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Impact of Performance-Based Contracting on Product Reliability: An
Empirical Analysis

Abstract
Using a proprietary data set provided by a major manufacturer of aircraft engines, we empirically investigate
how product reliability is impacted by the use of two different types of after-sales maintenance support
contracts: time and material contracts (T&MC) and performance-based contracts (PBC). We offer a number
of competing arguments based on the theory of incentives that establish why product reliability may increase
or decrease under PBC. We build a two-stage econometric model that explicitly accounts for the endogeneity
of contract choices, and find evidence of a positive and significant effect of PBC on product reliability. The
estimation of our model indicates that product reliability is higher by 25%–40% under PBC compared to
under T&MC, once the endogeneity of contract choice is taken into account. Our results are consistent with
two mechanisms for reliability improvement under PBC: more frequent scheduled maintenance and better
care performed in each maintenance event.
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Abstract 

 

Using a proprietary dataset provided by a major manufacturer of aircraft engines, we empirically 

investigate the impact of incentives present in after-sales repair and maintenance support 

contracts on product reliability.  In particular, we compare the reliability of products under time 

and material (T&M) contracts, which have been used traditionally in the airline industry, with 

the reliability under performance-based contracts (PBC), which are gaining wide acceptance.  

We discover that there is inherent endogeneity in contract choices by the customers.  To account 

for this endogeneity, we estimate a two-stage econometric model, and find that larger customers 

and users of certain equipment types are more likely to select PBC over T&M contracts.  After 

controlling for this selection process, we find evidence for the positive and significant effect of 

performance incentives created by PBC on product reliability.  Our estimates indicate an 

improvement of product reliability in the 10-25% range under PBC, compared to the reliability 

observed under T&M contracts.  This finding is robust to numerous alternative specifications, 

modeling assumptions and estimation methods.  Thus our research provides a valuable input into 

the ongoing policy debate about the effectiveness of performance contracts which are currently 

being introduced extensively in both the government and the private sectors.  
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1.  Introduction 

The move to performance-based contracting (PBC) represents a fundamental shift in customer-

supplier relationships for after-sales product support.  A PBC contract will pay the service 

provider on the basis of product use or “up-time”
 1
, whereas under traditional Time and Material 

(T&M) contracts the customer pays the supplier for resources consumed due to the occurrence of 

product failures and maintenance events.  The former approach, which in some industries is 

referred to as “servicization” (see, for example, Toffel 2002), essentially converts the sale of 

service products (such as spare parts and repair labor) to the customer into the sale of a service 

that enables the customer to generate value through the use of the product.  

While the provision of after-sales support is a major driver of revenue and profit in many 

industries, the movement to PBC is especially relevant for after-sales product support in the 

aerospace and defense industry where products are “mission critical”, since their unavailability 

due to either scheduled or unscheduled maintenance can be very costly.  The movement toward 

performance-based servicization is motivated by the premise that PBC aligns incentives between 

the customer and the supplier, so that both benefit when the product‟s use generates value to the 

customer.  As a consequence, most observers expect that the adoption of PBC will lead to more 

effective value creation, i.e., with a higher level of performance and a lower cost to the customer, 

as well as a higher level of profit to the supplier of support services.  A growing body of 

literature (e.g., Kim et al. 2007, 2008, 2009) analyzes this issue from an economic and operations 

modeling perspective.  The results of that research indicate that it is possible to design 

coordinating contracts based on performance and that under such contracts, suppliers and 

customers have a strong incentive to increase product availability through various means that 

include improving support capabilities, investing in an appropriate level of support resources, 

and improving the underlying reliability of the products.  While the managerial and analytical 

arguments for PBC are pervasive, empirical research to support these conclusions is currently 

non-existent. 

The evidence that PBC for aftermarket support and system sustainment has a positive impact 

on performance primarily originates from industry reports that are not based on rigorous 

analysis. These reports and conventional wisdom suggest that PBC improves service outcomes, 

                         
1 A typical performance-based contract will include terms that lead to payment to suppliers based on the number of 

hours the product has been used and/or the level of availability of key resources.  
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i.e., it can lead to higher product availability, lower cost of ownership, and reduced customer 

wait times. Kirk and DePalma (2006), for example, analyze a PBL
2
 program in the Navy and, 

based on a review of historical repair frequency data for several programs, concluded that “there 

is some evidence that the PBL contract may have helped to improve availability and reliability”.  

