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Impact of Workload on Service Time and Patient Safety: An Econometric
Analysis of Hospital Operations

Abstract
Much of prior work in the area of service operations management has assumed service rates to be exogenous
to the level of load on the system. Using operational data from patient transport services and cardiothoracic
surgery—two vastly different health-care delivery services—we show that the processing speed of service
workers is influenced by the system load. We find that workers accelerate the service rate as load increases. In
particular, a 10% increase in load reduces length of stay by two days for cardiothoracic surgery patients,
whereas a 20% increase in the load for patient transporters reduces the transport time by 30 seconds.
Moreover, we show that such acceleration may not be sustainable. Long periods of increased load (overwork)
have the effect of decreasing the service rate. In cardiothoracic surgery, an increase in overwork by 1%
increases length of stay by six hours. Consistent with prior studies in the medical literature, we also find that
overwork is associated with a reduction in quality of care in cardiothoracic surgery—an increase in overwork
by 10% is associated with an increase in likelihood of mortality by 2%. We also find that load is associated with
an early discharge of patients, which is in turn correlated with a small increase in mortality rate.
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Abstract

Much of prior work in the area of service operations management has assumed service

rates to be exogenous to the level of load on the system. Using operational data from pa-

tient transport services and cardiothoracic surgery - two vastly di¤erent healthcare delivery

services - we show that the processing speed of service workers is in�uenced by the system

load. We �nd that workers accelerate the service rate as load increases. In particular, a

10% increase in load reduces length of stay by 2 days for cardiothoracic surgery patients,

while a 20% increase in the load for patient transporters reduces the transport time by half

a minute. Moreover, we show that such acceleration may not be sustainable. Long periods

of increased load (overwork) have the e¤ect of decreasing the service rate. In cardiothoracic

surgery, an increase in overwork by 1% increases length of stay by 6 hours. Consistent

with prior studies in the medical literature, we also �nd that overwork is associated with

a reduction in quality of care in cardiothoracic surgery - an increase in overwork by 10%

is associated with an increase in likelihood of mortality by 2%. We also �nd that load

is associated with an early discharge of patients, which is in turn correlated with a small

increase in mortality rate.

We are grateful to the cardiac anesthesiologists and executives at the teaching hospital

where this study was conducted. We also thank the Management Science review team as

well as Stefanos Zenios, Chris Lee, and Marcelo Olivares for their insightful and constructive

comments on an earlier version of this paper. The authors can be reached at dkc@emory.edu

and terwiesch@wharton.upenn.edu.
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1 Introduction

Over the last decade, most hospitals have witnessed a substantial increase in �xed

costs, largely re�ecting growing expenses for new technologies and liability insurance.

Over the same period, hospitals also had to face a substantial decrease in per-case

reimbursements, re�ecting the transition from �fee for service� reimbursements to

contractual reimbursements due to managed care. As a result of these two trends,

hospitals have come under increasing pressure to operate at very high levels of uti-

lization. From a macro perspective, high utilization is a desirable system property

for a hospital and its employees, as it spreads the �xed cost over a larger volume of

patients. However, recent research conducted with a more micro perspective (Green

2004) has demonstrated that operating at high levels of utilization has many opera-

tional implications, including long waiting times.

Most of these micro level models are based on queueing analysis (Green 2004,

Smith Daniels et al. 1988). Such models analyze patient �ows and in particular

patient waiting times based on information about the care capacity of the process,

the variability of its service times, and the behavior of a stochastic demand for care.

A high level of utilization (a high level of demand relative to the available capacity)

leads to a dramatic increase in wait times and - if waiting is not feasible due to the

emergency of the case or due to a limited amount of space - a reduction in patient

�ow (i.e. the number of patients cared for in a unit of time). Collectively, queueing

analysis in healthcare has emerged as an active area of research with a clear potential

for impacting healthcare practice.

A central assumption in this existing literature is that the service time, i.e. the

time it takes a resource to care for a patient, is independent of the state of the process

including the current work-load. In this paper we show this might not always be the

case. Consider the data shown in Figure 1. As a motivating preview to one of our

results, the �gure shows the relationship between the risk-adjusted1 length of stay of

1In the medical literature, the risk adjusted length of stay is computed by �rst determining how
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cardiothoracic surgery patients as a function of the work-load in the cardiothoracic

surgery unit2 at the time of discharge. We observe a clear pattern indicating that the

service time (duration the patient is in the unit) decreases with an increase in work-

load. The unit thus increases its throughput when it is busy. In other words, its level

of care capacity seems to be adaptive to higher levels of work-load. From an empirical

perspective as well as from the perspective of hospital management, the data shown in

Figure 1 raises a set of interesting research questions. (1) What drives this increase in

processing speed? Is the hospital simply discharging patients prematurely, or is there

evidence that the same work gets done faster? (2) Are there any implications for the

quality of care provided? (3) Can the resources in the hospital sustain this increased

service rate or does there exist an e¤ect of overwork?

Figure 1: Length of Stay as a function of Census
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1. Census is defined as the number of patients in the cardiac unit at the time that a patient is admitted
2. Length of Stay (LOS) is the total number of days a patient spends at the hospital
3. Dashed lines represent 95% confidence intervals.

We address these three questions by conducting a detailed econometric analysis of

two care processes in a major US teaching hospital. In particular, we look at process

individual patient risk factors predict the length of stay, and then generating an expected length of

stay for each patient based on their speci�c risk factors.
2The cardiothoracic surgery unit is the self-contained hospital unit that includes i) admissions

ii) diagnostic testing (cath lab, ECG, etc.) iii) pre-operative care, such as prepping the patient for

surgery iv) surgery, v) post-operative care (e.g. time in the ICU) and vi) discharge.
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and outcome data of some 3,000 cardiothoracic surgery patients. We measure the

length of stay for each patient and relate it to a set of covariates, including current

work-load and the cumulative fatigue, or workload burden on service workers. We

address the alternative explanation of Figure 1 that the hospital simply discharges

patients prematurely in two ways. First, we look at risk-adjusted mortality data to

investigate how work-load and overwork lead to changes in mortality. Second, we also

study another care process in the hospital that is not a medical process and does not

provide the option of simply cutting the service time short at the potential cost of

quality. In particular, we look at the service times of over 17,000 requests for patient

transport and analyze how they change with work-load and the subsequent overwork.

