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Abstract

The use of Monte Carlo evaluation to compute p-values of pattern counting test statistics

is especially attractive when an asymptotic theory is absent or when the search sequence or

the word pattern is too short for an asymptotic formula to be accurate. The drawback of

applying Monte Carlo simulations directly is its inefficiency when p-values are small, which

precisely is the situation of importance. In this paper, we provide a general importance

sampling algorithm for efficient Monte Carlo evaluation of small p-values of pattern counting

test statistics and apply it on word patterns of biological interest, in particular palindromes

and inverted repeats, patterns arising from position specific weight matrices, as well as co-

occurrences of pairs of motifs. We also show that our importance sampling technique satisfies

a log efficient criterion.
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1 Introduction

Searching for matches to a word pattern in a stretch of biological sequence has become

a recurring theme in computational biology. The search sequence is usually a stretch of

DNA or protein sequence. The word pattern usually represents a functional site, such as a

transcription factor binding site in DNA or a ligand docking site in protein. The word pattern,

which is often called a motif, has traditionally been specified in a variety of ways (e.g. as an

exact pattern, consensus pattern, or by a position specific weight matrix). Recently, there

has also been much interest in more complex word patterns, such as co-occurrence of several

different motifs within a close range of each other.

Often, we are interested in testing for over-representation of the word pattern in a given

sequence. Analytic approximations for the significance values of such tests have been de-

veloped for special types of word patterns, and are surveyed recently in Mitrophanov and

Borodovsky (2006). However, these approximations rely on various assumptions, which often

fail to hold in practice. Furthermore, some word patterns of more recent interest, such as

co-occurrence patterns of multiple motifs, do not yet have analytic approximations, and one

needs to resort to Monte Carlo simulation. We propose a general methodology based on

importance sampling that can be easily adapted to a wide range of word patterns, and that

achieves significant gains in efficiency as compared to simple Monte Carlo. To motivate the

reader, we start by briefly sketching several types of word patterns, which will be treated in

detail in the next sections.

Palindromic patterns and inverted repeats. A palindrome is a DNA sequence that

is equal to its own reverse complement. In the search for origin of replication of viruses

(Leung, Schachtel and Yu, 1994 and Leung, Choi, Xia and Chen, 2005), it is of interest

to test for overrepresentation of palindromes in a given segment of DNA sequence.

Given a DNA sequence of length n which we assume to be stationary Markov, what is

the significance of finding c palindromes of a given length? We treat this problem in

Section 3.

Position specific weight matrices (PSWMs). PSWMs are commonly used to search

for fixed-length motifs where each position can take on multiple values. A PSWM on

an alphabet X is a matrix of the form W = {wi(j) : 1 ≤ i ≤ `, 1 ≤ j ≤ #X}, where ` is

the length of the motif. For background on PSWMs, see Mitrophanov and Borodovsky

(2006). The score H of a word v = v1 · · · v` from X ` is simply the sum of the weights
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corresponding to the letter at each position. Thus

(1.1) H(v) =
∑̀
i=1

wi(vi).

Given a PSWM W and a sequence of length n, what is the significance of finding c hits

to W with score greater than t? Popular analytic approximations to the p-value are

based on assuming independence of overlapping positions in the sequence. We show in

Section 4 that the accuracy of such approximations can vary widely depending on the

matrix, and illustrate an importance sampling alternative.

Co-occurrence patterns. Instead of single motifs, one may be interested in testing

for over-representation of motif “modules”: multiple motifs that occur within a short

distance of each other. Robin, Daudin, Sagot, and Schbath (2002) gave analytic ap-

proximations for some types of co-occurrence patterns. However, these approximations

rely on a strict syntax for the components of the module, and are not computationally

feasible when the allowed gap between the motifs is comparable in size to the search

sequence. We will illustrate the application of importance sampling to patterns studied

by Robin et al. (2002) and to co-occurrence patterns of PSWMs in Section 5.

Before proceeding, we provide a short preview of Monte Carlo simulations of rare word

patterns. Let N be a random variable counting the number of times a word pattern occurrs

in a random sequence s, which we assume follows an underlying probability measure P . We

are interested in the probability p of the event {N ≥ c}, where c is a given positive integer.

In direct Monte Carlo, we generate independent copies s(1), . . . , s(K) from P for some K > 0

and estimate p by

(1.2) p̂D := K−1
K∑

k=1

1{N(k)≥c},

where 1 denotes the indicator function. The estimator p̂D is unbiased, that is, EP p̂D = p.

We can measure the accuracy of an unbiased estimator p̂ by its relative standard error (RSE)

p−1
√

Var(p̂), that is the ratio between the standard error of the estimator and the underlying

probability. In practice, one can pre-select a constant α > 0 and choose K large enough such

that the RSE does not exceed α. For direct Monte Carlo, the RSE is equal to
√

(1− p)/Kp.

Hence for small p, we need to choose the number of simulation runs K approximately equal

to α−2p−1. For example, to achieve α = 0.1 for p = 10−4, we will need about 1 million

simulation runs.
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When p is small, the event {N ≥ c} is rarely encountered and this is why direct Monte

Carlo is inefficient. An alternative is to perform importance sampling via a change of measure

by generating independent copies s(1), . . . , s(K) from an alternative probability measure Q

satisfying

(1.3) P (B) > 0 ⇒ Q(B) > 0 for all B ⊂ {N ≥ c}.