Not surprisingly, questions have been raised about the quality of the data and the associated 

analysis presented in such reports.  For example, in a recent report the Government 

Accountability Office (GAO) states that, “Many DOD program offices that implemented PBL 

arrangements have limited cost data, and various other factors – such as the lack of business case 

analyses – further limit an evaluation of the costs of this support strategy. Available data from 

the programs GAO reviewed indicated mixed results” (GAO 2008). 

The need for empirical research to better understand the effects of PBC is particularly 

relevant considering not only the paucity of scientific evidence, but also the economic impact 

associated with after-sales support services.  For example, according to Standard and Poor‟s 

(2009), the global maintenance, repair and overhaul sector generated revenues of $117 billion in 

2007, of which $45 billion relates to commercial aircraft.  More generally, reported statistics (see 

Cohen et al. 2006 and the references therein) indicate that sales of spare parts and after-sales 

services in the U.S. represents 8% of annual domestic product, meaning that customers spend 

approximately $1 trillion every year on assets they already own.  The investment in resources 

required to enable the delivery of services to support products is also huge, e.g. spare parts 

inventory investment has been observed to be 5% of sales in computer and high technology 

industries (Cohen et al. 1997). 

The findings of this paper are especially timely as performance-based contracts for after-sales 

support have become increasingly popular in industries such as aerospace and defense, 

automobile, semiconductors, information technology and software development (e.g., Software 

as a Service).  The adoption of contractual relationships based on performance for after-sales 

support and other services also spans the public sector.  In the U.S., the federal government, and 

the Defense Department in particular, has mandated this form of contracting for services on a 

wide-spread basis.  Nonetheless, there is an ongoing debate between suppliers of support 

services and the various federal agencies who are engaged in implementing performance-based 

                         
2 Performance-based contracting is also referred to as Performance-based Logistics (PBL) and Power by the Hour® 

in the defense and commercial aerospace industries, respectively. The latter is a registered  Rolls-Royce trademark. 
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programs, regarding the value of contractual relationships based on performance.  In addition, 

the GAO, as noted above, has questioned the accuracy of predictions of the positive impact of 

PBC and the House of Representatives recently held a hearing on the benefits and costs of PBC.
3
   

In this paper, we focus on repair and maintenance services for commercial aircraft in the 

aerospace and defense industry where PBC for after-sales support has been in place for many 

years.  Our proprietary dataset comes from Rolls-Royce, which, as a major supplier of aircraft 

engines, provides repair and maintenance services to its customers under two different types of 

contracts: T&M and PBC.  The main question we analyze is the following: Does the use of PBC 

have a positive effect on product reliability over the use of T&M?  Our focus on reliability is 

grounded on a theoretical prediction that reliability is likely to be impacted by the choice of 

contracts (Kim et al. 2008).  Intuitively, T&M does not create a strong incentive to improve 

reliability, as the supplier‟s compensation under T&M is proportional to the amount of consumed 

service resources, which decreases as products fail or are serviced less often (i.e., products 

become more reliable). PBC, on the other hand, promotes investing in reliability improvement as 

doing so leads to higher product up-time, which in turn brings larger financial gains to the 

supplier.  While a linkage between product reliability and performance-based incentives is 

seemingly intuitive, prior to this paper it has never been verified empirically, and the extent of 

this relationship has never been estimated.  Our analysis, which uses a two-stage framework that 

explicitly deals with the endogeneity inherent in contract choice by a customer, provides 

evidence that PBC, indeed, improves product reliability.  Our results quantify the observed 

benefits – about a 10-25% reliability improvement – that these contracts have generated in our 

sample.  These findings are robust to a number of specifications and modeling assumptions.  

While the focus of this paper is on PBC for commercial aircraft after-sales services, our findings 

are also relevant to other industries that provide after-sales support for mission critical products. 

The paper is organized as follows. In Section 2, we review relevant literature on supply chain 

contracting.   In Sections 3 and 4 we describe the industrial context and the data, and continue 

with presentation of the econometric analysis and the model specification in Section 5.  In 

Section 6 we discuss estimation results, robustness checks, and limitations of our analysis. 

Section 7 concludes the paper. 