This research design allows us to make the following three contributions. First,

we measure the performance of hospital employees and show that employees adjust

their service rates with changing levels of load. This is, to the best of our knowledge,

the �rst empirical test of the insights obtained from the optimal queueing control

literature. In cardiothoracic surgery we �nd that a 10% increase in load leads to

a reduced length of stay (service time) of over 2 days (about 20%). Similarly, we

�nd that patient transporters speed up their tasks by half a minute (about 3% of

service time) if load increases by 20%. Second, our study investigates the impact of

work-load as well as overwork on the quality of care, a relationship that is potentially

a matter of life or death in a hospital. Overwork is de�ned as the excess work-load

beyond an expected amount of work-load over a given period of time. Speci�cally,

we establish that patients admitted to an overworked unit are associated with an

increased risk of mortality. On average, a 10% increase in overwork is associated

with a 2% increase in risk of mortality. Third, we show that while hospital employees

can respond to increased work-load by increasing their productivity in the short run,

such an acceleration in general is not sustainable. After a duration of exceptionally

high work-load, employees are subject to the after-e¤ects of overwork. This e¤ect

of overwork could outweigh the higher service rates discussed above. A sustained

3



level of 1% above average load for a week in cardiothoracic surgery units leads to an

average increase in length of stay of almost 6 hours (2%).

If hospital employees are indeed capable of adjusting their service rate as a function

of the work-load, this clearly has substantial implications for the management of care

capacity. If service workers can adapt during periods of high work load by working

faster, it may not be necessary to hire additional capacity during busy periods. Also,

instead of relying on safety capacity to bu¤er against stochastic increases in demand,

the hospital could rely on its sta¤�s ability to temporarily accelerate their work.

However, our empirical �ndings suggest additional managerial considerations that

need to be made. Although such adaptive behavior fromworkers may appear desirable

in the short run, one needs to also consider the quality and patient safety implications

of such behavior. In addition, temporary worker speedup made come at the cost of

future slow-down after the onset of fatigue. This could lead to a net total decline

in performance. Decision makers should thus take into consideration the full set of

possible implications of a temporary increase in service rates.

The remainder of this paper is organized as follows. In the next two sections, we

present relevant literature and develop our hypotheses for a general model of service

operations. We then operationalize our theory to the two hospital settings we study.

Section 4 describes our research setting, the econometric model speci�cation, and

the results for our study of patient transporters. In section 5, we report the same

information for the cardiac surgery setting. We conclude with discussions and future

avenues for research in section 6.

2 Literature Review

The Operations Research literature has created a number of tools that directly or indi-

rectly relate to the management of care capacity and its utilization (see Green (2004)

for an overview). At the strategic level, decisions need to be made with respect to
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sizing the care capacity. This includes choosing occupancy rates (e.g., Smith-Daniels

et al. 1988, Huang 1995, Green and Nguyen 2001) and making sta¢ ng decisions (e.g.,

Aiken et al. 2002, Kwak and Lee 1997, Green and Meissner 2002). At the tactical

level, decisions need to be made with respect to scheduling and sequencing cases (e.g.,

Gerchak et al. 1996) as well as with respect to allocating capacity to various demand

types (e.g. Green et al. 2006). Much of this prior body of literature, however, as-

sumes that the service rate is exogenous to the level of capacity utilization. In this

paper, we present and validate a framework of service operations where workers vary

their service rates with the state of the system. There also exists a signi�cant body

of literature dealing with optimal payment systems for health services, as reported by

Newhouse (1996). Many of these studies (e.g. Fuloria and Zenios 2001) explore the

e¤ect of various types of payment arrangements that incentivize healthcare organiza-

tions into providing higher quality of services. Higher quality is often achieved only

at a higher cost, of which workload and service rates are important contributors. This

stream of literature seeks to examine how, in the presence of unobserved cost factors,

appropriate incentives can still be provided to hospitals to induce higher quality. In

addition to this general research on hospital operations, our analysis builds on two

areas of prior research in operations management.

First we draw on the literature on the optimal control of queues. For example,

Crabill (1972) and Bertsekas (2000) examine systems in which the service rate is

adjusted dynamically as the queue length changes.3 Some of these models study

the dynamic control of a single-server queueing system that has Poisson arrivals and

exponentially distributed service times. There are costs associated with an increase

in the queue length and in an increase in the service rate. The objective is to choose

the optimal service rate that minimizes the average sum of these two costs over a

given planning horizon. In other words, a key objective of this body of literature is

3Although previous work, e.g. Green (1984) model queueing system that involves multiple servers,

as far as we are aware, there are no established optimal policies on service rate when multiple servers

are involved.
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the development of service rate policies that e¤ectively balance the costs of waiting

with the costs of an accelerated service rate. Under relatively general assumptions,

Stidham and Weber (1989) prove the existence of a stationary policy, i.e. one in

which transition to a given state elicits the same service rate. Although closed form

solutions for the optimal service rate as a function of queue length are not obtainable,

George and Harrison (2001) develop a novel method for computing the optimal policy

for the service time as a function of the queue length, subject to certain restrictions on

the two cost functions. In such a setting, the optimal service rate is a non-decreasing

function of the length of the queue. The intuition for the monotone policy is that

working faster by a given unit rate has a bigger impact on total waiting cost when the

queue is longer. In a similar vein, Berk and Moinzadeh (1998) also allow the service

rate to vary, and normatively explore the impact of the option of a shorter service

time on e¤ective capacity. Even though the results in this body of literature are well

established, there have been no empirical validations of this e¤ect. We contribute to

this line of research by providing explicit evidence of the adaptive behavior in two

healthcare services. For both services, although the underlying waiting costs and

service rate costs are not estimated, we show that service rates increase when the

load on the system increases.

Our work also extends prior studies of the impact of production system design on

the productivity of employees. For example, using lab-based experiments, Schultz et

al. (1998, 1999) consider serial production systems in which adjacent workers in a

serial assembly line can observe each others�productivity, as measured by inventory

levels between them. A key insight from this work is that workers tend to work

faster or slower depending on the work in process inventory. Our objective in this

paper is to demonstrate using actual operational data from a �eld based study at a

hospital, that healthcare delivery workers also demonostrate such adaptive behavior

in response to the amount of work-load. In addition, the previous studies have not

considered the aspects of fatigue that accompany service rate acceleration, or the
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impact on the quality of service. Our study augments the existing body of work to

include the dimensions of fatigue and quality. Powell and Schultz (2004) show that

when assembly line workers adapt to variations in load, they also improve the overall

throughput of the system. One of the implications of our study is that the adaptive

behavior of healthcare providers increases the overall process �ow of patients from

the hospital.