Let the likelihood ratio L = dQ/dP . Then the importance sampling estimator

(1.4) p̂I := K−1
K∑

k=1

Yk where Yk = L−1(s(k))1{N(k)≥c},

is also unbiased for p and has a RSE bounded above by p−1
√

EQY 2
1 /K. We will show

how Q can be carefully chosen so that EQY 2
1 is of the order p2 and this will allow us to

use a relatively small value of K even when p is small. The essential idea is to construct

Q so that the event {N ≥ c} is encountered more frequently and L is uniformly large on

{N ≥ c}. Change of measure importance sampling procedures have been developed for

sequential analysis cf. Siegmund (1976), bootstrapping cf. Johns (1988), Do and Hall (1991),

communication systems cf. Cottrell, Fort and Malgouyres (1983), signal detection cf. Lai

and Shan (1999), moderate deviations cf. Fuh and Hu (2004), and scan statistics cf. Chan

and Zhang (2007). The widespread use of Monte Carlo methods for the evaluation of p-

values of word pattern test statistics for DNA and protein sequences necessitates a similar

improvement of accuracy and computational efficiency for this important task.

To avoid repetitive descriptions, we first lay out two general algorithms in Section 2, one

for handling c = 1 and the other for c > 1. The specification of some functions and parameters

when applying the algorithm to palindromic patterns, PSWMs and co-occurrence patterns

are then given in Sections 3, 4 and 5 respectively. Numerical studies are also given in Sections

4 and 5. For the interested reader, we provide the statement and proof of log efficiency of

our importance sampling algorithm in Section 6.

2 The importance sampling algorithms

Let #B denote the number of elements in a set B. By selecting randomly from a finite set

B, we shall mean that each b ∈ B has probability (#B)−1 of being selected. For any two

sequences v = v1 · · · vm and w = w1 · · ·wr, the notation vw shall denote the concatenated

sequence v1 · · · vmw1 · · ·wr. Moreover, the lengths `(v) = m and `(w) = r. Let s1 · · · sn
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denote a sequence of length n with each si taking values from an alphabet X . For example,

if we were looking at DNA sequences, then X = {a, c, g, t}, the alphabet of four nucleotides,

while for protein sequences X is the set of 20 amino acids. For ease of implementation to be

made clear later on, we introduce a dummy variable s0 and let s = s0 · · · sn. Let V ⊂ ∪∞j=1X j

denote a class of word patterns of biological interest. Let N be the number of times that a

word pattern from V occurs in s1 · · · sn with no overlaps allowed among the word patterns.

For example, if V = {aag, ggt, agt}, then N = 3 for the sequence aaggtaagagt, with “aag”

appearing twice and “agt” once. The pattern “ggt” overlaps with the first “aag” and is not

counted. For a more precise definition, define recursively τ(0) = 0 and

(2.1) τ(j + 1) = inf{i + `− 1 : si · · · si+`−1 ∈ V for some i > τ(j)} for j ≥ 0.

Then N = sup{j : τ(j) ≤ n}.

The underlying model for the generation of s is a Markovian chain with an irreducible

and aperiodic transition matrix Σ = (σxy)x,y∈X . Thus,

(2.2) P{si+1 = y|si = x} = σxy for all i ≥ 0.

Given sj known, we say that sj+1 · · · sj+r are generated from Σ if they are generated using

(2.2) for i = j, . . . , j + r − 1. Let π denote the stationary distribution of the Markov chain

following (2.2). The underlying model assumes that s0 follows the stationary distribution.

Let us first consider the importance sampling algorithm for c = 1. Define σ(v1 · · · vi) =∏i−1
j=1 σvjvj+1 and let W ⊂ ∪∞j=1X j . Let β be a positive function such that

(2.3) q(v) := β(v)σ(v)

is a probability mass function on W.

In our importance sampling algorithm, we generate s(k) = (s = s0 · · · sn) using the

following steps.

ALGORITHM A (for c = 1)

1. Generate v∗ ∈ W from the probability mass function q.

2. Select i0 randomly from {1, . . . , n− `(v∗) + 1}.

3. Generate s0 from π and s1 · · · si0−1 from Σ. Let si0 · · · si0+`(v∗)−1 = v∗ and generate

si0+`(v∗) · · · sn from Σ.

The likelihood ratio function

(2.4) L(s) =
∑
v∈W

{
β(v)(n− `(v) + 1)−1

n−`(v)+1∑
i=1

[1{si···si+`(v)−1=v}/σ(si−1si)]
}

.
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If the dummy variable s0 is not generated, then the likelihood ratio expression is like (2.4)

with the inner sum replaced by

[1{s1···s`(v)=v}/π(s1)] +
n−`(v)+1∑

i=2

[1{si···si+`(v)−1=v}/σ(si−1si)].

It is desirable to select W = V as this will ensure that the event of interest {N ≥ 1}
is observed in every simulation run. However the need to have an easily implementable

algorithm may require us to choose W larger than V, see for example Sections 4 and 5.

For c > 1, the random insertion of c word patterns from W during importance sampling

seems natural but this may result in a hard to compute likelihood ratio function. Instead we

construct an auxiliary hidden Markov model that determines when the word patterns should

be inserted. The likelihood ratio function can then be computed recursively.

