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A Geometrical Explanation of Stein Shrinkage

Abstract
Shrinkage estimation has become a basic tool in the analysis of high-dimensional data. Historically and
conceptually a key development toward this was the discovery of the inadmissibility of the usual estimator of a
multivariate normal mean.

This article develops a geometrical explanation for this inadmissibility. By exploiting the spherical symmetry
of the problem it is possible to effectively conceptualize the multidimensional setting in a two-dimensional
framework that can be easily plotted and geometrically analyzed. We begin with the heuristic explanation for
inadmissibility that was given by Stein [In Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, 1954–1955, Vol. I (1956) 197–206, Univ. California Press]. Some geometric figures
are included to make this reasoning more tangible. It is also explained why Stein’s argument falls short of
yielding a proof of inadmissibility, even when the dimension, p, is much larger than p = 3.

We then extend the geometric idea to yield increasingly persuasive arguments for inadmissibility when p ≥ 3,
albeit at the cost of increased geometric and computational detail.
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A Geometrical Explanation of
Stein Shrinkage
Lawrence D. Brown and Linda H. Zhao

Abstract. Shrinkage estimation has become a basic tool in the analysis of
high-dimensional data. Historically and conceptually a key development to-
ward this was the discovery of the inadmissibility of the usual estimator of a
multivariate normal mean.

This article develops a geometrical explanation for this inadmissibility. By
exploiting the spherical symmetry of the problem it is possible to effectively
conceptualize the multidimensional setting in a two-dimensional framework
that can be easily plotted and geometrically analyzed. We begin with the
heuristic explanation for inadmissibility that was given by Stein [In Proceed-
ings of the Third Berkeley Symposium on Mathematical Statistics and Prob-
ability, 1954–1955, Vol. I (1956) 197–206, Univ. California Press]. Some ge-
ometric figures are included to make this reasoning more tangible. It is also
explained why Stein’s argument falls short of yielding a proof of inadmissi-
bility, even when the dimension, p, is much larger than p = 3.

We then extend the geometric idea to yield increasingly persuasive argu-
ments for inadmissibility when p ≥ 3, albeit at the cost of increased geomet-
ric and computational detail.

Key words and phrases: Stein estimation, shrinkage, minimax, empirical
Bayes, high-dimensional geometry.

1. INTRODUCTION

More than 50 years ago Stein (1956) published his
classic paper, “Inadmissibility of the usual estimator
for the mean of a multivariate normal distribution.” The
title result is probably the most startling statistical dis-
covery of the past century. Erich Lehmann, who also
worked on the admissibility question, more recently
described how he was “stunned with disbelief” when
Charles first told him of this result (personal communi-
cation). Following the initial discovery James and Stein
(1961) presented their well-known shrinkage estimator
that provides numerically significant improvement of
risk relative to that of the usual estimator.

Lawrence D. Brown is Miers Busch Professor, Statistics
Department, The Wharton School, University of
Pennsylvania, Philadelphia, PA 19010-6340, USA (e-mail:
lbrown@wharton.upenn.edu). Linda H. Zhao is Professor,
Statistics Department, The Wharton School, University of
Pennsylvania, Philadelphia, PA 19010-6340, USA.

[Hodges and Lehmann (1951) and Girshick and Sav-
age (1951) had earlier provided proofs of admissibil-
ity in the unidimensional problem; Lehmann’s student
Blyth (1951) had published another, more general, ar-
gument for this same fact; and Lehmann and Stein
(1953) had produced a proof of admissibility in a re-
lated one-dimensional hypothesis testing setting.]

Stein (1956) begins by describing the multivariate
problem and then gives a heuristic, geometric argument
intended to convince that the usual estimator should
be inadmissible if the dimension is sufficiently large.
The core of this argument will be repeated below, with
some additional illustrations that hopefully help to clar-
ify the situation. The argument given by Stein provides
insight into why inadmissibility occurs in very high-
dimensional problems. But it does not provide a ra-
tionale for the fact that 3 is the critical dimension—
admissibility holds in dimension 1 and 2 but not in
three or more dimensions. [Section 4 of Stein (1956)
contains an admissibility proof for two dimensions.
See also Brown (1971) and Brown and Fox (1974).]
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The argument in the following note expands Stein’s
original heuristic idea, clarifies the geometry, and pro-
vides justification for the fact that 3 is the critical di-
mension. The argument is based on plane geometry and
some simple “back-of-the-envelope” Taylor series ex-
pansions. As with Stein’s argument, what is given here
is not a proof. It could undoubtedly be expanded into
a proof, but without further insight that proof would
likely be similar to—and perhaps harder than—the ex-
isting inadmissibility proofs in Stein (1956) and Brown
(1966). A slightly different geometrically based argu-
ment is suggested in Stein (1962) and is additionally
expanded in Brandwein and Strawderman (1990). This
argument is mentioned in Section 3.

