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Abstract

A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a
prediction x from a convex set, the environment plays a loss function f , and the learner’s long-term goal is to
minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et
al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and
analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These
results prove that the existing algorithms are essentially optimal.

1 Introduction
It is rather unfortunate that the benefit of hindsight is only available post factum. Let us consider any scenario in
which we are repeatedly asked to make a choice from some fixed set of options. Had we the foresight to know what
choice would reap the largest long-term benefit, we would select this choice always without regret. Realistically, such
prescience is not available to us and we must make decisions, on the fly, as information is given to us.

We may pose this problem more precisely as follows. We are given a set X and some set of functions F . On
each round t = 1, . . . , T , we must choose some xt from a set X . After we have made this choice, the environment
chooses a function ft ∈ F . We incur a cost (loss) ft(xt), and the game proceeds to the next round. Of course, had
we the fortune of perfect foresight and had access to the sum f1 + . . . + fT , we would know the optimal choice
x∗ = arg minx

∑T
t=1 ft(x). Instead, at time t, we will have only seen f1, . . . , ft−1, and we must make the decision

xt with only historical knowledge. Thus, a natural long-term goal is to minimize the regret, defined as

T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

A special case of this setting is when the decision space X is a convex set and F is some set of convex functions on
X . In the literature, this framework has been referred to as Online Convex Optimization (OCO), since our goal is to
minimize a global function, i.e. f1 + f2 + · · · + fT , while this objective is revealed to us but one function at a time.
Online Convex Optimization has attracted much interest in recent years [4, 9, 6, 1], as it provides a general analysis for
a number of standard online learning problems including, among others, online classification and regression, prediction
with expert advice, the portfolio selection problem, and online density estimation.

While instances of OCO have been studied over the past two decades, the general problem was first analyzed
by Zinkevich [9], who showed that a very simple and natural algorithm, online gradient descent, elicits a bound
on the regret that is on the order of

√
T . Online gradient descent can be described simply by the update xt+1 =
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xt − η∇ft(xt), where η is some parameter of the algorithm. This regret bound only required that ft be smooth,
convex, and with bounded derivative.

A regret bound of order O(
√

T ) is not surprising: a number of online learning problems give rise to similar bounds.
More recently, however, Hazan et al. [4] showed that when F consists of curved functions, i.e. ft is strongly convex,
then we get a bound of the form O(log T ). It is quite surprising that curvature gives such a great advantage to the
player. Curved loss functions, such as square loss or logarithmic loss, are very natural in a number of settings.

Finding algorithms that can guarantee low regret is, however, only half of the story; indeed, it is natural to ask “do
better algorithms exist?” Without knowing whether such bounds are tight it remains to be seen if we can obtain even
lower regret. The goal of the present paper is to address these questions, in some detail, for several classes of such
online optimization problems.

This is achieved by a game-theoretic analysis: if we pose the above online optimization problem as a game between
a Player who chooses xt and an Adversary who chooses ft, we may consider the regret achieved when each player
is playing optimally. This is typically referred to as the value VT of the game. In general, computing the value of
zero-sum games is difficult, as we may have to consider exponentially many, or even uncountably many, strategies of
the Player and the Adversary. Ultimately we will show that this value, as well as the optimal strategies of both the
player and the adversary, can be computed exactly and efficiently for certain classes of online optimization games.

The central results of this paper are as follows:

• When the adversary plays linear loss functions, we use a known randomized argument to lower bound the value
VT . We include this mainly for completeness.

• We show that indeed this same linear game can be solved exactly for the case when the input space X is a ball,
and we provide the optimal strategies for the player and adversary.

• We perform a similar analysis for the quadratic game, that is where the adversary must play quadratic functions.
We describe the adversary’s strategy, and we prove that the well-known Follow the Leader strategy is optimal
for the player.

• We show that the above results apply to a much wider class of games, where the adversary can play either convex
or strongly convex functions, suggesting that indeed the linear and quadratic games are the “hard cases”.

2 Online Convex Games
The general optimization game we consider is as follows. We have two agents, a player and an adversary, and the game
proceeds for T rounds with T known in advance to both agents. The player’s choices will come from some convex
set X ⊂ Rd, and the adversary will choose functions from the class F . To consider the game in full generality, we
assume that the adversary’s “allowed” functions may change on each round, and thus we imagine there is a sequence
of allowed sets L1, L2, . . . , LT ⊂ F .

Online Convex Game

G(X, {Lt}):
1: for t = 1 to T do
2: Player chooses (predicts) xt ∈ X .
3: Adversary chooses a function ft ∈ Lt.
4: end for
5: Player suffers regret

RT =
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

From this general game, we obtain each of the examples above with appropriate choice of X,F and the sets {Lt}.
We define a number of particular games in the definitions below.