The detailed steps involved in the generation of each s(k)(= s = s0 · · · sn) is then as

follows. Let `min = minv∈W `(v), `max = maxv∈W `(v) and Wk = {v ∈ W : `(v) ≤ k} for all

k ≥ `min. Then

qk(v) := q(v)
/ ∑

u∈Wk

q(u)

is a probability mass function on Wk. Note that for all k ≥ `max, Wk = W and qk = q. In

the case where all the words in W are of fixed length, Step 3 of Algorithm B involves only

the probability mass function q. Select some 0 < ρ < 1 of order n−1, for example cn−1.

ALGORITHM B (for c > 1)

1. Let i = j = 1 and generate s0 from the stationary distribution π.

2. Let T (j) be a geometric random variable satisfying

(2.5) P{T (j) = t} = ρ(1− ρ)t for t = 0, 1, . . . .

3. If i+T (j) ≤ n−`min+1, generate si · · · si+T (j)−1 from Σ, v∗ ∈ Wn−(i+T (j))+1 from the

probability mass function qn−(i+T (j))+1 and let si+T (j) · · · si+T (j)+`(v∗)−1 = v∗. Otherwise,

generate si · · · sn from Σ and stop.

4. Increment i by T (j) + `(v∗) and j by 1. Go to step 2.

Let L0(s0) = 1 and

Li(s0 · · · si) = (1− ρ)1{i≤n−`min+1}Li−1(s0 · · · si−1)

+ρ
∑
v∈W

Li−`(v)(s0 · · · si−`(v))qn−(i−`(v))+1(v)1{si−`(v)+1···si=v}/σ(si−`(v)v).(2.6)
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Then L(s) = Ln(s).

In most practical applications, V can be very large but the identification of whether v

belongs to V should take only `(v) time. If β is chosen such that the selection of v∗ ∈ Wk

is of order k, then the computational time of our importance sampling algorithm is of the

same order as direct Monte Carlo. In contrast, recursive computation to evaluate p directly

via suffix trees, see for example Gusfield (1997), grows in general with #V. Moreover, our

algorithm entertains modifications of V easily. Further details on the implementation of

Algorithms A and B in concrete examples are given in the next three sections.

3 Palindromic patterns and inverted repeats

In Masse, Karlin, Schachtel and Mocarski (1992), clusters of palindromic patterns were found

near origin of replications of viruses. Subsequently, analytical approximations were developed

to determine significance of observed clusters, see for example Leung, Schachtel and Yu (1994)

and Leung, Choi, Xia and Chen (2005). Let X = {a, c, g, t}, the alphabet of four nucleotides.

These nucleotides can be divided into two complementary base pairs with a and t forming a

pair and c and g forming the second pair. We denote this relation by writing ac = t, tc = a,

cc = g and gc = c. A palindromic pattern of length ` = 2m is a DNA segment that can be

expressed in the form v1 · · · vmvc
m · · · vc

1. For example, v = acgcgt is a palindromic pattern.

Note that the complement of v, that is the word obtained by replacing each letter of v by its

complement, is tgcgca, which is just v read backwards. This interesting property explains

the use of the terminology “palindromic pattern”.

Let m ≥ 1 and V the class of all palindromic patterns of length 2m. Thus #V = 4m. In

our importance sampling algorithm, we shall choose W = V. The generation of v∗ ∈ V in

step 1 of Algorithm A and step 3 of Algorithm B requires us to first derive a new transition

matrix from Σ. Note first that each transition x → y on the left side of palindrome v has a

complementary transition yc → xc on the right side. Let Ξ = (ξxy)x,y∈X with

(3.1) ξxy = σ(xy)σ(ycxc) for all x, y ∈ X .

Let λ(< 1) be the largest eigenvalue of Ξ and r the corresponding non-negative real eigen-

vector. Hence Ξr = λr. This ensures that

(3.2) Z := (ζxy)x,y∈X , where ζxy = λ−1ξxyr(y)/r(x)

is a probability transition matrix. The generation of v∗ ∈ V can be executed in the following

manner.
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(a) Select v1 randomly from X .

(b) Generate v2 · · · vm from the transition matrix Z and let v∗ = v1 · · · vmvc
m · · · vc

1.

For the above selection process, the probability mass function

q(v) = σ(v1 · · · vm)σ(vc
m · · · vc

1)r(vm)/[4λm−1r(v1)]

= σ(v)r(vm)/[4λm−1σ(vmvc
m)r(v1)].(3.3)

Inverted repeats are derived from palindromic patterns by inserting an arbitrary DNA

segment in the middle of the pattern. The class of word patterns can be expressed in the

form

(3.4) V = {v1 · · · vmzvc
m · · · vc

1 : `(z) ≤ d2}

for some d2 ≥ 0. For 2m ≤ k ≤ d2 + 2m, Wk = {v1 · · · vmzvc
m · · · vc

1 : `(z) ≤ k − 2m}. To

simulate positive or large counts of words from Wk efficiently, we modify the algorithm above

to obtain the following.

(a) Select v1 from X and d randomly from {0, . . . , k − 2m}.

(b) Generate v1 · · · vm from the transition matrix Z. Let z0 = vm and generate z =

z1 · · · zd from the underlying transition matrix Σ. Define v∗ = v1 · · · vmzvc
m · · · vc

1.

For this algorithm,

qk(v∗) = σ(v1 · · · vm)σ(vc
m · · · vc

1)σ(vmz)r(vm)/[4(k − 2m + 1)λm−1r(v1)]

= σ(v∗)r(vm)/[4(k − 2m + 1)λm−1r(v1)σ(z`(z)v
c
m)],(3.5)

with q = qd2+2m.