3 Hypothesis Development

Our theoretical framework is based on the relationships between service times, work

load, overwork and service quality. All of these measures are de�ned for the discrete

unit of work, denoted i. We de�ne load (LOADi =
REQUESTSi
RESOURCESi

) as the total number

of requests or jobs (REQUESTSi) in the system divided by the total number of

resources (RESOURCESi) at that time that unit of work i is in the system. In

other words, LOADi provides a measure of the level of utilization of the system�s

resources that is connected with the unit of work i.

We de�ne SV CTIMEi to be the service time taken to process a request i. This

de�nition of service time does not include any time spent waiting for the service to

begin. Our hypothesis is that a higher work-load leads to a reduction in service time,

i.e.
@SV CTIME

@LOAD
< 0 (1)

Such a behavior can be rational from the worker�s perspective if each service worker�s

utility is decreasing in the level of waiting time at a greater rate than the decrease

in the utility associated with e¤ort involved in obtaining a faster service rate, as

theoretically established in the literature on the optimal control of queues.

Although productivity gains may be achieved in the short term as we hypothesize,

high service rates may not be sustainable for longer periods of time. During periods of

increased load, a worker may be motivated to work fast, but eventually fatigue e¤ects
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may start to dominate, leading to increased service times. Early research in the �eld

of Ergonomics (Cakir et al. 1980) has shown that as fatigue rises, productivity falls.

Tanabe and Nishihara (2004) use lab experiments to study changes in productivity

and �nd that even though people are highly motivated in short term experiments,

they become tired and performance deteriorates over a longer time frame as fatigue

kicks in. Likewise, a key �nding in the studies by Caldwell (2001) and Setyawati

(1995) is that fatigued workers exhibit diminished productivity.

In order to study the phenomenon above, we construct the measureOV ERWORKi;K ,

which we de�ne to be an increasing function in the di¤erence between the observed

LOADi and the average over K units of time prior to the arrival of unit of work

i in the system. In other words, when a unit of work i arrives at the system af-

ter a period of sustained levels of high LOADi for K units of time, our measure of

OV ERWORKi;K will be high. We argue that this holds for a broad set of values of

K used to estimate OVERWORK. Based on the discussions above we propose that

the service time is increasing in the overwork. That is,

@SV CTIME

@OV ERWORK
> 0 (2)

We next consider the impact of the above e¤ects of load, overwork and service time on

the quality of service (QUALITY ), which is of paramount importance in healthcare

delivery. During periods of high LOAD , resources are more thinly spread out. We

hypothesize that this decrease in the availability of resources can lead to a decline in

quality. That is,
@QUALITY

@LOAD
< 0 (3)

Similarly, we argue that a patient who is admitted to an overworked unit has a higher

likelihood of encountering a quality lapse, as service workers who are more fatigued

are more prone to making mistakes. That is,

@QUALITY

@OV ERWORK
< 0 (4)
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Finally, we hypothesize that when service times are decreased (after controlling for

patient speci�c factors), and patients are discharged early, this could have an adverse

impact on the quality of care.

@QUALITY

@SV CTIME
> 0 (5)

To test the hypotheses above, we chose two vastly di¤erent kinds of services - patient

transportation and cardiothoracic surgery - at a major US teaching hospital. Patient

transportation is, relative to other healthcare tasks, simple and the task of moving

a patient from one part of the hospital to another is rather mechanical in nature.

Typically each transport lasts less than half an hour. In sharp contrast, service

workers in cardiothoracic surgery require advanced medical knowledge and extensive

training. The individual tasks in cardiothoracic surgery are more complicated, and

the average patient length of stay is around two weeks.

A study looking at patient transport alone might be dismissed as not being ap-

plicable to more medical and diagnostic processes. A study looking at cardiac care

alone might be dismissed with the claim that patients are simply discharged prema-

turely as opposed to receiving care at a faster service rate. Replicating our research

design across these two di¤erent care processes hence increases the generalizability

of our �ndings. Below, we provide context-speci�c justi�cations for the hypotheses

outlined above, followed by our �ndings for the two studies.

4 The Patient Transport Study

Patient transporters are hospital employees who perform the crucial role of taking

a patient from one part of the hospital to another. The hospital that we study

maintains a pool of between 2 and 26 transporters, depending on the time of day.

When a patient is ready for transport, the nurse in charge of the hand-over submits

an electronic request. The request then is placed in a queue to be processed by a

dispatcher. When a transporter is available, the dispatcher assigns a transporter to a
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speci�c request. After a transporter arrives at the transport location, the transport

process begins.

We operationalize the variables de�ned in the previous section as follows. REQUESTSi

is the total number of transport requests and RESOURCESi is the number of trans-

porters working on the shift at the time that request i arrives. LOADi is the frac-

tion of transporters who were busy during the hour that transport i was started. So

if 5 out of 10 transporters were occupied at the time that service i was rendered,

LOADi = 50%. Note that our de�nition of LOADi corrects for anticipated increases

in demand that were addressed by an increase in scheduled capacity. For example,

the hours between 9 a.m. and 10 a.m. on a regular weekday, show 3 times more

transport requests than there are between 9 p.m. and 10 p.m. However there are

also 21
2
times more transporters sta¤ed during the busier period. The SV CTIMEi

for each transport i is the time between the patient leaving the starting location

and arriving at the �nal destination. This does not include any waiting time for the

transporter to arrive.

We de�ne OV ERWORKi;K at the level of the transporter, and the measure for

OV ERWORKi;K is computed only if the transporter performing service i was on

shift for each of the K periods prior to the start of service i. Let t(i) be the time at

which unit i arrives. To formalize the notion of overwork, we de�neOV ERWORKi;K ;

from time t(i)�K up to time t(i) as

OV ERWORKi;K =
1

N(K; i)

i�1X
j=i�N(K;i)

(LOADj � LOADs(j))

where LOADs(j) is the average load over the entire shift s and N(K; i) is the number

of service requests during the last K periods up to t(i): The K periods are measured

in units of hours. For example, suppose that the expected load during a certain shift

is 4 requests per worker every hour. However, suppose that for a particular hour

proceeding request i (K = 1) , the load has consistently remained at 6 requests per

worker during which 10 requests happened to have been processed. The overwork,
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OV ERWORKi;1 associated with request i would then equal 110
X
10

(6�4) = 2 requests

per worker. In other words, the worker responsible for transporting request i has

already experienced an additional load of 2 requests on average over this time period.