2



It is useful to prove regret bounds within this model as they apply to any problem that can be cast as an Online
Convex Game. The known general upper bounds are as follows:

• Zinkevich [9]: If L1 = . . . = LT = F consist of continuous twice differentiable functions f , where ‖∇f‖ ≤ G
and ∇2f � 0, then1

RT ≤ 1
2
DG

√
T .

where D := maxx,y∈X ‖x− y‖ and G is some positive constant.

• Hazan et al. [4]: If L1 = . . . = LT = F consist of continuous twice differentiable functions f , where
‖∇f‖ ≤ G and ∇2f � σI , then

RT ≤ 1
2

G2

σ
log T,

where G and σ are positive constants.

• Bartlett et al. [1]: If Lt consists of continuous twice differentiable functions f , where ‖∇f‖ ≤ Gt and
∇2f � σtI , then

RT ≤ 1
2

T∑
t=1

G2
t∑t

s=1 σs

,

where Gt and σt are positive constants. Moreover, the algorithm does not need to know Gt, σt on round t.

All three of these games posit an upper bound on ‖∇f‖ which is required to make the game nontrivial (and is
natural in most circumstances). However, the first requires only that the second derivative be nonnegative, while the
second and third game has a strict positive lower bound on the eigenvalues of the Hessian ∇2f . Note that the bound
of Bartlett et al recovers the logarithmic regret of Hazan et al whenever Gt and σt do not vary with time.

In the present paper, we analyze each of these games with the goal of obtaining the exact minimax value of the
game, defined as:

VT (G(X, {Lt})) = inf
x1∈X

sup
f1∈L1

. . . inf
xT∈X

sup
fT∈LT

(
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

)
.

The quantity VT (G) tells us the worst case regret of an optimal strategy in this game.
First, in the spirit of [1], we consider VT for the games where constants G and σ, which respectively bound the first

and second derivatives of ft, can change throughout the game. That is, the Adversary is given two sequences before
the game begins, 〈G1, . . . , GT 〉 and 〈σ1, . . . , σT 〉. We also require only that the gradient of ft is bounded at the point
xt, i.e. ‖∇ft(xt)‖ ≤ Gt, as opposed to the global constraint ‖∇ft(x)‖ ≤ Gt for all x ∈ X . We may impose both of
the above constraints by carefully choosing the sets Lt ⊆ F , and we note that these sets will depend on the choices xt

made by the Player.
We first define the Linear and Quadratic Games, which are the central objects of this paper.

Definition 2.1. The Linear Game Glin(X, 〈Gt〉) is the game
G(X, {Lt}) where

Lt = {f : f(x) = v>(x− xt) + c, v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.

Definition 2.2. The Quadratic Game Gquad(X, 〈Gt〉, 〈σt〉) is the game G(X, {Lt}) where

Lt = {f : f(x) = v>(x− xt) +
σt

2
‖x− xt‖2 + c,

v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.
1This bound can be obtained by a slight modification of the analysis in [9].
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The functions in these definitions are parametrized through xt to simplify proofs of the last section. In Section 4,
however, we will just consider the standard parametrization f(x) = w · x.

We also introduce more general games: the Convex Game and the Strongly Convex Game. While being defined
with respect to a much richer class of loss functions, we show that these games are indeed no harder than the Linear
and the Quadratic Games defined above.

Definition 2.3. The Convex Game Gconv(X, 〈Gt〉) is the game G(X, {Lt}) where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f � 0}.

Definition 2.4. The Strongly Convex Game Gst-conv(X, 〈Gt〉, 〈σt〉) is the game G(X, {Lt}) where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f − σtI � 0}.

We write G(G) instead of G(〈Gt〉) when all values Gt = G for some fixed G. This holds similarly for G(σ)
instead of G(〈σt〉). Furthermore, we suppose that σ1 > 0 throughout the paper.

3 Previous Work
Several lower bounds for various online settings are available in the literature. Here we review a number of such
results relevant to the present paper and highlight our primary contributions.

The first result that we mention is the lower bound of Vovk in the online linear regression setting [8]. It is shown
that there exists a randomized strategy of the Adversary such that the expected regret is at least

[
(n− ε)G2 lnT − Cε

]
for any ε > 0 and Cε a constant. One crucial difference between this particular setting and ours is that the loss
functions of the form (yt − xt ·wt)2 used in linear regression are curved in only one direction and linear in all other,
thus this setting does not quite fit into any of the games we analyze. The lower bound of Vovk scales roughly as
n log T , which is quite interesting given that n does not enter into the lower bound of the Strongly Convex Game we
analyze.