4 Position specific weight matrices (PSWMs)

The score of a sequence by a PSWM is introduced in (1.1) in Section 1. We are interested

here in the motif class V = {v : H(v) > t} for a given weight matrix W and threshold t > 0.

Unlike in the previous section, we choose, for our importance sampling algorithm, W = X `.

Let θ > 0. We would like to generate v∗ from the probability mass function

(4.1) q(v) = eθH(v)σ(v)/Λ(θ),
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where Λ(θ) =
∑

v∈X ` eθH(v)σ(v). Consider the backward recursive relations

Λ`(θ, x) = eθw`(x),

Λi(θ, x) = eθwi(x)
∑
y∈X

σ(xy)Λi+1(θ, y) for all x ∈ X and i = 1, . . . , `− 1.(4.2)

Then Λ(θ) =
∑

x∈X Λ1(θ, x). The generation of v∗ = v∗1 · · · v∗` ∈ X ` from q can then be done

via the Markovian relations

P{v∗1 = x} = Λ1(θ, x)/Λ(θ),

P{v∗i+1 = y|v∗i = x} = eθwi(x)σ(xy)Λi+1(θ, y)/Λi(θ, x) for i = 1, . . . , `− 1.(4.3)

Let Λ′
i(θ, x) = d

dθΛi(θ, x), Λ′′
i (θ, x) = d2

dθ2 Λi(θ, x) and similarly for Λ′(θ) and Λ′′(θ). For

optimal performance, we should select θ = θ∗ to satisfy

(4.4) Eθ∗H(v) = Λ′(θ∗)/Λ(θ∗) = t.

The root of (4.4) can be easily obtained by using the Newton-Ralphson method. Start with

an initial guess θ = θ0, for example θ0 = 0. We then compute Λ′(θ) via the recursive relations

Λ′
`(θ, x) = w`(x)eθw`(x)

Λ′
i(θ, x) = eθwi(x)

∑
y∈X

σ(xy)[Λ′
i+1(θ, y) + wi(x)Λi+1(θ, y)],(4.5)

and Λ′′(θ) via

Λ′′
` (θ, x) = w2

` (x)eθw`(x),

Λ′′
i (θ, x) = eθwi(x)

∑
y∈X

σ(xy)[Λ′′
i+1(θ, y) + 2wi(x)Λ′

i+1(θ, y) + w2
i (x)Λi+1(θ, y)].(4.6)

Then Λ′(θ) =
∑

x∈X Λ′
1(θ, x) and Λ′′(θ) =

∑
x∈X Λ′′

1(θ, x). By the Taylor expansion

Λ′(θ∗)
Λ(θ∗)

=
Λ′(θ)
Λ(θ)

+ (θ∗ − θ)
{Λ′′(θ)

Λ(θ)
−
[Λ′(θ)

Λ(θ)

]2}
+ O((θ∗ − θ)2)

and (4.4), our next guess of θ∗ is

θnew = θ + [t− Λ′(θ)/Λ(θ)]/{[Λ′′(θ)/Λ(θ)]− [Λ′(θ)/Λ(θ)]2}.

Then, recompute Λ(θ),Λ′(θ) and Λ′′(θ) using (4.2), (4.5) and (4.6) with θ = θnew and iterate

until convergence.

Example 1. It is often of interest to score a short sequence, which is usually the

promoter sequence of some gene, for a hit to a PSWM. Analytic approximations for p-values
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of PSWM hits usually assumes independence of adjacent overlapping positions. For example,

a popular method is to compute pt = P (H(v) ≥ t) using the method in Huang et al. (2004)

and then use the p-value approximation

1−
c−1∑
i=0

(
n− l + 1

i

)
(1− pt)n−l+1−ipi

t.

We demonstrate our method, and explore the accuracy of analytic approximations, using two

hypothetical PSWMs, assumed to be defined on the alphabet {a, c, g, t}:

Wrep =


2 . . . 2

1 . . . 1

1 . . . 1

1 . . . 1


4×12

,

which is a highly repetitive, and

Wnorep =


2 1 1 1 1 1 1 2 2 1 1 1

1 2 1 1 1 1 2 1 1 2 1 1

1 1 2 1 1 2 1 1 1 1 2 1

1 1 1 2 2 1 1 1 1 1 1 2

 ,

which only repeats at the ninth position. We define a hit to either W1 or W2 to be a score

greater than 20, and we are interested in computing the p-value of c = 1 hit in a sequence of

n = 200, which is roughly the length of a promoter sequence in bacteria. Table 1 compares

the results from importance sampling and direct Monte Carlo, using 1000 iterations each. We

see that the importance sampling method gives a much smaller RSE, achieving a 25-100 fold

increase in efficiency. The tables also show the analytic approximation to be grossly wrong for

Wrep but acceptable for Wnorep. In reality, the accuracy of analytic approximations should

fall somewhere in between the results for these two matrices.

Example 2. Databases such as TRANSFAC, JASPAR, and SCPD curate PSWMs for

families of transcription factors, which can range between 4 to more than 20 bases in length.

Here we use the PSWM for the trancription factor SWI5 in yeast, obtained from SCPD (Zhu

and Zhang, 1999) as an illustration. For the cut-off we choose t = 50. It is customary to use

the 700 base pairs preceding the transcription start site as the promoter sequence in yeast.