                         
3“Performance-based Acquisitions: Creating Solutions or Causing Problems?” Full Committee Thursday, May 08, 

2008.  http://homeland.house.gov/hearings/index.asp?ID=136. 

http://homeland.house.gov/hearings/index.asp?ID=136
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2.  Literature Review 

There has been substantial interest in the operations management literature concerning the role of 

contracts in supply chains.  Cachon (2003) provides an extensive and relatively recent review of 

more than 200 papers in this area.  As noted there, “the literature contains a considerable amount 

of theory, but an embarrassingly paltry amount of empiricism.” Although papers such as Novak 

and Eppinger (2001) and Novak and Stern (2008, 2009), for example, empirically examined the 

impact of product characteristics on vertical integration decisions in the automobile industry, the 

numerous theoretical predictions in the OM literature related to contractual incentives, for the 

most part, have not received comparable empirical scrutiny.  The findings of this paper, 

contribute to filling this gap in the literature by providing an empirical validation of the 

hypothesis generated by an earlier theoretical study (Kim et al. 2008). 

In contrast to the current state of empirical OM research on supply chain contracting, 

researchers in other areas have been quite active in studying similar topics.  In economics, 

several papers have studied revenue sharing contracts in the video rental industry.  Mortimer 

(2008), for example, analyzes fixed-price vs. revenue sharing contracts between distributors and 

retailers using a structural equation econometric approach.  Her results indicate that both 

downstream and upstream firms‟ profits for popular titles increase by 10% under revenue sharing 

contracts and consumers are also generally better off.  Ho et al. (2008) and Ioannou et al. (2009) 

investigate other aspects of revenue sharing contracts in this industry.  In addition, several 

empirical papers examine franchising contracts (e.g., Lafontaine and Shaw 1999, Lafontaine and 

Slade 2001).  Finally, there is a stream of literature that studies incentive alignment between 

firms and their employees by means of different variants of pay-for-performance contracts.  

Examples include Prendergast (1999, 2002a, 2002b), Lazear (2000) and Banker et al. (2001).  

Although this research on performance-based contracts is distinct from ours because of its focus 

on a labor setting, we note two results from this literature that are relevant to our study: (i) 

employees respond to incentives which usually improve firm performance, and (ii) there is self-

selection of better employees through pay for performance schemes.  The findings of our paper 

offer similar insights in the firm-to-firm aftermarket support setting. 

PBC has also received attention in application areas such as health care, public policy, and 

software development.  The empirical results in Lu et al. (2003) show that PBC leads to more 

referrals and a better match between illness and treatment intensity, suggesting that PBC induces 
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incentive alignment.  Shen (2003) finds that PBC provides incentives for nonprofit providers of 

substance abuse treatment to select less severe patients into treatment. Other examples from the 

public sector include Heinrich (2002), who analyzes outcome-based performance management 

using data from federal job-training programs and a case study by Heinrich and Choi (2007), 

based on social welfare programs in Wisconsin, showing that the service provider responded to 

the incentives afforded by PBC. 

In the context of offshore software development, Gopal et al. (2003) analyze the impact of 

fixed-price vs. T&M contracts on software vendor profits.  As we do, they use a two-stage 

approach that includes modeling of the determinants of contract choice in the vendor-developer 

relationship.  Their results indicate that vendor profits are higher under T&M contracts, 

controlling for variables such as project type and effort.  Gopal and Sivaramakrishnan (2008) 

extend this analysis further by examining the impact that factors such as project size and 

duration, team size, and risk of employee attrition, have on contract choice. 

The papers noted above study the influence of contracts on different performance outcomes.  

In our research, an equally important issue is determining the factors that influence contract 

choice.  A number of papers examine contract choice in different contexts.  Examples include 

Slade (1996), who studies contracts between oil companies and their service stations and tests 

various multitask agency hypotheses as drivers of contract choice. Ackerberg and Botticini 

(2002) examine contract choices using archival data on agricultural contracts between a landlord 

and tenants, and test hypotheses related to the role of risk sharing and transaction costs on 

contract selection.  Using data from U.S. Air Force engine procurement, Crocker and Reynolds 

(1993) analyze how different variables affect the degree of contract completeness (i.e., how 

precisely the contract specifies future duties and contingencies) that parties choose.  