Versions of this argument were presented in the
1960s in oral form independently by L. Brown, by B.
Efron, and perhaps by others. But so far as we know the
argument here does not appear in print. In addition, we
feel it is worthwhile to remind readers of the geometric
rationale underpinning Stein shrinkage in a form that
displays that 3 is the critical dimension.

2. THE ADMISSIBILITY PROBLEM

Let X = (X1, . . . ,Xp)′ where Xi , i = 1, . . . , p, are
independent normal variables with unknown means
θ1, . . . , θp and all with the same known variance, σ 2.
Without loss of generality, assume σ 2 = 1. It is de-
sired to estimate θ = (θ1, . . . , θp)′ with the quality of
an estimate being measured through squared error loss,
L(d, θ) = ‖d − θ‖2 = ∑

(di − θi)
2. Let δ = δ(X) de-

note an estimator. The risk function of δ is denoted by
R(θ; δ) = Eθ(L(δ(X))).

The “usual” estimator of θ is X itself, that is,
δ0(X) = X. This estimator is intuitive and has sev-
eral appealing formal properties such as minimaxity,
best-invariance, maximum likelihood, etc. [See stan-
dard textbooks such as Lehmann and Casella (1998)
for discussion of these properties.]

Prior to Stein (1956) it had been firmly conjectured
that δ0 is admissible for any value of p. Admissibility
means that there is no other estimator that is better in
the sense of risk—formally, that there is no estimator
δ′ such that R(θ; δ′) ≤ R(θ; δ0) with strict inequality at
some value of θ . [Actually, though it is not important in
the sequel, we note that a well-known supplementary
argument shows that δ0 is inadmissible if and only if
there is another estimator that is always strictly better
in the sense that R(θ; δ′) < R(θ; δ0) for all θ .]

What Stein proved in Sections 2–4 of Stein (1956) is:

THEOREM (Stein). δ0 is admissible if and only if
p ≤ 2.

Our goal is to explain why δ0 is inadmissible when
p ≥ 3.

3. SPHERICAL SYMMETRY

A spherically symmetric estimator is one that satis-
fies

δ(X) = τ(‖X‖)X(1)

for some scalar function, τ . Of course, δ0 is spherically
symmetric. We confine the search for alternatives to δ0
to the collection of spherically symmetric estimators.
Geometrically, these are estimators that lie on the line
through X, and whose distance from the origin depends
on ‖X‖. Such an estimator is given as in (1)–(3).

The restriction to spherically symmetric alternatives
is intuitively plausible. To support this intuition, Stein
(1956), Section 3, contains a formal proof that δ0 is
inadmissible if and only if there is a spherically sym-
metric estimator which is better.

Once one has decided to restrict consideration only
to spherically symmetric estimators it is possible to
correctly plot and study the multivariate problem in a
two- dimensional coordinate framework for the sample
space. One coordinate measures the sample in the di-
rection of the true parameter, θ ; the other coordinate is
the length of the orthogonal residual from this direc-
tion. This leads to the geometric picture developed in
the following section.

4. GEOMETRY FOR SPHERICALLY SYMMETRIC
ESTIMATORS

Only spherically symmetric estimators need to be
considered. For such estimators relevant distributions
depend only on the magnitude of θ ; the direction of
the vector θ does not matter. Formally, this means
that after the constraint to spherically symmetric es-
timators it suffices to consider the situation when θ
lies on the θ1-axis. So, assume θ = (ϑ,0, . . . ,0)′. Let
X = (X1,X

′
(2))

′ where X(2) ∈ Rp−1. Geometrically,
X(2) is the residual of X after projection on the direc-
tion determined by θ . Again, only the length of X(2)

matters, not its direction in the hyperplane perpendicu-
lar to θ . Hence, let R = ‖X(2)‖. The relevant statistics
for the observed sample can thus be rewritten as

Z = (X1,R) with X1 ∼ N(ϑ,1),R2 ∼ χ2
p−1

(2)
and X1,R are independent.