The background transition matrix Σ is estimated using all of the 700 base pair promoter

sequences extracted from the yeast genome. Table 2 shows the p-value estimates obtained

from direct Monte Carlo, importance sampling, and analytic approximation for c = 1, 2. For
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c = 1, importance sampling almost quadruple the gain in efficiency over direct Monte Carlo

for 1000 iterations. For c = 2, the efficiency of importance sampling is roughly 100 times that

of direct Monte Carlo 5000 iterations. We also see that when c = 2, the estimate obtained

from analytic approximation is not accurate.

5 Structured Motifs and Pairwise Co-occurrences

In a more detailed analysis of cis-regulation of gene transcription, one can search promoter

sequences for cis-regulatory modules (CRM) instead of single motifs. A CRM can be defined

as a collection of fixed length motifs that are located in a fixed order in proximity to each

other. They are signals for cooperative binding of transcription factors, and are important to

the study of combinatorial regulation of genes. CRMs have recently been used successfully to

gain a deeper understanding of gene regulation cf. Chiang, Moses, Kellis, Lander and Eisen

(2003), Zhang, Wildermuth and Speed (2007), and Zhou and Wong (2004). We focus here

on the simplest type of CRM: A pair of fixed length motifs separated by a gap sequence of

variable length.

5.1 Structured Motifs

We give two examples of such co-occurring motif pairs. In the first example, we consider what

is sometimes called “structured motifs”, where the motifs are essentially fixed word patterns

x and y with an allowance for the mutation of up to one letter in xy. More precisely, the

motif class is

(5.1)

V =
{
x′zy′ : d1 ≤ `(z) ≤ d2, `(x′) = `(x), `(y′) = `(y),

`(x)∑
i=1

1{xi 6=x′i} +
`(y)∑
i=1

1{y′i 6=yi} ≤ 1
}

.

Robin, Daudin, Sagot and Schbath (2002) gave the background and some analytical approxi-

mations for these patterns. For our importance sampling algorithm, we shall let W = V. The

selection of v∗ = x′zy′ ∈ V with probability mass function qk for d1 + `(xy) ≤ k ≤ d2 + `(xy)

shall proceed in the following manner.

(a) Select d randomly from {d1, . . . , k − `(xy)} and r randomly from {0, . . . , `(xy)}.

(b) If 1 ≤ r ≤ `(x), select x′r randomly from X \ {xr} and let x′t = xt for all t 6= r,

y′ = y. If r > `(x), select y′r−`(x) randomly from X \ {yr−`(x)} and let x′ = x, y′t = yt for all

t 6= r − `(x). If r = 0, let x′ = x and y′ = y.

10



(c) Let z0 = x′`(x) and generate z = z1 · · · zd from the underlying transition matrix Σ.

Then

qk(v∗) = σ(x′`(x)z)/[31{r>0}(k − `(xy)− d1 + 1)(`(xy) + 1)]

= [31{r>0}(k − `(xy)− d1 + 1)(`(xy) + 1)σ(x′)σ(zdy′)]−1σ(v∗),(5.2)

with q = qd2+`(xy).

Example 3. We perform a simulation study of eight structural motifs selected for their

high frequency of occurrences in part of the Bacillus subtilis DNA dataset. We consider

[d1, d2] = [16, 18], [10, 20] and [5, 50] with length of DNA segment n = 100, threshold level

c = 1 and transition matrix

Σ =


0.35 0.16 0.18 0.31

0.33 0.20 0.15 0.32

0.32 0.22 0.19 0.27

0.25 0.20 0.19 0.35


on the state space X = {a, c, g, t}. In addition to our importance sampling estimate, we also

obtain analytical estimates from Robin et al. (2002) and direct Monte Carlo estimates. The

analytical estimates are computed via recursive methods with computation time that grows

exponentially with d2 − d1.

To illustrate the flexibility of our importance sampling technique to deal with more

complex situations, we also use it to obtain a combined p-value for all eight motifs. This

method can be used in general for the estimation of p := P{max1≤m≤M (N (m) − cm) ≥ 0},
where cm are positive integers and N (m) is the total word count from a class of words V(m).

Let q(m) be a probability mass function that is efficient for simulating words from V(m). The

kth simulation run, 1 ≤ k ≤ K, consists of the following steps.

1. Select mk randomly from {1, . . . ,M}.

2. Generate the sequence s(k) using either Algorithm A or B, whichever is appropriate,

with q = q(mk) and for Algorithm B, ρ = ρ(mk).

3. Compute the likelihood ratio L(mk) via either (2.4) or (2.6) with β = β(mk), qk = q
(mk)
k

and ρ = ρ(mk).

Then

(5.3) p̂ = K−1
K∑

k=1

[L(mk)(s(k))]−1(M/#{m : N (m)(s(k)) ≥ cm})1{N(mk)(s(k))≥cmk
}

11



is unbiased for p. The key feature in (5.3) is the correction term #{m : N (m)(s(k)) ≥ cm}.
Without this term, p̂ is an unbiased estimator for the Bonferroni upper bound

∑M
m=1 P{N (m) ≥

cm}. The correction term adjusts the estimator downwards proportionately in the sample

space where more than one threshold cm are exceeded.

The results of our simulation study are summarized in Table 3. The variance reduction,

that is the ratio of the standard error squared, is substantial when the importance sampling

technique is used. In fact, the direct Monte Carlo estimate is often unreliable. Such savings

in computation time is valuable both to the end user and also to the researcher trying to test

the reliability of his or her analytical estimates on small p-values. We observe for example,

that the numerical estimates given in Robin et al. (2002) tends to underestimate the true

underlying probability but are relatively accurate. However, the computational needs of these

estimates grows exponentially with d2 − d1 and hence are computed and displayed only for

[d1, d2] = [16, 18].