Our paper also contributes to the growing stream of empirical research in operations 

management.  Papers that are related to ours include Ramdas and Randall (2008), who find that 

component sharing in the automotive industry can hurt product reliability.  We also study 

reliability empirically but in a different industry and in the contracting choice context.  In an 

empirical study that focuses on after-sales support for defense systems, Deshpande et al. (2003) 

analyze how the interaction of attributes such as the criticality and cost of service parts and the 

nature of inventory policies to manage them affect performance.  As in our case, this is an 

empirical study in an aftermarket context, although it is not focused on reliability or contracting.  
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Terwiesch et al. (2005) empirically analyze demand forecast sharing in the buyer/supplier 

contractual relationship in an application to the semiconductor industry.  Their analysis indicates 

that non-optimal gaming behavior among all parties occurs as a consequence of conflicting 

incentive schemes.  While this paper is not about contracting, it is related to our research since it 

empirically studies the role of incentives in an operational context.  Finally, in a study related to 

PBC, Lee and Zenios (2007) develops a performance-based payment system for Medicare by 

empirically estimating data from patients needing kidney dialysis.  

To summarize, we note that while fields such as economics, public policy, information 

systems, and healthcare have generated many examples of empirical research on the role of 

performance contracting, this has not been the case in operations management, despite 

significant attention that has been given to supply chain contracting research.  Thus, in addition 

to providing a scientific input to the ongoing policy debate on performance incentives for 

government and defense service procurement, our paper contributes to the existing OM literature 

as it represents one of the few empirical studies of supply chain contracting.  As a result, we 

believe that our paper contributes to closing the gap between theory and practice in this 

important area of OM research.  Finally, to the best of our knowledge, our paper provides the 

first empirical comparison between performance contracts and non-performance contracts that 

are used for aftermarket customer support. 

3.  Industry Background 

In this paper we focus on the maintenance, repair and overhaul (MRO) industry for commercial 

aircraft.  According to the previously noted Standard and Poor‟s industry report (2009), this 

sector generated revenues of $117 billion in 2007, of which $60 billion was related to military 

MRO, $45 billion to air transport (commercial aircraft) MRO, and $12 billion to business and 

general aviation MRO.  Aircraft owners (e.g., airlines) face the problem of properly managing 

maintenance and repair of aircraft equipment, including managing the risk of infrequent 

equipment failures and the disruption of scheduled maintenance checks, so as to preserve aircraft 

availability, thus avoiding the high opportunity cost of having an aircraft on-the-ground.  

Customers typically purchase after-sales service support from the OEM and/or other service 

suppliers on either a transaction basis (i.e., through T&M contracts), or negotiate a contract for 

support where payment is based on the number of flying hours (i.e., PBC). 
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Aircraft fleet availability therefore is the most important performance metric for airlines and 

other customers.  We note that availability is influenced by several factors that include 

subsystem and part reliability, spare parts inventory, repair capacity and repair lead time.  For 

example, if a critical part of an aircraft subsystem stops functioning, it must be replaced by a 

working unit drawn from the spares inventory (if it is available) as soon as possible to minimize 

disruption to flight schedules.  All broken units are ultimately returned to a support depot where 

they are either repaired or scrapped.  A key challenge for both customers and suppliers in this 

industry is to reduce the cost of failures while maintaining an acceptable level of fleet uptime 

(availability) through the management of resources (i.e., spare parts inventory and repair 

capacity) and through interventions that could affect the reliability of the product and/or the 

performance of the support processes. 

Recently, the airlines have adopted outsourcing strategies for MRO services in order to focus 

on their core activities and reduce costs.  This trend has led to expansion of the range of MRO 

services offered by suppliers of various types of aircraft subsystems (e.g., hydraulic power, 

engine, landing gear, avionic system).  Typically, it is the OEMs themselves that offer support 

services for their subsystem products because the highly customized and complex nature of their 

products makes it difficult for a third party to provide similar product care.  The provision of 

such services is also very profitable with margins that often exceed those associated with the sale 

of the product.  Examples of such major (OEM) suppliers in the MRO industry include Pratt & 

Whitney, General Electric Co., Rolls Royce, Honeywell Aerospace, Lockheed Martin and 

Boeing.  There are also many smaller MRO companies that provide a wide range of services that 

include scheduled maintenance checks and parts repair.  Such providers include the Triumph 

Group Inc., AAR Corp and Heico Corp.  MRO service providers usually offer different types of 

contracts under which their customers can receive support services, including time and material 

(T&M), fixed-price (FP) and performance-based contracts (PBC).  Different versions of PBC 

have become widely adopted, evolving and transforming the relationship between manufacturers 

and customers in the industry.  For example, recently Boeing aggressively started pursuing 

contracts for its 787 GoldCare program.  As noted in 2006 by a company vice-president, “before 

we were just selling parts, now we are selling airlines a power-by-the-hour service and we are 
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guaranteeing availability”.
4
  Although PBC is an important factor in the industry, there are no 

published estimates of its actual effect on performance metrics or on supplier profit.  