Spherically symmetric estimators as in (1) are ex-
pressed similarly in the Z coordinate system as

δ(Z) = τ(‖Z‖)Z.(3)
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FIG. 1. A typical observation in the Z = (X1,R) coordinate sys-
tem.

The Z coordinate system is two-dimensional. Hence
it can be conveniently visualized geometrically. A key
feature of the transformation leading from the original,
X, system to the Z system is that distances are pre-
served. In particular, for spherically symmetric estima-
tors

‖δ(X) − θ‖ = ‖δ(Z) − (ϑ,0)‖.
Thus the squared error risks are the same in the two

problems.
Pictorially this can be plotted in standard planar co-

ordinates, as pictured in Figure 1. Figure 1 shows a
typical observation of Z in the (X1,R) coordinate sys-
tem. It also represents a spherically symmetric estimate
corresponding to Z, as given by formulas (1)–(3). Pay
special attention to the fact that this estimator is on the
line through Z. Figure 1 also shows an additional point
ξ = (ξ1, ξ2) = (ϑ,

√
p − 1). This represents the intu-

itive “center” of the distribution of Z.
In terms of Figure 1 the statistical situation can be

summarized as follows: You observe Z with distribu-
tion as specified above. You are constrained to use only
spherically symmetric estimators that lie on the line
from the origin through Z, as shown in the plot. You
want to find an estimator that is close to 	 in terms
of squared distance. For the point shown on the plot it
is fairly clear that there are spherically symmetric es-
timates that are better than just Z alone. The point δ

shown on the plot is one such better estimate. The goal
of the remainder of the paper is to substantiate that situ-
ations like that in the figure are on average sufficiently
typical (at least when p ≥ 3), and hence that appropri-
ate shrinkage estimators are better than Z itself.

[Note that p − 1 = E(R2). Hence it makes sense
to think of

√
p − 1 = ξ2 as the center of the dis-

FIG. 2. 2000 observations of Z in the case p = 20 and ϑ = 25.

tribution of R. This is not exactly either the mean
or median of R, but it is sufficiently close and is
convenient for the following discussion. The exact
mean of R is E(R) = √

2
(p/2)/
((p − 1)/2). For
p = 5,10,17,26, respectively, this takes the values
E(R) = 1.850,2.918,3.938,4.950 as compared to
the values ξ2 = √

p − 1 = 2,3,4,5. Asymptotically,
E(R) = √

p − 1 − 1/(4
√

p − 1) + O((p − 1)−3/2).]
Figure 2 shows a typical sample of 2000 observa-

tions of Z in the case p = 20 and ϑ = 25. The dom-
inant feature is that the sample points are moderately
tightly clustered about ξ = (25,

√
19) and hence are

much closer to ξ than they are to the parameter point
θ = (ϑ,0).

5. STEIN’S HEURISTIC ARGUMENT

It is fairly clear from pictures like Figure 2 that
shrinking the observations somewhat toward the ori-
gin will often bring the estimator closer to the true
mean θ = (ϑ,0). Even more striking—consider what
happens in a plot like Figure 2 as p → ∞ for fixed
θ = (ϑ,0). Then the cloud of points moves vertically
upward. Eventually, virtually the entire cloud lies out-
side the circle of radius ‖θ‖. To be more precise

‖X‖2 = ‖θ‖2 + p + OP

(√
p

)
(4)

as p → ∞ for any fixed θ . This asymptotic fact can
be derived from the non-central chi-squared distribu-
tion of ‖X‖2 or from a simple Taylor approximation as
is done in Stein’s heuristic argument. Viewed another
way, (4) says that

‖θ‖ =
√

‖X‖2 − p − OP

(√
p

)
(5)

= ‖X‖ − p + OP (
√

p)

2‖X‖ .