The lower bound for the log-loss functions of Ordentlich and Cover [5] in the setting of Universal Portfolios is also
logarithmic in T and linear in n. Log-loss functions are parameterized as ft(x) = − log(w · x) for x in the simplex,
and these fit more generally within the class of “exp-concave” functions. Upper bounds on the class of log-loss
functions were originally presented by Cover [3] whereas Hazan et al. [4] present an efficient method for competing
against the more general exp-concave functions. The log-loss lower bound of [5] is quite elegant yet, contrary to the
minimax results we present, the optimal play is not efficiently computable.

The work of Takimoto and Warmuth [7] is most closely related to our results for the Quadratic Game. The authors
consider functions f(x) = 1

2
||x − y||2 corresponding to the log-likelihood of the datapoint y for a unit-variance

Gaussian with mean x. The lower bound of 1

2
D2(lnT − ln lnT + O(ln lnT/ lnT )) is obtained, where D is the

bound on the norm of adversary’s choices y. Furthermore, they exhibit the minimax strategy which, in the end,
corresponds to a biased maximum-likelihood solution. We emphasize that these results differ from ours in several
ways. First, we enforce a constraint on the size of the gradient of ft whereas [7] constrain the location of the point
y when ft(x) = 1

2
||x − y||2. With our slightly weaker constraint, we can achieve a regret bound of the order log T

instead of the log T − log log T of Takimoto and Warmuth. Interestingly, the authors describe the “− log log T ” term
of their lower bound as “surprising” because many known games “were shown to have O(log T ) upper bounds”. They
conjecture that the apparent slack is due to the learner being unaware of the time horizon T . In the present paper,
we resolve this issue by noting that our slightly weaker assumption erases the additional term; it is thus the limit on
the adversary, and not knowledge of the horizon, that gives rise to the slack. Furthermore, the minimax strategy of
Takimoto and Warmuth, a biased maximum likelihood estimate on each round, is also an artifact of their assumption
on the boundedness of adversary’s choices. With our weaker assumption, the minimax strategy is exactly maximum
likelihood (generally called “Follow The Leader”).

All previous work mentioned above deals with “curved” functions. We now discuss known lower bounds for the
Linear Game. It is well-known that in the expert setting, it is impossible to do better than O(

√
T ). The lower bound

in Cesa-Bianchi and Lugosi [2], Theorem 3.7, proves an asymptotic bound: in the limit of T → ∞, the value of the
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game behaves as
√

(lnN)T/2, where N is the number of experts. We provide a similar randomized argument, which
has been sketched in the literature (e.g. Hazan et al [4]), but our additional minimax analysis indeed gives the tightest
bound possible for any T .

Finally, we provide reductions between Quadratic and Strongly Convex as well as Linear and Convex Games.
While apparent that Adversary does better by playing linear approximations instead of convex functions, it requires a
careful analysis to show that this holds for the minimax setting.

4 The Linear Game
In this section we begin by providing a relatively standard proof of the O(

√
T ) lower bound on regret when competing

against linear loss functions. The more interesting result is our minimax analysis which is given in Section 4.2.

4.1 The Randomized Lower Bound
Lower bounds for games with linear loss functions have appeared in the literature though often not in detail. The rough
idea is to imagine a randomized Adversary and to compute the Player’s expected regret. This generally produces an
O(
√

T ) lower bound yet it is not fully satisfying since the analysis is not tight. In the following section we provide a
much improved analysis with minimax strategies for both the Player and Adversary.

Theorem 4.1. Suppose X = [−D/(2
√

n), D/(2
√

n)]n, so that the diameter of X is D. Then

VT (Glin(X, 〈Gt〉)) ≥
D

2
√

2

√√√√ T∑
t=1

G2
t

Proof. Define the scaled cube
Ct = {−Gt/

√
n, Gt/

√
n}n.

Suppose the Adversary chooses functions from

L̂t = {f(x) = w · x : w ∈ Ct}.

Note that ‖∇f‖ = ‖wt‖ = Gt for any f ∈ L̂t.
Since we are restricting the Adversary to play linear functions with restricted w,

VT (Glin(X, 〈Gt〉)) ≥ VT (G(X, L̂1, . . . , L̂T )) = inf
x1∈X

sup
f1∈L̂1

. . . inf
xT∈X

sup
fT∈L̂1

[
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]

= inf
x1∈X

sup
w1∈C1

. . . inf
xT∈X

sup
wT∈CT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]

≥ inf
x1∈X

Ew1 . . . inf
xT∈X

EwT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]
,

where Ewt denotes expectation with respect to any distribution over the set Ct. In particular, it holds for the uniform
distribution, i.e. when the coordinates of wt are ±Gt/

√
n with probability 1/2. Since in this case EwT

wT · xT = 0

5



for any xT , we obtain

VT (Glin(X, 〈Gt〉)) ≥ inf
x1∈X

Ew1 . . . inf
xT−1∈X

EwT−1 inf
xT∈X

EwT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]