An average transport lasts 13 minutes, and the average load on transporters is

0.76. Table 1 provides descriptive statistics of the key variables of concern. To achieve

parallelism with the cardiothoracic surgery study, we sought out possible measures

of quality in patient transport. In speaking to head of the patient transport services,

we found that one source of error involves the patient being transferred to the wrong

location. The other potential error is a lapse in adherence to speci�c protocols (for

example, with handling of equipment and supplies). However, these errors are not

captured and collecting this data is not currently feasible. Thus, although desirable,

the quality implications of speedup are not estimated

4.1 Econometric Analysis

The variables SV CTIME and LOAD do not take on negative values. Thus, we

follow the commonly used approach of taking the natural logarithm of these variables

to reduce the skewness in the distributions. We specify our regression model as:

log (SV CTIMEi) = �0 +Xi�1 + �2 log (LOADi) + �3OV ERWORKi;K + "i (6)

where "i is the mean zero error term. Xi consists of a set of variables that control for

the underlying heterogeneity in patient characteristics and/or task characteristics.4

This includes indicators for the time of the day (TIME) and day of the week (DAY ),

which capture inter-temporal di¤erences in elevator availability and hallway tra¢ c as

well as speci�c information about the transport. Transporters may be required to

use additional pieces of equipment (EQUIP ) along the way, including intravenous

medication, oxygen, and other supplies. Transports also vary in mode (MODE);

4Unlike LOAD, OV ERWORK is emprically seen to have a zero-mean normal distribution, and

the log-transformation does not produce a better model �t.
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some patients may require specialized telemetry beds, while others only need wheel-

chairs and transport beds. For example, a patient transport with a telemetry bed

will take longer than with a wheel chair. For each transport i, we also correct for the

person in charge of the transport (NAME), trip start (START ) and end (END)

locations, starting and ending locations for the transporter (PATH), and type of

patient transported (TRIP_TY PE). Table A1 in the Appendix provides a list of

variables and controls (Xi) for the econometric speci�cation above.

As the load on the system increases in any given shift, the expected waiting

times for transporters also tend to increase. Speeding up the transport time helps to

somewhat mitigate the increase in waiting times. Thus, transporters (whose perfor-

mance is constantly evaluated through a patient tracking system) have an incentive

to speed up when the load on the system increases as outlined in (1). The coe¢ cient

of �2 denotes the elasticity of service time with respect to load. A value of �2 < 0

indicates that servers respond to high load by reducing the service time, providing

support for (1).

To capture a potentially non-linear relationship between LOAD and SV CTIME,

we also created a categorical variable for LOAD for values in the ranges 0 to 0.3, 0.3

to 0.5, 0.5 to 0.65, 0.65 to 0.8, and 0.8 to 1 such that we had approximately similar

numbers of observations within each range. We then estimated (6) above, replacing

log(LOADi) with the categorical speci�cation for LOADi.

Finally, as outlined in hypothesis (2), we expect OV ERWORK to be negatively

correlated with the transport time (SV CTIME). Patient transport is a physically

demanding task, and after a few hours of transporting patients, transporters may

exhibit symptoms of tiredness and fatigue. Thus, a positive value of �3 suggests that

overwork leads to a longer service time, providing support for the hypothesis outlined

in (2).
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4.2 Results

Table 2 summarizes the results of estimating the above regression model with service

time as a dependent variable based on a sample of 17,000 patient transports. We �nd

that the elasticity of load on service time is -0.17. This amounts to approximately 3%

faster service on average (p = 0:02) for a 20% increase in LOAD. This statistically

signi�cant result provides strong support for our hypothesis that higher load leads to

shorter service times.

Next, consider the e¤ect of overwork. In estimating (6) above, we �nd that K = 4

yields the best model �t.5 The regression results in Table 2 show that the coe¢ cient

forOV ERWORK (�3) has a value of 0.09 (p-value =0.05): That, is a 0:1 unit increase

in OV ERWORK (or the equivalent of a sustained level of 0.1 additional load above

the expected load for K = 4 hours) leads to an increase in service time by about

0.9%. This lends support to hypothesis (2) that overwork leads to an increase in the

service time in patient transport. Our result is consistent with our interviews with

patient transporters and their management who reported based on their personal

experience that transporters visibly slow down at the end of busier shifts. At any

given point in time, a worker is subject to the e¤ects of both existing load, and

fatigue e¤ects arising from sustained load in the immediate past. We �nd that the

correlation between LOAD and OV ERWORK is 0:295. Load and overwork have

opposing e¤ects, so at any given point in time, depending on the relative magnitudes

of load and overwork, the net e¤ect might be either a decrease or an increase in the

service rate.
5Our estimations were performed with varying values for K. The �nal value of K that was chosen

yields the best maximum likelihood value.
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5 The Cardiothoracic Surgery Study

Unlike patient transport, cardiothoracic surgery is a highly specialized service involv-

ing numerous care providers. In our analysis, we observe the lengths of stay and

quality measure of patients who pass through a single cardiothoracic surgery unit.

We observe the admission and discharge dates for each patient, which are used to

compute the patient length of stay as well as the daily census. The index i iden-

ti�es each unique patient admission. The associated service time SV CTIMEi is

the total length of stay for the patient from the date of admission to the discharge

date. REQUESTSi measures the number of patients in the unit when patient i was

admitted (the census) and RESOURCESi is the total bed capacity when patient

i arrives at the cardiothoracic surgery unit. In our period of study, the total bed

capacity remained unchanged. LOADi is thus de�ned to be the census divided by

the total bed capacity at the time that patient i is in the hospital. In our preliminary

analysis (Figure 1), we looked at the e¤ect of LOADi at the time of admission. We

also computed alternative measures of LOADi, including a measurement at the time

of discharge, and at the midpoint of the patient�s stay at the hospital. In addition,

we also computed LOADi over a nominal �xed length of stay for all patients.6 We

�nd that all four measures of LOADi have a very similar e¤ect on service time (Ap-

pendix Table A4). For the remainder of this study, we compute LOADi by using the

daily average of load measured over the entire length of stay of patient i.