Any observation that lies outside of the sphere of ra-
dius ‖θ‖ can be brought closer to θ by shrinking it to-
ward the origin so as to lie on the sphere. (Actually,
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FIG. 3. Geometry of the naïve optimal estimator: it shows the
origin, O, the points A = (ϑ,0), B = (ϑ,

√
p − 1) and C, the pro-

jection of A on the line OB.

somewhat more shrinkage is desirable as will be clear
from the discussion of Figure 3, below.) This suggests

that shrinkage by a factor
p+OP (

√
p)

‖X‖ should be desir-
able as p → ∞. The argument in Stein (1956) elabo-
rates a little further and shows with a Taylor expansion
that shrinkage by a factor p+O(1)

‖X‖ is still advantageous
as p → ∞ for any fixed θ . This motivates the use of

the estimator δp(X)
�= (1 − p

‖X‖2 )X. This is related to
what is used in Stein (1956) to prove inadmissibility
of the usual estimator. The James–Stein (1961) estima-
tor δp−2 is better than the usual one when p ≥ 3, as
proved in that paper and later in a more efficient man-
ner through Stein’s unbiased estimate of risk in Stein
(1973, 1981).

[Since p → ∞ the difference between the factor
p/‖X‖2 in this argument and the factor (p − 2)/‖X‖2

in James and Stein (1961) is irrelevant. For fixed p it
can be shown by the arguments mentioned above that
δp dominates δ0 whenever p ≥ 4.]

Stein (1956) writes that “With some additional
precision this [heuristic argument] could be made
. . . [in]to. . . a proof that for sufficiently large [p] the
usual estimator is inadmissible.” This is the type of
exaggeration that may be excused by the above being
only meant as a heuristic argument. In fact much more
than “some additional precision” is needed to prove the
usual estimator is inadmissible for sufficiently large p.
The reason that the above does not easily yield a proof
of inadmissibility is that it only holds for any fixed θ as
p → ∞. It does not hold uniformly in θ , but a uniform
argument is needed in order to prove inadmissibility.

To be more precise, for any p no matter how large,
infθ {Pθ (‖X‖ ≥ ‖θ‖)} = 1/2, rather than approaching 1
as is implicitly suggested within the heuristic argu-

ment, and as would be needed to easily convert the
heuristic argument into a proof.

Hence a more elaborate argument is needed to prove
that the usual estimator is inadmissible. The following
discussion presents a heuristic argument for inadmis-
sibility that is consistent with the geometric insight in
Stein’s motivation.

6. DESIRED AMOUNT OF SHRINKAGE; TYPICAL
OBSERVATION

Figures 1 and 2 show that the observations are close
to ξ = (ϑ,

√
p − 1), whereas the estimate should be as

close as possible to θ = (ϑ,0). Figure 3 illustrates the
geometry of this situation when Z = (ϑ,

√
p − 1). It

shows the origin (O), the point A = θ = (ϑ,0) which
is the desired target of the estimate, and the point
B = ξ = (ϑ,

√
p − 1) which is a typical observation.

For such an observation any spherically symmetric es-
timator must be on the line OB. The point C in Figure 3
is the point on that line which is closest to the desired
target, A. A similar triangles yield that

|AB|
|OB| = |BC|

|AB| ,

where |AB| denotes the length of the segment AB, etc.
Simplifying yields

|BC| = |AB|2
|OB| = p − 1

‖ξ‖ .(6)

The point C is the best estimate based on an obser-
vation at B = ξ . By (6) it can be written as

B =
(

1 − p − 1

‖ξ‖2

)
ξ.

By comparison with (1), this suggests that the opti-
mal spherically symmetric estimator will be the Naïve
Geometrically Optimal estimator

δNGO(Z) =
(

1 − p − 1

‖Z‖2

)
Z.(7)

The discussion leading to (7) suggests that

δp−1(X) =
(

1 − p − 1

‖X‖2

)
X

should dominate δ0. The above motivation and con-
struction of δNGO does not suffer from the defect noted
above in Stein’s original heuristics—it does not require
p → ∞ for each fixed ϑ . However, it suggests that
δ0 is inadmissible even for p = 2. This suggestion is
not correct; and so a more careful heuristic argument is
needed to get a better description of the relevant geom-
etry.



28 L. D. BROWN AND L. H. ZHAO

FIG. 4. The values of ξ± and their respective estimates.

7. STOCHASTIC VARIATION

The estimator δNGO in (7) is only optimal at ξ =
(ϑ,

√
p − 1), the central point of the distribution of Z.

Of course, Z is not identically ξ , but is only stochasti-
cally close to ξ . The calculation leading to (7) is only
approximate, not exact. There is a small price in accu-
racy to be paid in order to accommodate the stochastic
variation of Z. In order to better understand the compo-
sition of this price consider a particular pair of equally
likely possible points for Z. These points are labeled
ξ+, ξ− in Figure 4. They are defined as

ξ± = (
ϑ ± 1,

√
p − 1

)
.

