of Test Speed and Cost on Testing Strategy



Decoupled Design

.-_—

®

FE1:
PEl
FE2:
B rEx

Coupled Design

close door.
: handle and
barrel.

lock door.
lock and
barrel.

Figure 4: Functional Decoupling in the Design of a Door
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Independent

Low number of

alternatives to be tested
(2 + 3); PEs can be tested
independently in parallel.
Lowest testing cost and

time.

5@
NN
T

F
&

Sequentially dependent
Increase of tests from
combination {to 2 * 3) can be
avoided by testing downstream
PE after upstream. Time
increase avoids cost increase.

FE1: close door.
I PE1: handle and

barrel.
FE2: lock door.
PE2Z: button to
block barrel.

Integral
Increase of tests from
combinationto 2 * 3.

Testing

problem is most complex;

highest testing cost and tine.

Figure 5: Impact of Architecture on Testing
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