In contrast to our transport study, in the cardiac surgery study there exists

no unique individual worker who performs all tasks related to a particular patient.

Therefore, we estimate OV ERWORKi;K at the level of the hospital unit using the

daily load for K days prior to the admission day for patient i: Let d(i) be the date

on which patient i is admitted. We de�ne OV ERWORKi;K ; from time d(i)�K up

6We thank the review team for suggesting the various measures of LOAD: The appendix includes

our results for impact of the various measures of LOAD on the service times.
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to time d(i) as

OV ERWORKi;K =
1

N(K; i)

i�1X
j=i�N(K;i)

LOADj �DAILY_LOADd(j)

where DAILY_LOADd(j) is the average load in the unit on the date of admission

of patient j, and N(K; i) is the number of patient arrivals during the last K periods

up to t(i). For example, a large positive value of OV ERWORKi;K signi�es that the

unit has experienced high levels of load over the K days of observation prior to the

admission of patient i.

As indicated in the descriptive statistics (Table 3), we see that the average length

of stay for a patient undergoing cardiothoracic surgery is 12.9 days. The standard

deviation of 10.7 days indicates signi�cant variability in length of stay, which is partly

due to the heterogeneity amongst patients. The average load of 0.78 is comparable

to the average load seen by transporters.

5.1 Econometric Analysis

We test hypotheses (1) and (2) using the econometric speci�cation below:

log (SV CTIMEi) = 
0+Yi
1+
2 log (LOADi)+
3OV ERWORKi;K+
4MON_WED+"i

(7)

Yi includes a set of variables that control for the underlying heterogeneity in pa-

tient characteristics, as well as temporal factors such as day of week. The pa-

tient population includes cardiac patients that vary widely in length of stay and

risk levels. To account for cardiothoracic surgery speci�c factors that in�uence the

SV CTIMEi and outcome, as measured by the occurrence of post-surgery mortal-

ity (MORTALITYi), we include several clinical pre-operative risk factors including

age (AGE i), sex (SEX i), race (RACE i), emergency status (EMERi), and various

speci�c medical co-morbidities, and complicating factors to correct for patient level

heterogeneity. We use two commonly used medical estimates of patient-speci�c risk.
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The measure EUROSCORE i is estimated on a 0 to 1 scale and captures the pre-

operative level of patient risk based on a number of individual patient risk factors.

A similar risk score developed by the New York Heart Association (CLASS_NYHAi)

was also available for each individual patient. We also observe the type of proce-

dure (PROCEDURE i)7 performed, as this has a signi�cant bearing on the length of

stay. For example, a patient will need a longer recovery time following a combined

valve and bypass surgery compared to a single bypass surgery. We correct for tem-

poral factors that could a¤ect the length of stay (through sta¢ ng shortages during

holiday season and on weekends for example) by using indicator variables denoting

month (MONTHi) and day of week (MON_WEDi) of admissions. Finally, we also

observe incidences of a patient having to be re-intubated (RE_INTUBATEDi).

Re-intubation8 occurs if a patient is put on ventilator support for a second time.

Tables A2 and A3 in the Appendix provide detailed de�nitions of all operational and

medical variables.

Since hospitals often cite bed capacity as the primary reason for the inability

to admit new patients, we believe that bed capacity utilization is the most signi�-

cant driver of admission and discharge decisions, and ultimately determines a patient

length of stay. In other words, when the system is busy, beds are in greater demand.

Consequently, there is a pressure to discharge patients faster in order to free up bed

capacity. The e¤ect of an increase in load on reducing the length of stay thus makes

hypothesis (1) appear tenable in the context of a cardiothoracic surgery unit. The

coe¢ cient of 
2 denotes the elasticity of service time with respect to load. A value

7We did not observe individual surgeons involved in the procedures. However, each cardiothoracic

procedure is highly specialized and is performed by either one or two surgeons. For instance, mitral

valve procedures are operated by only one surgeon. Thus, PROCEDURE also serves as a proxy

for the surgeon.
8Intubation is the placement of a �exible plastic tube into the trachea to protect the patient�s

airway and provide a means of mechanical ventilation. If a patient is intubated again (or re-

intubated), it is an indicator of increasing patient severity, and possibly longer length of stay.
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of 
2 < 0 indicates that the unit respond to high load by reducing patient length of

stay, providing support for the hypothesis outlined in equation (1).

To further characterize the relationship between LOAD and SV CTIME, we

created a categorical variable for LOAD ranging from 0-0.6, 0.6 - 0.7, 0.7-0.8, 0.8

- 0.9, and 0.9 - 1. We then estimated (6) above, replacing log(LOADi) with the

categorical speci�cation for LOADi.

Prior research investigating the performance of health workers has investigated

the e¤ect of worker fatigue on clinical decision making and outcome. In particular,

fatigued and overworked medical residents and nurses have been observed to create

more medical errors in diagnosis and treatment (e.g. Scott et al. 2006). For example,

Gaba and Howard (2002) point out that most studies on fatigue show impairment of

clinically relevant tasks. We argue that fatigue could impact the length of stay in two

ways - either because the decision maker would like to take more time to make the

discharge decision9, or because fatigued workers are more prone to making medical

errors. We hypothesize that such errors lead to complications that call for additional

rework, which would further lengthen a patient�s stay. Hypothesis (2) is supported

if fatigue leads to an increase in the patient�s length of stay. Recall that K is the

duration of units of time over which high load brings about a noticeable amount of

fatigue. The value of K that yields the best model �t for speci�cation (7) is chosen

as the period of time over which OV ERWORKK is estimated. The coe¢ cient 
3

captures overwork e¤ects. A positive value of 
3 suggests that a sustained period of

high load leads to a longer service time, providing support for the hypothesis outlined

in equation (2).

The prior medical literature relies on self-reported measures of fatigue. In this

paper, we show that our objective, census-based measure of overwork also increases

the length of stay. This suggests that overwork could be used as a proxy for a measure

9In discussions with medical sta¤, we noted that doctors are more likely to prescribe medical

tests when discharge and diagnosis decisions become di¢ cult.
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of the level of fatigue, where self-reported values are unavailable or biased.