These points exhibit typical stochastic variation in
the direction of θ = (ϑ,0) since their mean and mean
squared distance in that direction match those of the
full distribution. While they do not accurately model
the stochastic variation in the direction orthogonal to
θ = (ϑ,0), it turns out that this additional variability
is only of secondary importance. Thus, we will ignore
the effect of this orthogonal variation for now. It be-
comes clear from the exact expression discussed later
at (14)–(15) that the orthogonal variation is indeed of
secondary importance in calculation of the difference
in risks.

Note that L+ < ‖ξ+ − ϑ‖2 = ‖ξ− − ϑ‖2 but L−
can be > ‖ξ− − ϑ‖2. Calculations in the test show that
1
2(L+ + L−) < ‖ξ± − ϑ‖2when 0 < C < 2(p − 2).

In order to allow for additional discussion consider
the general form

δC(Z) =
(

1 − C

‖Z‖2

)
Z.(8)

The case C = p − 1 is motivated by the preced-
ing geometric argument. But the following calculations

suggest that because of the stochastic variation mod-
eled through ξ+, ξ− a preferable choice is C = p − 2,
as in the ordinary James–Stein estimator.

Break down the risk into two components corre-
sponding to the directions determined by the coordi-
nates Z = (X1,R). This is similar to the suggestion in
Stein (1956), remark (vii). Related calculations are de-
scribed in Efron and Morris (1971). Let L± denote the
squared error from an observation at one of the two
equally likely points ξ+, ξ− , respectively,

L± =
[(

1 − C

‖ξ±‖2

)
(ϑ ± 1) − ϑ

]2

+
[(

1 − C

‖ξ±‖2

)√
p − 1 − 0

]2

=
[
±1 − C

‖ξ±‖2 (ϑ ± 1)

]2

+
(

1 − C

‖ξ±‖2

)2

(p − 1)

�= L
(1)
± + L

(2)
± , say.

Let R|ξ±(θ , δC) denote the conditional risk given that
Z = ξ+ or ξ−. Then

R|ξ± = 1
2

(
L

(1)
+ + L

(1)
−

) + 1
2

(
L

(2)
+ + L

(2)
−

)
�= R

(1)
|ξ±. + R

(2)
|ξ±., say.

Is δC better than δ0 for this conditional problem? To
examine this we look at the coordinate-wise difference
in conditional risks. For δ0 the coordinate-wise risks
are 1 and p − 1, respectively. Hence the coordinate-
wise differences are

1 − R
(1)
|ξ± = 1

2

(
2C(ϑ + 1)

‖ξ+‖2 − C2(ϑ + 1)2

‖ξ+‖4

− 2C(ϑ − 1)

‖ξ−‖2 − C2(ϑ − 1)2

‖ξ−‖4

)

and

(p − 1) − R
(2)
|ξ±

= 1

2
(p − 1)

((
2C

‖ξ+‖2 + 2C

‖ξ−‖2

)

−
(

C2

‖ξ+‖4 + C2

‖ξ−‖4

))
.

In order to better interpret this expression rearrange
terms so as to write the improvement of δC over δ0 in
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this conditional problem as

�|ξ±
�= p − R|ξ±

= Cϑ

(
1

‖ξ+‖2 − 1

‖ξ−‖2

)

+ Cp

(
1

‖ξ+‖2 + 1

‖ξ−‖2

)

− 1

2
C2

(
(ϑ + 1)2 + p − 1

‖ξ+‖4(9)

+ (ϑ − 1)2 + p − 1

‖ξ−‖4

)

= Cϑ

(
1

‖ξ+‖2 − 1

‖ξ−‖2

)

+
(
Cp − 1

2
C2

)(
1

‖ξ+‖2 + 1

‖ξ−‖2

)

since ξ± = (ϑ ± 1)2 + p − 1.
If it were so that ‖ξ+‖2 = ‖ξ−‖2 then the first major

term on the right of (9) would be =0, and the difference
in (9) would be positive for any 0 < C < 2p. In partic-
ular, for any p ≥ 2 it would be positive for C = p − 1.
(It could even be positive for p = 1!) This of course
makes no sense as a statistical solution and only con-
firms that it provides an incorrect insight to ignore that
‖ξ+‖2 > ‖ξ−‖2.