5.2 Pairwise Co-occurences of PSWM Hits

We next look at CRMs involving long-range interactions between transcription factor binding

sites represented by PSWMs, as described, for example, in Chiang et al. (2003) and Zhang

et al. (2007). In Example 3, we showed that the necessity of importance sampling methods

become clear when the range of the allowed gap d2−d1 is large. We will explore this situation

further in the next example with word patterns specified by PSWMs W1 = {w1i(j) : 1 ≤ i ≤
`1, 1 ≤ j ≤ X} and W2 = {w2i(j) : 1 ≤ i ≤ `2, 1 ≤ j ≤ X}. Let

V = {xzy : d1 ≤ `(z) ≤ d2,H1(x) > t,H2(y) > u},

where H1(x) =
`1∑

i=1

w1i(xi) and H2(y) =
`2∑

i=1

w2i(yi).(5.4)

For our importance sampling algorithm, first find the roots θ∗1 and θ∗2 of the equations

Eθ∗1
H1(x) = t and Eθ∗2

H2(y) = u using the Newton-Ralphson method as given in Section 4.

Let Λ(1)
i and Λ(1) be the moment generating functions corresponding to W1 and Λ(2)

i , Λ(2)

corresponding to W2, see (4.2). To select v∗ from qk for d1 + `1 + `2 ≤ k ≤ d2 + `1 + `2, we

do the following.

(a) Select d randomly from {d1, . . . , k − `1 − `2}.

(b) Select x ∈ X `1 with probability eθ∗1H1(x)σ(x)/Λ(1)(θ∗1), generate z = z1 · · · zd from

the underlying transition matrix Σ with z0 = x`1 , and select y ∈ X `2 with probability

12



eθ∗2H2(y)σ(y)/Λ(2)(θ∗2). Then

(5.5) qk(xzy) = eθ∗1H1(x)+θ∗2H2(y)σ(xzy)/[(k − `1 − `2 − d1 + 1)Λ(1)(θ∗1)Λ
(2)(θ∗2)σ(zdy1)],

with q = qd2+`1+`2 .

Example 4. Let W1 and W2 be the PSWMs for transcription factors SFF and MCM1

respectively in yeast, taken from SCPD (Zhu and Zhang, 1999). We let t = 48, u = 110.

Both transcription factors are regulators of the cell cycle, and are known to cooperate in the

regulation of downstream genes such as CLB1, CLB2, BUD4, and SWI5 (Spellman et al.,

1998). As in Example 3, we let the promoter sequence be of length n = 700. We set the range

of the allowed gap to be d1 = 0, d2 = 100. 5000 iterations of direct Monte Carlo give a p-value

estimate of (2.4± 0.8)× 10−3 with RSE of 0.33. 5000 importance sampling simulations give

a p-value estimate of (3.4 ± 0.2) × 10−3, with RSE of 0.075. We see that in this situation,

importance sampling achieves substantial variance reduction over direct Monte Carlo.

6 Log Efficiency Theory

We start off with a discussion of the log efficient criterion widely adopted in the importance

sampling literature, then show that Algorithms A and B, as applied in Sections 3-5, indeed

satisfy this criterion. In an ideal situation, the importance measure Q satisfies

(6.1)
√

EQY 2
1 = O(p) as p → 0.

Then the constraint on the RSE, p−1
√

VarQ(p̂I)/K ≤ α, can be satisfied with a uniformly

bounded K as p → 0. If instead of (6.1), the importance measure Q satisfies

(6.2)
√

EQY 2
1 = O(p1−ε) as p → 0 for all ε > 0,

then we say that the measure Q is log efficient, cf. Sadowsky and Bucklew (1990) and Dupuis

and Wang (2005). Under (6.2), the RSE constraint can be satisfied with log K = o(| log p|).
If Q = P , that is when direct Monte Carlo is used, then Y1 ∈ {0, 1} so that EQY 2

1 = p and

clearly (6.2) is not satisfied.

Remark 1 below provides a simple heuristic to ensure log efficiency of Algorithms A and

B, namely to select probability mass function q [see (2.3)] such that W = V and β is of the

same order over all v ∈ V. Sometimes for ease of implementation, we may have to select W
larger than V, as in Sections 4 and 5.2, but log efficiency can still be attained if β is relatively

small on (W \ V).
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We preface our main results with the following preliminary lemma. We will assume

throughout that Σ is fixed with σ0 := minx,y∈X σ(xy) positive. There is also no loss of

generality in assuming that n ≥ `max. Let

(6.3) β0 = inf
v∈V

β(v) and τ =
∑
v∈V

σ(v).

Also let b·c denote the greatest integer function.

Lemma 1. Let c = 1 and γ = bn/`maxcσ0τ/`max. Then

(6.4) p ≥


1
4 if γ > 1

2 ,

γ
2 if γ ≤ 1

2 .

Proof. Let p0 = infs0∈X Ps0{s1 · · · s` ∈ V for some `}. Then

p0 ≥ inf
s0∈X

max
`≤`max

Ps0{s1 · · · s` ∈ V}

≥ inf
s0∈X

[ `max∑
`=1

Ps0{s1 · · · s` ∈ V}
]/

`max ≥ σ0τ/`max.(6.5)

By partitioning {1, . . . , `maxbn/`maxc} into subsets {1, . . . , `max}, {`max + 1, . . . , 2`max}, . . .,
we obtain the inequalities

p ≥ bn/`maxc sup
p1≤p0

p1(1− p1)bn/`maxc ≥ sup
p1≤p0

(p1bn/`maxc)(1− p1bn/`maxc)

and (6.4) follows from (6.5). 2

Theorem 1. Let

(6.6) τ → 0, τ ≥ β
−1+o(1)
0 and log n = o(log β0) as p → 0.