= inf
x1∈X

Ew1 . . . inf
xT−1∈X

EwT−1 inf
xT∈X

[
T−1∑
t=1

wt · xt − EwT
inf
x∈X

x ·
T∑

t=1

wt

]

= inf
x1∈X

Ew1 . . . inf
xT−1∈X

EwT−1

[
T−1∑
t=1

wt · xt − EwT
inf
x∈X

x ·
T∑

t=1

wt

]
,

where the last equality holds because the expression no longer depends on xT . Repeating the process, we obtain

VT (Glin(X, 〈Gt〉)) ≥ −Ew1,...,wT
inf
x∈X

x ·
T∑

t=1

wt = −E{εi,t} min
x∈

n
− D

2
√

n
, D
2
√

n

on

(
x ·

T∑
t=1

wt

)
,

where wt(i) = εi,tGt/
√

n, with i.i.d. Rademacher variables εi,t = ±1 with probability 1/2. The last equality is
due to the fact that a linear function is minimized at the vertices of the cube. In fact, the dot product is minimized by
matching the sign of x(i) with that of the ith coordinate of

∑T
t=1 wt. Hence,

VT (Glin(X, 〈Gt〉)) ≥ −E{εi,t}

n∑
i=1

− D

2
√

n

∣∣∣∣∣
T∑

t=1

εi,t
Gt√

n

∣∣∣∣∣ = D

2
E{εi,t}

∣∣∣∣∣
T∑

t=1

εi,tGt

∣∣∣∣∣ ≥ D

2
√

2

√√√√ T∑
t=1

G2
t ,

where the last inequality follows from the Khinchine’s inequality [2].

4.2 The Minimax Analysis
While in the previous section we found a lower bound on VT (Glin), here we present a complete minimax analysis for
the particular case when X is a ball of dimension at least 3. We are indeed able to compute exactly the value

VT (Glin(X, 〈Gt〉))

and we provide the simple minimax strategies for both the Player and the Adversary. The unit ball, while a special
case, is a very natural choice for X as it is the largest convex set of diameter 2.

For the remainder of this section, let ft(x) := wt · x where wt ∈ Rn with ‖wt‖ ≤ Gt. Also, we define
Wt =

∑t
s=1 ws, the cumulative functions chosen by the Adversary.

Theorem 4.2. Let X = {x : ‖x‖2 ≤ D/2} and suppose the Adversary chooses functions from

Lt = {f(x) = w · x : ‖w‖2 ≤ Gt}.

Then the value of the game

VT (Glin(X, 〈Gt〉)) =
D

2

√√√√ T∑
t=1

G2
t .

Furthermore, the optimal strategy for the player is to choose

xt+1 =

(
− D

2
√
‖Wt‖2 + Gt+1

)
Wt.

To prove the theorem, we will need a series of short lemmas.
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Lemma 4.1. When X is the unit ball B = {x : ‖x‖ = 1}, the value VT can be written as

inf
x1∈B

sup
w1∈L1

. . . inf
xT∈B

sup
wT∈LT

[
T∑

t=1

wt · xt + ‖WT ‖

]
(1)

In addition, if we choose a larger radius D, the value of the game will scale linearly with this radius and thus it is
enough to assume X = B.

Proof. The last term in the regret

inf
x∈B

∑
t

ft(x) = inf
x∈B

WT · x = −‖WT ‖

since the infimum is obtained when x = WT

‖WT ‖ . This implies equation (1). The fact that the bound scales linearly with
D/2 follows from the fact that both the norm ‖WT ‖ will scale with D/2 as well as the terms wt · xt.

For the remainder of this section, we simply assume that X = B, the unit ball with diameter D = 2.

Lemma 4.2. Regardless of the Player’s choices, the Adversary can always obtain regret at least√√√√ T∑
t=1

G2
t (2)

whenever the dimension n is at least 3.

Proof. Consider the following adversarial strategy and assume X = B. On round t, after the Player has chosen xt,
the adversary chooses wt such that ‖wt‖ = Gt, wt · xt = 0 and wt ·Wt−1 = 0. Finding a vector of length Gt that
is perpendicular to two arbitrary vectors can always be done when the dimension is at least 3. With this strategy, it is
guaranteed that

∑
t wt · xt = 0 and we claim also that

‖WT ‖ =

√√√√ T∑
t=1

G2
t .

This follows from a simple induction. Assuming ‖Wt−1‖ =
√∑t−1

s=1 G2
s, then

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2,

implying the desired conclusion.

The result of the last lemma is quite surprising: the adversary need only play some vector with length Gt which
is perpendicular to both xt and Wt−1. Indeed, this lower bound has a very different flavor from the randomized
argument of the previous section. All that remains is to show that the Adversary can do no better!