Now, look at (9), and take into account that ‖ξ+‖2 >

‖ξ−‖2. Then, 1
‖ξ+‖2 − 1

‖ξ−‖2 < 0, and the first term on
the right of (3.9) is negative and partially compen-
sates for the remaining term which is positive when
C = p − 1. In more detail,

1

‖ξ+‖2 − 1

‖ξ−‖2 = ‖ξ−‖2 − ‖ξ+‖2

‖ξ+‖2‖ξ−‖2

= −4
ϑ

‖ξ+‖2‖ξ−‖2 ,

1

‖ξ+‖2 + 1

‖ξ−‖2 = ‖ξ−‖2 + ‖ξ+‖2

‖ξ+‖2‖ξ−‖2 = 2
ϑ2 + p

‖ξ+‖2‖ξ−‖2 .

Hence the difference in conditional risks for p ≥ 2 is

�|ξ± = p − R|ξ±

= 2

‖ξ+‖2‖ξ−‖2

(10)

·
((

C(p − 2) − C2

2

)
ϑ2 +

(
Cp − C2

2

)
p

)

>
2(ϑ2 + p)

‖ξ+‖2‖ξ−‖2

(
C(p − 2) − C2

2

)
.

It follows that the difference in conditional risks is
positive so long as 0 < C < 2(p − 2). In particular the
difference is positive for p ≥ 3 and C = p − 1, the
value motivated by the geometric argument centered on
Figure 3. On the other hand, the best choice of constant
in (10) is the slightly smaller value C = p − 2. The im-
provement in risks is not as great as that suggested in
the argument around Figure 3, and this can be consid-
ered as a necessary penalty due to the randomness in X.
In summary, the result in (10) provides a heuristic mo-
tivation for inadmissibility to hold wheneverp ≥ 3.

8. WHAT CAN BE PROVED

Note in (10) that the three terms in the leading frac-
tion are all approximately equal; that is, ϑ2 + p ≈
‖ξ+‖2 ≈ ‖ξ+‖2. Hence the argument leading to (10)
suggests that the unconditional difference in risks, � =
R(θ , δ0) − R(θ , δC), will be well approximated as

� = R(θ , δ0) − R(θ , δC)
(11)

≈ 2

‖θ‖2 + p

(
C(p − 2) − C2

2

)
.

The quality of this approximation improves as ‖θ‖ →
∞ in the sense that

� ∼ 2

‖θ‖2 + p

(
C(p − 2) − C2

2

)

(12)
as ‖θ‖ → ∞.

The preceding arguments can be refined to prove the
assertion in (12). This is essentially the path followed
by Stein in his original argument in Stein (1956). In
order to allow calculations accurate only for large ‖θ‖,
Stein replaced δC with the estimator

δC;a =
(

1 − C

a + ‖X‖2

)
X.

Then an exact Taylor expansion that can be consid-
ered as an elaboration of the above calculations yields

R(θ , δ0) − R(θ , δC;a)

= 2

a + ‖θ‖2

(
C(p − 2) − C2

2

)
(13)

+ o

(
1

a + ‖θ‖2

)

uniformly in ‖θ‖. It follows that δ0 is inadmissible.
The argument in Stein (1956) for (13) involves only

low-order moments of X − θ . Hence it can be gener-
alized from the normal distribution setting to apply to
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more general location parameter problems. It can also
be adapted to apply (with modifications) to problems
in which the loss function is not squared error. Such
generalizations appear in Brown (1966).

When one considers only the normal distribution set-
ting, then

� = R(θ , δ0) − R(θ , δC)
(14)

= Eθ

(
1

‖X‖2

)(
C(p − 2) − C2

2

)
.

This result is proved but not explicitly stated in
James and Stein (1961). It is explicitly stated and
proved using the unbiased estimate of the risk in Stein
(1973, 1981).

Note that

Eθ

(
1

‖X‖2

)
≈ 1

Eθ (‖X‖2)
= 1

‖θ‖2 + p
,(15)

with the approximation being quite close except when
‖θ‖ is small. Hence the heuristic approximation in (10)
and (11) is quite close to the truth. This validates the
heuristic idea to approximate the unconditional dif-
ference in risks by the conditional difference given
θ = ξ+, ξ− .
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