Then Algorithm A satisfies the log efficient criterion (6.2).

Proof. By (2.4) and (6.6),

(6.7)
√

EQY 2
1 ≤ sup

s
L−1(s) ≤ nβ−1

0 = nτ1+o(1).

By (6.6), τ → 0 and `max ≤ n = τ−o(1) as p → 0 and (6.2) follows from (6.7) and Lemma 1.

2

Remark 1. Let β1 = supv∈V β(v). If V = W, then by (2.3), β0τ ≤ 1 ≤ β1τ so that

β−1
1 ≤ τ ≤ β−1

0 . The conditions τ → 0 and τ = β
−1+o(1)
0 then holds if (β1/β0) is uniformly

bounded and β0 →∞ as p → 0.
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Example 5. In both Sections 3 (palindromes and inverted repeats) and 5.1 (structural

motifs), we indeed selected W = V. For the simulation of palindromes using (3.3),

(6.8) β0 ≥ C0/[4λm−1] and β1 ≤ C−1
0 /[4σ0λ

m−1], where C0 = inf
x∈X

r(x)/ sup
x∈X

r(x)

and 0 < λ < 1. By Remark 1, (6.6) is satisfied if log n = o(m). The ratio (β1/β0) has a

similar form in the simulation of inverted repeats using (3.5) and (6.6) is also satisfied when

log n = o(m).

For structural motifs, see (5.2),

(6.9)

β0 ≥ σ05[3(d2−d1+1)(`(xy)+1)σ(y)σ(x)]−1 and β1 ≤ [(d2−d1+1)(`(xy)+1)σ05σ(y)σ(x)]−1.

Again by Remark 1, (6.6) is satisfied when log n = o(`(xy)).

Example 6. For simulation of high-scoring motifs with respect to PSWMs via (4.1),

the condition V = W is no longer satisfied and (6.6) is verified directly. Let us consider

the class of all weight matrices W whose entries are uniformly positive and bounded above

(i.e. a ≤ wi(j) ≤ b for all i, j for some 0 < a < b < ∞) and with E0H(v) + δ0` < t <∑`
i=1 max1≤j≤X [wi(j) − δ0] for some δ0 > 0. Let θ∗ be the solution to (4.4) and θ̃ the

corresponding solution when t is replaced by for t + δ`. Then supW,t |θ∗ − θ̃| → 0 as δ → 0.

Let λ(θ) = log Λ(θ). It follows from martingale theory that Varθ̃(H(v)) ≤ C` for some

uniform constant C > 0 and hence by Chebyshev’s inequality,

τ =
∑
s1∈X

Ps1{H(v) > t} ≥
∑
s1∈X

Ps1{t < H(v) < t + 2δ`}

≥ e−θ̃(t+2δ`)
∑
v∈W

[eθ̃H(v)σ(v)1{t<H(v)<t+2δ`}]

≥ e−θ̃(t+2δ`)Λ(θ̃)[1− 2(δ`)−2Varθ̃(H(v))] ∼ e−θ̃(t+2δ`)Λ(θ̃)

as ` →∞. Since β0 ≥ eθ∗t/Λ(θ∗), the condition τ ≥ β
−1+o(1)
0 can be seen to hold by letting

δ → 0. Moreover by large deviations theory, | log τ | is of order ` and hence (6.6) holds

when log n = o(`). Similar lines of reasoning will show that for pairwise co-occurrences, the

conditions of Theorem 1 are satisfied when log n = o(`1 + `2).

In Algorithm B, we perform importance sampling for c > 1. We will show in Theorem

2 that the conditions required for log efficiency of Algorithm A will also ensure log efficiency

of Algorithm B.

Theorem 2. Let c > 1. Under (6.6), Algorithm B satisfies the log optimal criterion

(6.2) if ρ ∼ c1n
−1 for some c1 > 0 as p → 0.
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Proof. Partition {1, . . . , `maxbn/`maxc} into subsets {1, . . . , `max}, {`max+1, . . . , 2`max},
. . .. Define p0 and γ as in Lemma 1 and its proof. Then it follows from the arguments in the

proof of Lemma 1 that

p ≥
(
bn/`maxc

c

)
sup

p1≤p0

pc
1(1− p1)bn/`maxc

≥ (c!)−1
(
1− c

bn/`maxc

)c
sup

p1≤p0

(p1bn/`maxc)c(1− p1bn/`maxc)

≥

(c!)−1(1− c/bn/`maxc)c/2c+1 if γ > 1/2,

(c!)−1(1− c/bn/`maxc)cγc/2 if γ ≤ 1/2.
(6.10)

By (2.6), √
EQY 2

1 ≤ sup
s

L−1(s) ≤ [(1− ρ)n+`max(ρβ0)c]−1

and (6.2) follows from (6.10) and (6.6). 2

7 Concluding Remarks

The importance sampling algorithms in Section 2 are stated in general terms to accomodate an

arbitrary set of word patterns. We have illustrated these algorithms on three types of patterns:

palindromes and inverted repeats, position specific weight matrices, and co-occurring motif

pairs. It is straightforward to extend the algorithms to some word patterns not covered in

the examples. For example, in Section 5.2, if the order of appearance of the two motifs

is arbitrary, one can simply add a step for sampling the order, and include the necessary

normalizing term in the likelihood ratio. In Example 3, we have also shown how to modify

the algorithms to compute the p-value for the maximum count over a set of word patterns.