Lemma 4.3. Let w0 = 0. If the player always plays the point

xt =
−Wt−1√

‖Wt−1‖2 +
∑T

s=t G2
s

(3)

then

sup
w1

sup
w2

. . . sup
wT

[
T∑

t=1

wt · xt + ‖WT ‖

]
≤

√√√√ T∑
t=1

G2
t

i.e., the regret can be no greater than the value in (2).
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Figure 1: Illustration for the proof of the minimax strategy for the ball. We suppose that xt is aligned with Wt−1 and
depict the plane spanned by Wt−1 and wt. We assume that wt has angle α with the line perpendicular to Wt−1 and
show that α = 0 is optimal.

Proof. As before, Wt =
∑t

s=1 ws. Define Γ2
t =

∑T
s=t G2

s, the forward sum, with ΓT+1 = 0. Define

Φt(w1, . . . ,wt−1) =
t−1∑
s=1

xs ·ws +
√
‖Wt−1‖2 + Γ2

t

where xt is as defined in (3) and Φ1 is
√∑T

t=1 G2
t . Let

Vt(w1, . . . ,wt−1) = sup
wt

. . . sup
wT

[
T∑

t=1

wt · xt + ‖WT ‖

]

be the optimum payoff to the adversary given that he plays w1, . . . ,wt−1 in the beginning and then plays optimally.
The player plays according to (3) throughout. Note that the value of the game is V1.

We prove by backward induction that, for all t ∈ {1, . . . , T},

Vt(w1, . . . ,wt−1) ≤ Φt(w1, . . . ,wt−1)

The base case, t = T + 1 is obvious. Now assume it holds for t + 1 and we will prove it for t. We have

Vt(w1, . . . ,wt−1) = sup
wt

Vt+1(w1, . . . ,wt)

(induc.) ≤ sup
wt

Φt+1(w1, . . . ,wt)

=
t−1∑
s=1

xs ·ws + sup
wt

[
−wt ·Wt−1√
‖Wt−1‖2 + Γ2

t

+
√
‖Wt−1 + wt‖2 + Γ2

t+1

]
︸ ︷︷ ︸

(∗)

Let us consider the final supremum term above. If we can show that it is no more than√
‖Wt−1‖2 + Γ2

t (4)

then we will have proved Vt ≤ Φt thus completing the induction. This is the objective of the remainder of this proof.
We begin by noting two important facts about the expression (*). First, the supremum is taken over a convex

function of wt and thus the maximum occurs at the boundary, i.e. where ‖wt‖ = Gt exactly. This is easily checked
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by computing the Hessian with respect to wt. Second, since xt is chosen parallel to Wt−1, the only two vectors of
interest are wt and Wt−1. Without loss of generality, we can assume that Wt−1 is the 2-dim vector 〈F, 0〉, where
F = ‖Wt−1‖, and that wt = 〈−Gt sinα, Gt cos α〉 for any α. We now rewrite (*) as

sup
α

FGt sinα√
F 2 + G2

t + Γ2
t+1

+
√

F 2 + G2
t + Γ2

t+1 − 2FGt sinα

︸ ︷︷ ︸
φ(α)

We illustrate this problem in Figure 1. Bounding the above expression requires some care, and thus we prove it in
Lemma A.1 found in the appendix. The result of Lemma A.1 gives us that, indeed,

φ(α) ≤
√

F 2 + G2
t + Γ2

t+1 =
√
‖Wt−1‖2 + Γ2

t .

Since (*) is exactly supα φ(α), which is no greater than√
F 2 + Γ2

t ,

we are done.

We observe that the minimax strategy for the ball is exactly the Online Gradient Descent strategy of Zinkevich [9].
The value of the game for the ball is exactly the upper bound for the proof of Online Gradient Descent if the initial
point is the center of the ball. The lower bound of the randomized argument in the previous section differs from the
upper bound for Online Gradient Descent by

√
2.

5 The Quadratic Game
As in the last section, we now give a minimax analysis of the game Gquad. Ultimately we will be able to compute the
exact value of VT (Gquad(X, 〈Gt〉, 〈σt〉)) and provide the optimal strategy of both the Player and the Adversary. What
is perhaps most interesting is that the optimal Player strategy is the well-known Follow The Leader approach. This
general strategy can be defined simply as

xt+1 = arg min
x∈X

t∑
s=1

fs(x);

that is, we choose the best x “in hindsight”. As has been pointed out by several authors, this strategy can incur Ω(T )
regret when the loss functions are linear. It is thus quite surprising that this strategy is optimal when instead we are
competing against quadratic loss functions.

For this section, define Ft(x) :=
∑t

s=1 fs(x) and x∗t := arg minx Ft(x). Define σ1:t =
∑t

s=1 σs. We assume
from the outset that σ1 > 0. We also set σ1:0 = 0.