We also examine whether sta¢ ng levels could a¤ect the length of stay of pa-

tients. Although we do not directly observe the daily sta¢ ng levels in our data set,

we note that medical care providers, including nurses, anesthesiologists, and resi-

dents typically work regular weekly schedules. Consequently, any variations in the

level of medial sta¤ are "seasonal" on a weekly basis. That is, the sta¢ ng level

changes can be controlled for by simply accounting for the day of the week. In our

preliminary analysis, we �nd that the number of sta¤ does not vary greatly during

weekdays. However, sta¢ ng levels are slightly lower during weekends. We also �nd

that the average length of stay is slightly less than two weeks. This means that a

patient admitted on a weekend would have stayed on average two weekends in the

hospital, whereas a patient admitted early in the week would most likely have spent

only one weekend. Given that the weekday sta¢ ng levels are higher than weekend

sta¢ ng levels, the patient who ends up spending two weekends experiences more days

with fewer support sta¤. Thus, by explicitly controlling for the day of week of ad-

mission, we account for the weekly schedule-related changes in the level of sta¢ ng

that could drive the observed length of stay e¤ects. In the econometric speci�cation

above, MON_WED = 1 if a patient was admitted on either a Monday, Tuesday or

Wednesday, and MON_WED = 0 otherwise. 
4 estimates the e¤ect of a weekend

or near-weekend admission on increasing the length of stay.

We next consider the e¤ect of load and overwork on the quality of service. In

healthcare operations, medical outcome is commonly used as a measure of quality of

service. Compared to patient transport, outcomes are much more important and also

more accurately quanti�able in the case of cardiothoracic surgery. Our focus with

respect to quality is to investigate if and to what extent process variables such as

work-load and overwork are signi�cant covariates when predicting mortality.

In this setting, a large body of medical literature has statistically analyzed vari-

ables that in�uence the risk-adjusted mortality score (Nashef et al. 2002, Kurki 2002,
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www.euroscore.org). Following a long line of medical research in cardiac surgery, the

EuroSCORE model is one such statistical model that attributes a mortality score

to a set of patient level risk factors. Speci�cally, the EuroSCORE model takes a

number of medical covariates, such as such as gender, age, and medical conditions, as

well as procedure speci�c attributes, such as the nature of the procedure, and links

them to the binary outcome of mortality using a logit regression. That is, the Eu-

roSCORE model is essentially a logistic regression model with the dependent binary

variable as quality of care and the independent variables as the pre-operative and

procedure-speci�c risk factors. The Appendix lists the set of independent variables

used by the EuroSCORE model. In our analysis we the augment the EuroSCORE

model to examine the e¤ect of additional covariates such as load and overwork on the

mortality rate.

We study two mechanisms in which process variables might a¤ect mortality. First,

work-load and overwork might impact the risk of mortality during the hospitalization

of the patient. For example, Needleman (2002, 2006) found that a higher number of

hours of care by registered nurses per patient is associated with better care. Aiken

et al. (2002) report that higher patient to nurse ratios are linked with higher patient

mortality and failure to rescue among surgical patients. Following this prior work,

we argue that for intensive care patients such as those in a cardiothoracic unit, a

decrease in the time that doctors and nurses have available on a per patient basis

leads to an increase in risk-adjusted mortality during the hospitalization. De�ne the

binary variable MORTALITY_IHi such that MORTALITY_IHi = 1 if the i-th

patient died during the hospitalization and MORTALITY_IHi = 0 otherwise.

To test hypotheses (3) and (4) using in-hospital mortality as a measure of quality,

we augment the EuroSCOREmodel by including the variables LOAD andOV ERWORK

as additional covariates. We consider the e¤ect of LOAD and OV ERWORK on all

post-operative in-hospital mortalities. This leads to the following logistic regression
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model:

logit [Pr(MORTALITY_IHi)] = �0+Zi�1+�2LOADi+�3OV ERWORKi;K (8)

where �0 is the base-line rate of in-hospital mortalities. Zi includes the 19 medical

covariates that are used in the EuroSCORE model to predict patient mortality.10 A

positive value of �2 in (8) would provide support for the hypothesis outlined in (3),

indicating that patients entering cardiac surgery at a time when the unit is highly

utilized face a higher mortality risk. Likewise, a positive value of �3 would provide

support for the hypothesis outlined in (4), indicating that patients entering cardiac

surgery at a time when the resources have been exposed to an extended period of

high work-load (i.e. are overworked) face a higher mortality risk.

Second, process variables might also impact mortality after the hospitalization of

the patient, i.e. the mortality of patients who have already been discharged. We use

the post-discharge mortality as an additional measure of quality. De�ne the binary

variableMORTALITY_PDi withMORTALITY_PDi = 1 if the i-th patient died

within 30 days post-discharge and MORTALITY_PDi = 0 otherwise. Just as we

hypothesized for the in-house mortalities, we aim to analyze if an increase in load or

the cumulative e¤ect of overwork leads to an increase in probability of post-discharge

mortality. Unexpected complications might be overlooked by a busy or overworked

work-force.

In addition to validating (3) and (4), there exists another e¤ect of process variables

on mortality that is unique to the post-discharge mortality. A high work-load might

induce the hospital to discharge patients early; this in turn might increase the odds

of mortality. However, to examine the e¤ect of early discharge on mortality rate, it is

not enough to simply observe the relationship between mortality and length of stay.

This is because a longer hospital stay could be associated with increased case severity

and a higher likelihood of mortality. On the other hand, a shorter length of stay due

10Service time is not included in this empirical speci�cation because for in-hospital mortalities,

the patient discharge decisions and hence length of stay are not explicit decision variables.

20



to an earlier discharge could lead to a lower quality of care, resulting in an increased

likelihood of mortality. Our objective is to identify this second e¤ect. In order to do

so, we need to separate the confounding e¤ect of severity of illness on the length of

stay.

We do this by �rst computing the predicted length of stay for case i, dSV CTIMEi.