As we gain biological understanding, the models we formulate for DNA and protein func-

tional sites gain in complexity. Over the years, they have evolved from deterministic words

to consensus sequences to PSWMs to motif modules. As probabilistic models for promoter

architecture become more complex and context specific, importance sampling methods are a

favorable alternative to direct Monte Carlo in the absence of accurate analytic formulas.
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W Method p̂ RSE

Wrep Direct (1± 1)× 10−3 1

IS (3.4± 0.3)× 10−3 0.09

Analytic 7.2× 10−3 –

Wnorep Direct 4.1± 1.9× 10−3 0.50

IS 7± 0.5× 10−3 0.08

Analytic 7× 10−3 –

Table 1: Comparison of direct Monte carlo, importance sampling, and analytic estimates

on repetitive and non-repetitive PSWMs in Example 1. For both direct Monte Carlo and

importance sampling, 1000 simulation runs were used and the results are displayed in the

form estimate±standard error.

c Method p̂ RSE

1 Direct (3.1± 0.5)× 10−2 0.20

1 IS (2.4± 0.2)× 10−2 0.07

1 Analytic 2.3× 10−2 –

2 Direct (4.0± 2.8)× 10−4 0.70

2 IS (1.9± 0.1)× 10−4 0.07

2 Analytic 2.6× 10−4 –

Table 2: Comparison of direct Monte carlo, importance sampling, and analytic estimates for

SWI5 in Example 2. For both direct Monte Carlo and importance sampling, 1000 simulation

runs were used for c = 1 and 5000 simulation runs were used for c = 2, and the results are

displayed in the form estimate±standard error.
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d1 d2 x y Direct IS Analytic

16 18 gttgaca atataat (2± 1)× 10−4 (1.038± 0.006)× 10−4 1.01× 10−4

gttgaca tataata 0 (9.00± 0.05)× 10−5 8.82× 10−5

tgttgac tataata (20± 10)× 10−5 (9.39± 0.05)× 10−5 9.20× 10−5

ttgaca ttataat (9± 3)× 10−4 (6.65± 0.03)× 10−4 6.55× 10−4

ttgacaa tacaat (4± 2)× 10−4 (4.64± 0.02)× 10−4 4.57× 10−4

ttgacaa tataata (2± 1)× 10−4 (1.798± 0.009)× 10−4 1.78× 10−4

ttgacag tataat (5± 2)× 10−4 (3.62± 0.02)× 10−4 3.59× 10−4

ttgacg tataat (10× 3)× 10−4 (9.90± 0.06)× 10−4 9.76× 10−4

combined p-value (2.0± 0.4)× 10−3 (2.96± 0.03)× 10−3

10 20 gttgaca atataat (3± 2)× 10−4 (3.89± 0.02)× 10−4

gttgaca tataata (2± 1)× 10−4 (3.36± 0.02)× 10−4

tgttgac tataata (3± 2)× 10−4 (3.41± 0.02)× 10−4

ttgaca ttataat (2.6± 0.5)× 10−3 (2.48± 0.01)× 10−3

ttgacaa tacaat (1.5± 0.4)× 10−3 (1.73± 0.01)× 10−3

ttgacaa tataata (2± 1)× 10−4 (6.71± 0.03)× 10−4

ttgacag tataat (0.9± 0.3)× 10−3 (1.331± 0.007)× 10−3

ttgacg tataat (3.9± 0.6)× 10−3 (3.60± 0.02)× 10−3

combined p-value (0.80± 0.09)× 10−2 (1.06± 0.01)× 10−2

5 50 gttgaca atataat (1± 0.3)× 10−3 (1.265± 0.008)× 10−3

gttgaca tataata (0.4± 0.2)× 10−3 (1.103± 0.007)× 10−3

tgttgac tataata (1.8± 0.4)× 10−3 (1.150± 0.007)× 10−3

ttgaca ttataat (7.4± 0.9)× 10−3 (7.88± 0.05)× 10−3

ttgacaa tacaat (5.0± 0.7)× 10−3 (5.50± 0.04)× 10−3

ttgacaa tataata (1.5± 0.4)× 10−3 (2.21± 0.01)× 10−3

ttgacag tataat (3.1± 0.6)× 10−3 (4.23± 0.03)× 10−3

ttgacg tataat (0.9± 0.1)× 10−2 (1.126± 0.008)× 10−2

combined p-value (2.7± 0.2)× 10−2 (3.30± 0.04)× 10−2

Table 3: Comparison of direct Monte Carlo, importance sampling and analytical estimates for

sets of structured motifs in Example 3. For both direct Monte Carlo and importance sampling,

10,000 simulation runs were used and the results are displayed in the form estimate±standard

error.

20


	University of Pennsylvania
	ScholarlyCommons
	2010

	Importance Sampling of Word Patterns in DNA and Protein Sequences
	Hock Peng Chan
	Nancy R. Zhang
	Louis H. Y. Chen
	Recommended Citation

	Importance Sampling of Word Patterns in DNA and Protein Sequences
	Abstract
	Keywords
	Disciplines
	Comments


	tmp.1471535774.pdf.b8nGT