5.1 A Necessary Restriction
Recall that the upper bound in Hazan et al. [4] is

RT ≤ 1
2

G2

σ
log T

and note that this expression has no dependence on the size of X . We would thus ideally like to consider the case
when X = Rn, for this would seem to be the “hardest” case for the Player. The unbounded assumption is problematic,
however, not because the game is too difficult for the Player, but the game is too difficult for the Adversary!. This
ought to come as quite a surprise, but arises from the particular restrictions we place on the Adversary.
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Proposition 5.1. For G, σ > 0, if maxx,y∈X ‖x−y‖ = D > 4G/σ, there is an α > 0 such that VT (Gquad(X, G, σ)) ≤
−αT .

Proof. Fix xo,xe ∈ X with ‖xo − xe‖ > 4G/σ. Consider a player that plays x2k−1 = xo, x2k = xe. Then for any
x ∈ X ,

f2k−1(x) ≥ f2k−1(xo)−G‖x− xo‖+
σ

2
‖x− xo‖2,

And similarly for f2k and xe. Summing over t (assuming that T is even) shows that Vt(Gquad(X, G, σ)) is no more
than

T∑
t=1

ft(xt)−
T∑

t=1

ft(x) ≤ T

2

(
G‖x− xo‖ −

σ

2
‖x− xo‖2 + G‖x− xe‖ −

σ

2
‖x− xe‖2

)
.

But by the triangle inequality, any x ∈ X has ‖x−xo‖+‖x−xe‖ ≥ D. Subject to this constraint, plus the constraints
0 ≤ ‖x − xo‖ ≤ D, 0 ≤ ‖x − xe‖ ≤ D shows that Vt(Gquad(X, G, σ)) ≤ T (GD − σD2/4)/2 ≤ −αT for some
α > 0, since D > 4G/σ.

As we don’t generally expect regret to be negative, this example suggests that the Quadratic Game is uninteresting
without further constraints on the Player. While an explicit bound on the size of X is a possibility, it is easier for the
analysis to place a slightly weaker restriction on the Player.

Assumption 5.1. Let x∗t−1 be the minimizer of Ft−1(x). We assume that the Player must choose xt such that

σt‖xt − x∗t−1‖ < 2Gt.

This restriction is necessary for non-negative regret. Indeed, it can be shown that if we increase the size of the
above ball by only ε, the method of Proposition 5.1 above shows that the regret will be negative for large enough T .

5.2 Minimax Analysis
With the above restriction in place, we now simply write the game as G′quad(〈Gt〉, 〈σt〉), omitting the input X . We now
proceed to compute the value of this game exactly.

Theorem 5.1. Under Assumption 5.1, the value of the game

VT (G′quad(〈Gt〉, 〈σt〉)) =
T∑

t=1

G2
t

2σ1:t
.

With uniform Gt and σt, we obtain the harmonic series, giving us our logarithmic regret bound. We note that this
is exactly the upper bound proven in [1, 4], even with the constant.

Corollary 5.1. For the uniform parameters of the game,

G

2σ
log(T + 1) ≤ VT (G′quad(G, σ)) ≤ G

2σ
(1 + log T ).

The main argument in the proof of Theorem 5.1 boils down to reducing the multiple round game to a single round
game. The following lemma gives the value of this single round game. Since the proof is somewhat technical, we
postpone it to the Appendix.

Lemma 5.1. Let Gt, σt,σ1:t−1 be arbitrary positive constants. Then:

inf
∆:||∆||≤ 2Gt

σt

sup
δ

(
Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)
=

G2
t

2σ1:t
,

and indeed the optimal strategy pair is ∆ = 0 and δ any vector for which ‖δ‖ = Gt

σ1:t
.
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We now show how to “unwind” the recursive inf sup definition of VT (G′quad(〈Gt〉, 〈σt〉)), where the final term we
chop off is the object we described in the above lemma.

Proof of Theorem 5.1. Let x∗t−1 be the minimizer of Ft−1(x) and z ∈ X be arbitrary. Note that Ft is σ1:t-quadratic,
so

Ft(z) = Ft−1(z) + ft(z) = Ft−1(x∗t−1 + (z− x∗t−1)) + ft(z)

= Ft−1(x∗t−1) +∇Ft−1(x∗t−1)(z− x∗t−1) + 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z)

= Ft−1(x∗t−1) + 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z),

where the last equality holds by the definition of x∗t−1. Hence,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
ft(xt)− ft(z)− 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Expanding ft around xt,
ft(xt)− ft(z) = −∇ft(xt)(z− xt)− 1

2
σt‖z− xt‖2.

Substituting,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2 − 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Then

Vt := inf
x1

sup
f1

. . . inf
xt

sup
ft

(
t∑

s=1

fs(xs)− inf
z

Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt

sup
ft,z

(
t∑

s=1

fs(xs)− Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+

inf
xt

sup
ft,z

(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2 − 1

2
σ1:t−1‖z− x∗t−1‖2

)]
.