Among cardiothoracic surgery patients, medical risk factors such as patient age, sex

and various co-morbidities as well as procedure type are considered to be signi�-

cant predictors of length of stay. We estimate this risk-based expected length of

stay ( dSV CTIMEi) using such medical risk factors. We then compute the variable

EARLY DISi as the di¤erence between the actual length of stay (SV CTIMEi) and

the predicted length of stay ( dSV CTIMEi):

EARLY DISi = dSV CTIMEi � SV CTIMEi

The variable EARLY DISi then captures changes in the length of stay caused by

non-medical risk factors. In particular, we hypothesize that an increase in load leads

to an early discharge. In order to establish an increase in load leads to an early

discharge, we use the following econometric speci�cation:

EARLY DISi = �0 +Yi�1 + �2 log(LOADi) + � i (9)

where � i is the random error term. A positive value of �2 suggests that an increase in

load leads to an early discharge. This in turn could impact mortality. By de�nition,

early discharges only in�uence post-discharge mortality.

Next, to demonstrate that an increase in mortality occurs due to an early dis-

charge, we use EARLY DISi in a new logistic regression.

logit [Pr(MORTALITY_PDi)] = �0 + Zi�1 + �2LOADi + (10)

�3OV ERWORKi;K + �4EARLY DISi

Positive values for �2 and �3 suggest that load and overwork directly contribute to

an increase in mortality. Positive values for �2 and �4 suggest that load indirectly

contributes to mortality by inducing early discharges.
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5.2 Results

We estimate our models based on a sample of 2740 patients corresponding to all

admissions in our study period including the years 2003-2006. Table 4 summarizes

the regression results with length of stay as a dependent variable. We �nd that

the length of stay decreases when the load on the system increases. For example,

as indicated by the estimation using models (1) and (2), a 10% increase in load on

average, leads to a shorter length of stay by 20%. Given that the average length of

stay is around two weeks, this amounts to a signi�cant reduction in length of stay

of almost two and a half days on average. However, the variation in LOAD in

cardiothoracic surgery is relatively low compared to transport service, as indicated

by the standard deviations in the descriptive statistics. Thus, only a relatively small

fraction of the sample experiences load related changes of more than one day. We

also �nd that the e¤ect of LOAD on SV CTIME is increasing as the value of LOAD

increases.

We also observe the e¤ect of overwork in cardiothoracic surgery. In estimating (7)

above, we �nd that K = 7 yields the best model �t.11 As Table 4 illustrates, a 0:01

unit increase in OV ERWORKK leads to a 2% (6 hours) increase in the length of stay.

Overall, we �nd that overwork has an important bearing on the performance of the

cardiac unit and that high service rates cannot be sustained for longer periods of time,

as postulated by the hypothesis in (2). In addition, we �nd that a weekday admission

(
4 = 0:09) is associated with a shorter length of stay. Speci�cally, a patient who is

admitted on a weekend has a longer length of stay by about 9%. One explanation

for this is that sta¤ levels are lower during the weekends. As a result, many services

such as imaging, diagnostic testing and surgical services are curtailed. This means

that a patient who is admitted close to a weekend is more likely to wait until the next

weekday before full services can be rendered. In particular, non-scheduled patients

11Our estimations were performed with varying values for K. The �nal value of K that was chosen

yields the best maximum likelihood value.
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admitted through the emergency department also have to wait before they can be

added to the surgical schedule. This has e¤ect of increasing overall length of stay for

patients who are admitted closer to a weekend.12

Now, we turn to the impact of the process variables on mortality and �rst examine

the in-hospital mortalities (Table 5). We do �nd that overwork has a statistically

signi�cant e¤ect (�3 = 3:53, p-value = 0.01), supporting the hypothesis outlined in

equation (4) that patients admitted to an overworked unit are at increased risk of

mortality. In particular, a 10% increase in OV ERWORK is associated with a 2:2%

increase in mortality rate.13 This result is consistent with �ndings in the medical

literature linking fatigue to a decrease in quality of care. However, our measure

of fatigue (or overwork) is obtained from observed work-load, whereas the previous

studies relied on self-reported measures from service workers. The e¤ect of load is

not statistically signi�cant at the 10% level.

Next, we look at the results for the post-discharge mortality (Table 7). The

coe¢ cients �2 and �3 are not statistically signi�cant at the 10% level, suggesting

that overwork and load do not directly impact the post-discharge patient mortality.

Thus, there is no support for the hypotheses indicated by (3) and (4) when tested on

the post-discharge patient mortality. However, the coe¢ cient for EARLY DIS (�2;

Table 6) is estimated to be 7.1 (p-value = 0.01), providing strong evidence that an

increase in load leads to an early discharge. In particular, a 10% increase in load

leads to an early discharge by 0.7 days on average. When we examine the e¤ect of

early discharges on the post-discharge mortality rate, we �nd that the coe¢ cient �4

has an odds ratio that is close to 1 (coe¢ cient = 0.13, Odds Ratio =1.14), suggesting

a small increase in odds of mortality associated with an early discharge. However,

the probability of a 30-day post-discharge mortality of any randomly selected patient

12We thank the DE for pointing out how sta¢ ng di¤erence between weekdays and weekends could

impact patient length of stay.
13The increase in probability was estimated using @p

@OV ERWORK = �2p(1 � p) with the average

mortality rate of p = 0:068:
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is less than 1 %. Consequently, the corresponding increase in odds by a factor of 1.14

due to an early discharge by a day, is small (less than 1 in 1000 cases is associated

with an early discharge induced mortality). Furthermore, early discharges by more

than a day would require the load to increase by more than 13%. Such variations

of the load above the mean of 0.78 are infrequent, as indicated by the low standard

deviation. Thus, this e¤ect is statistically signi�cant, as hypothesized, but small in

absolute magnitude.

In summary, we �nd two e¤ects related to quality. First, overwork leads to an

increase in the in-hospital mortality rate. Second, increased levels of load lead to

early discharges, which in turn is associated with a small increase in the post-discharge

mortality rate.

6 Discussions and Future Research

Prior research has assumed that the service rate in a service operations facility is

independent of the level of load on the system. We present a model of service worker

productivity that includes the e¤ect of load and (over time) the subsequent overwork

on service rates. We also consider the quality implications of variable service rates.

For the two vastly di¤erent services in our study, we �nd that resources in hospitals

are sensitive to their levels of load and that service workers can adapt to system needs

by expending more e¤ort to increase the service rate as required.