However, we can simplify the final inf sup as follows. We note that the quantity ∇ft(xt)(xt − z) is maximized when
∇ft(xt) = Gt

xt−z
‖xt−z‖ . Second, we can instead use the variables ∆ = xt−x∗t−1 and δ = z−x∗t−1 in the optimization.

Recall from Assumption 5.1 that ‖xt − x∗t−1‖ = ‖∆‖ ≤ 2Gt

σt
. Then,

Vt = inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)

+ inf
∆:||∆||≤ 2Gt

σt

sup
δ

(
Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)]

= inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+

G2
t

2σ1:t

]
= Vt−1 +

G2
t

2σ1:t
,

where the last equality is obtained by applying Lemma 5.1. Unwinding the recursion proves the theorem.
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Corollary 5.2. The optimal Player strategy is to set xt = x∗t−1 on each round.

Proof. In analyzing the game, we found that the optimal choice of ∆ = xt − x∗t−1 was shown to be 0 in Lemma 5.1.

6 General Games
While the minimax results shown above are certainly interesting, we have only shown them to hold for the rather
restricted games Glin and Gquad. For these particular cases, the class of functions that the Adversary may choose from
is quite small: both the set of linear functions and the set quadratic functions can be parameterized by O(n) variables.
It would of course be more satisfying if our minimax analyses held for more richer loss function spaces.

Indeed, we prove in this section that both of our minimax results hold much more generally. In particular, we prove
that even if the Adversary were able to choose any convex function on round t, with derivative bounded by Gt, then
he can do no better than if he only had access to linear functions. On a similar note, if the Adversary is given the weak
restriction that his functions be σt-strongly convex on round t, then he can do no better than if he could only choose
σt-quadratic functions.

Theorem 6.1. For fixed X, 〈Gt〉, and 〈σt〉, the values of the Quadratic Game and the Strongly Convex Game are
equal2:

VT (Gst-conv(X, 〈Gt〉, 〈σt〉)) = VT (Gquad(X, 〈Gt〉, 〈σt〉)).

For a fixed X and 〈Gt〉, the values of the Convex Game and the Linear Game are equal:

VT (Gconv(X, 〈Gt〉)) = VT (Glin(X, 〈Gt〉)).

We need the following lemma whose proof is postponed to the appendix. Define the regret function

R(x1, f1, . . . ,xT , fT ) =
T∑

t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

Lemma 6.1. Consider a sequence of sets {Ns}T
s=1 and M ⊆ Nt for some t. Suppose that for all ft ∈ Nt and xt ∈ X

there exists f∗t ∈ M such that for all (x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT ),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT ) ≤ R(x1, f1, . . . ,xt, f
∗
t , . . . , . . . ,xT , fT ).

Then

inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈Nt

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT )

= inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈M

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT ).

Proof of Theorem 6.1. Given the sequences 〈Gt〉, 〈σt〉, let Lt(xt) be defined as for the Strongly Convex Game (Def-
inition 2.3) and L∗

t (xt) be defined as for the Quadratic Game (Definition 2.2). Observe that L∗
t ⊆ Lt for any t.

Moreover, for any ft ∈ Lt and xt ∈ X , define f∗t (x) = ft(xt) +∇ft(xt)>(x− xt) + 1

2
σt‖x− xt‖2. By definition,

ft(xt) = f∗t (xt) and ∇ft(xt) = ∇f∗t (xt). Hence, f∗t ∈ L∗
t . Furthermore, ft(x) ≥ f∗t (x) for any x ∈ X , and x∗ in

particular. Hence, for all (x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT ),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT ) ≤ R(x1, f1, . . . ,xt, f
∗
t , . . . , . . . ,xT , fT ).

The statement of the first part of the theorem follows by Lemma 6.1, applied for every t ∈ {1, . . . , T}. The second
part is proved by analogous reasoning.

2We note that the computation of VT for the Quadratic Game required a particular restriction on the player, Assumption 5.1, where here we only
consider a fixed domain X .
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A Appendix
Proof of Lemma 5.1. We write

Pt(∆, δ) := Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

and
Qt(∆) := sup

δ
Pt(∆, δ),

then our goal is to obtain inf
∆:‖∆‖≤ 2Gt

σt

Qt(∆). We now proceed to show that the choice ∆ = 0 is optimal. For this

choice,

Qt(0) = sup
δ

Gt‖δ‖ − 1

2
σ1:t‖δ‖2 =

G2
t

2σ1:t
.

Here the optimal choice of δ is any vector such that ‖δ‖ = Gt

σ1:t
.

Now let us consider the case that ∆ 6= 0. First, suppose ∆ 6= δ. Note that the optimum supδ Pt(∆, δ) will be
obtained when the gradient with respect to δ is zero, i.e.

−Gt
∆− δ

‖∆− δ‖
− σt(δ −∆)− σ1:t−1δ = 0

implying that δ is a linear scaling of ∆, i.e. δ = c∆. The second case, ∆ = δ, also implies that δ is a linear scaling of
∆. Substituting this optimal form of δ,

Qt(∆) = sup
c∈R

[
Gt|1− c| · ‖∆‖ − 1

2
σt(1− c)2‖∆‖2 − 1

2
σ1:t−1c

2‖∆‖2
]
.

We now claim that the supremum over c ∈ R occurs at some c∗ ≤ 1 for any choice of ∆. Assume by contradiction
that c∗ > 1 for some ∆. Then c̃ = −c∗ + 2 achieves at least the same value as c∗ since |1 − c∗| = |1 − c̃| while
(c∗)2 > (c̃)2, making the last term larger, which is a contradiction. Hence, c ≤ 1 and, collecting the terms,

Qt(∆) = sup
c≤1

[(
Gt‖∆‖ − 1

2
σt‖∆‖2

)
+ c ·

(
σt‖∆‖2 −Gt‖∆‖

)
− c2 ·

(
1

2
σ1:t‖∆‖2

)]
.

Since we now assume ‖∆‖ 6= 0, we see that the supremum is achieved for c∗ = σt‖∆‖2−Gt‖∆‖
σ1:t‖∆‖2 = σt‖∆‖−Gt

σ1:t‖∆‖ ≤ 1
and

Qt(∆) =

(
σt‖∆‖2 −Gt‖∆‖

)2
2σ1:t‖∆‖2

+ (Gt‖∆‖ − 1

2
σt‖∆‖2)

=
σ2

t ‖∆‖2 − σt‖∆‖Gt + G2
t

2σ1:t
‖∆‖ − 1

2
σt‖∆‖2)

=
σt

σ1:t

(
1

2
σt‖∆‖2 − ‖∆‖Gt

)
+ (Gt‖∆‖ − 1

2
σt‖∆‖2) +

G2
t

2σ1:t

=
σ1:t−1

σ1:t

(
Gt − 1

2
σt‖∆‖

)
‖∆‖+

G2
t

2σ1:t
>

G2
t

2σ1:t
,

where the last inequality holds by because ‖∆‖ ≤ 2Gt

σt
. Hence, the value Qt(∆) is strictly larger than G2

t /(2σ1:t)
whenever ‖∆‖ > 0 and is equal to this value if ∆ = 0. Hence, the optimal choice for the Player is to choose
∆ = 0.

Proof of Lemma 6.1. Fix ft ∈ Lt and xt ∈ X . Let f∗t ∈ M be as in the statement of the lemma. Define

h1(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT ) := R(x1, f1, . . . ,xt, ft, . . . ,xT , fT )
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h2(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT ) := R(x1, f1, . . . ,xt, f
∗
t , . . . ,xT , fT ).

By assumption, h1 ≤ h2. Hence, we can inf/sup over the variables xt+1, ft+1, . . . ,xT , fT , obtaining

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT )

≤ inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, f
∗
t , . . . ,xT , fT )

for any (x1, f1, . . . ,xt−1, ft−1). Hence, since f∗t ∈ M

sup
ft∈Nt

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT )

≤ sup
ft∈M

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT )

for all (x1, f1, . . . ,xt−1, ft−1,xt). Since M ⊆ Nt, the above is in fact an equality. Since the two functions of the
variables (x1, f1, . . . ,xt−1, ft−1,xt) are equal, taking inf’s and sup’s over these variables we obtain the statement of
the lemma.

Lemma A.1. The expression

FG sinα√
F 2 + G2 + K2

+
√

F 2 + G2 + K2 − 2FG sinα

is no more than
√

F 2 + G2 + K2 for constants F,G,K > 0 and any α.

Proof. We are interested in proving that the supremum of

φ(α) =
FG sinα√

F 2 + G2 + K2
+
√

F 2 + G2 + K2 − 2FG sinα

over [−π/2, π/2] is attained at α = 0. Setting the derivative of Φ(α) to zero,

FG cos α√
F 2 + G2 + K2

− FG cos α√
F 2 + G2 + K2 − 2FG sinα

= 0

which implies that either cos α = 0 or sinα = 0, i.e. α ∈ {−π/2, 0, π/2}. Taking the second derivative, we get

φ′′(α) = − FG sinα√
F 2 + G2 + K2

−
(
− FG sinα√

F 2 + G2 + K2 − 2FG sinα
+

(FG cos α)(FG cos α)
(F 2 + G2 + K2 − 2FG sinα)3/2

)
.

Thus, φ′′(0) < 0. We conclude that the optimum is attained at α = 0 and therefore

φ(α) ≤
√

F 2 + G2 + K2
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