Various researchers (e.g. Dranove 2002) have reported that hospitals, like most

�nancially oriented entities, have an incentive to increase pro�ts when possible. For

instance, Friedman and Pauly (1983) and Anderson and Steinberg (1984) have shown

that hospitals exhibit a pro�t-maximizing response to changes in reimbursement

terms. In the US, the diagnosis related group (DRG) for the diagnosis of the pa-

tient at the time of discharge determines the amount that the hospital is paid (Fed-
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eral Trade Commission and Department of Justice Report 2004).14 Hospitals receive

this payment regardless of the realized cost of care; thus, each additional increase in

length of stay beyond the standard expected stay generates zero or minimum mar-

ginal revenues.15 Under DRG-based payment, hospitals have an incentive to increase

admissions (Friedman and Pauly 1983). At high levels of load, a hospital�s ability

to admit new revenue generating patients is reduced. In this paper, we do not em-

pirically examine the underlying incentive schemes. However, it is conceivable that

a hospital facing a high load may have a �nancial incentive to reduce the duration

of stay for patients who can be safely discharged earlier, in order to make room for

new admissions. As we demonstrate from our analysis, this could have negative con-

sequences for the patient�s quality of care. Any potentially con�icting economic and

service quality incentives need to be further examined empirically. With the advent

of new policy changes in reimbursements to hospitals such as pay for performance

(where a hospital�s reimbursement is tied directly to its outcomes), there is greater

need to empirically examine the role of hospital operations on its �nancial health.

We also show that increases in productivity cannot be sustained over a long period

of time. Traditional wisdom has been that services should operate at close to full

utilization to take advantage of capacity costs. However, sustained levels of high

utilization results in overwork and the resultant decrease in productivity may o¤set

any cost savings from operating at high utilization. In many service operations, the

impact of high system load on the quality of service is a signi�cant consideration for

service managers. In our analysis of cardiothoracic surgery, we �nd that overwork

increases the likelihood of mortality - a �nding that is consistent with prior medical

literature. We also identify a small decline in service quality which is correlated with

14Each DRG has a payment weight assigned to it, which re�ects the average cost of treating

patients in that DRG.
15Certain hospitals receive an adjusted payment in excess of the standard DRG amount. Actual

outlier adjustments are speci�c to a DRG and are typically made to teaching hospitals and hospitals

that treat a disproportionate number of low income patients.
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an accelerated service rate (or early discharge).

We found the area of hospital operations to be a fruitful area to create a frame-

work of service worker productivity. Future research needs to investigate if and how

our �ndings apply to other services. For example, the impact of load (and queue

length) on quality of inspections is of paramount importance in areas such as airport

baggage screening (Jacobson et al, 2003) and in port security (Bakshi et al, 2008).

One could also expect the e¤ect of load and overwork to impact quality of service in

a variety of applications including call centers and �nancial services (e.g. loan under-

writing). Based on our interactions with the medical and business professionals at

our research site we also encountered a great interest to explore questions beyond the

research presented in this paper. Future research could also look at accounting for

other factors, beyond those used in the study that could a¤ect the case severity. An

extreme application in which the interaction between work-load, fatigue, and early

discharge is especially of interest to the medical community is the Intensive Care Unit

(ICU), and we hope that future research can extend our analysis to this important

area of healthcare operations.
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Tables and Figures
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Figure 2: Effect of Load and Overwork on Service Time

OVERWORKi,K =
f ( LOADi­1, LOADi­2..,K)
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Figure 3: Effect of Load Overwork and Service Time on Quality

Table 1: Transport Descriptive Statistics
Measure Mean Standard Deviation Median
SVCTIME (minutes) 12.6 7.75 10.35
LOAD 0.755 0.21 0.73
OVERWORKK=4 0.001 0.21 0.02
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Table 2: Effect of Load and Overwork on Transport Time
Coefficient Model 1 Model 2
Intercept 2.73

(0.74) ***
2.13
(0.09) ***

β2 ­0.17
(0.07) ***

­0.12
(0.07) *

β3 0.09
(0.05) **

F­Statistic 4.5 (p<0.01) 4.5 (p<0.01)
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5% and
10% confidence levels respectively. Dummy variables for Xi (Appendix) not displayed

Table 3: Cardiothoracic Surgery Descriptive Statistics
Measure Mean Standard Deviation Median
SVCTIME (days) 12.98 10.69 7
LOAD 0.78 0.086 0.79
OVERWORKK=7 Days 0.005 0.07 0.01
MORTALITY 0.068 0.255 0

Table 4: Effect of Load, Overwork and Early Week Admission on Patient Length of Stay
Coefficient Model 1 Model 2 Model 3
Intercept 2.21

(0.09) ***
2.13
(0.09) ***

2.6
(0.07)***

γ2 ­2.07
(0.26) ***

­2.08
(0.26) ***

­0.58
(0.11) ***

γ3 2.27
(0.36) ***

2.28
(0.36) ***

γ4 ­0.09
(0.03) ***

­0.09
(0.03) ***

F­Statistic 38.3 (p<0.01) 39.89 (p<0.01) 37.6 (p<0.01)
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5% and
10% confidence levels respectively. Dummy variables for Yi (Appendix) not displayed

Table 5: In­Hospital Mortality Results
Coefficient Estimate Odds Ratio 95% Wald

Confidence Limit
Intercept ­1.3 (0.83) *
μ2 ­4.09 (3.52) 0.017 0.002, 0.127
μ3 3.53 (1.4) *** 34.37 1.89, 622
Likelihood Ratio (χ2) 234.6 (p­value < 0.0001)
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5% and
10% confidence levels respectively. Dummy variables for Zi (Appendix) not displayed
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Table 6: Early Discharges Resulting from Increased Load
Coefficient Estimate
Intercept 1.97 (0.67)
κ2 7.1 (1.4) ***
F­Statistic 5.57 (p<0.01)
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5% and
10% confidence levels respectively

Table 7: Post­Discharge Mortality Results
Coefficient Estimate Odds Ratio 95% Wald Confidence

Limit
Intercept ­3.31 (2.62)
η2 ­4.02 (3.38) 0.018 (0.001,13.606)
η3 9.2 (5.44) > 999 (0.111, 9.19)
η4 0.131 (0.04) *** 1.14 (1.043, 1.246)
Likelihood Ratio (χ2) 48.1 (p<0.01)
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5% and
10% confidence levels respectively. Dummy variables for Zi (Appendix) not displayed
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