In this paper, we study the performance implications of the contractual relationship between 

Rolls-Royce, a major supplier of aircraft engines and services to support them, and its customers.  

The dataset we analyze was provided by Rolls-Royce.  Rolls-Royce delivers after-sales repair 

and maintenance services for its customers under two different types of contracts: T&M and 

PBC.  The main difference between the two types of contracts is the mechanism under which the 

customer pays for the support services.  Under a T&M contract the customer pays for the 

materials and resources that are consumed each time a maintenance event occurs.  Under PBC, 

the customer agrees to pay a fee that is proportional to the actual flying hours the customer 

generates from their fleet of aircraft.  (For example, a customer pays $x per flying hour to the 

supplier with a guaranteed minimum number of hours flown per quarter;
5
 note that flying hours 

can be converted into aircraft fleet availability.)  In other words, compensation to Rolls-Royce 

under PBC is directly tied to the performance outcome that the customer values. 

4.  Data 

The dataset consists of five years of data (July 2002 - July 2007, hereafter the observation 

period) of maintenance events (product removals) for different models of aircraft engines 

produced by Rolls-Royce. A removal of the aircraft engine may be necessary due to a part failure 

or for maintenance purposes, resulting in a shop visit to the service supplier.  Removals are 

undesirable events for aircraft owners since an aircraft on-the-ground generally results in high 

opportunity costs, with estimates being as high as hundreds of thousands of dollars per day for a 

non-scheduled failure for a fully loaded wide body commercial aircraft. 

For each product unit, the available variables in our data include: 

 exact time of each product removal in the observation period, 

 cumulative aircraft flying hours at the time of each shop visit, 

 product model, 

 the contract type (T&M or PBC) under which the product receives service, 
                         
4 Lou Mancini, in Airline Business, “Maintenance special report: service culture” (09/26/2006). 
5 Variations of this payment scheme are observed in other settings, especially in the defense industry.  There, many 

PBC contracts are based on a weighted average of different performance metrics (including “soft” metrics like 

customer satisfaction). However, flying hours is the only metric used in Rolls-Royce‟s PBC (“Power by the Hour®”). 
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 aircraft tail number associated with the product, 

 ID of the customer that owns the product, and 

 the list of all products belonging to each customer at the end of the observation period. 

The original data include 9 different product models; among them, there are 4 models where 

the installed base is covered exclusively by PBC contracts.  We therefore limited our sample to 

the remaining 5 product models for which we have data on the removals that occurred under both 

PBC and T&M contracts.  We also discarded some product units that have inconsistent data 

(e.g., reported flying hours at a shop visit in 2006 are less than the flying hours reported in a shop 

visit in 2005).  Our final sample consists of 1,076 removals associated with 763 different product 

units where 78.6% of the product units are covered by PBC.  This sample includes 5 different 

product models and 62 different customers.  The unit of analysis in our main analysis is a 

product unit but we will discuss alternative approaches in Section 6. 

While there are a number of performance metrics that would be of interest in our study (e.g. 

availability, reliability, and cost of ownership), our analysis focuses on product reliability since 

data on other metrics were unavailable in our dataset.  As mentioned in the Introduction, theory 

guides us to believe that different incentive structures under either T&M or PBC contracts should 

be reflected in variations of product reliability.  Among several possible measures of product 

reliability, mean time between removals (MTBR) is the measure that we employ in our analysis 

since it is a key reliability metric that practitioners in the aerospace and defense industry 

constantly monitor.  It represents the average time (flying hours) that a product is used without 

the need for a removal for repair and maintenance purposes.  MTBR is also a key input for the 

estimation of the demand rate for parts consumption and the arrival rate of repair events in 

stochastic models of repairable parts supply chains (see Sherbrooke 1992) which are used to 

compute fleet availability. 

It is important to note that, by definition, MTBR is only a partial representation of the 

physical reliability inherent in the product. To be precise, MTBR is a function of both physical 

reliability and managerial efforts to avoid future failures (e.g., via more frequent scheduled 

maintenance checks).  The natural question is then: is it obvious that higher product reliability 

corresponds to larger MTBR?  Indeed, it seems possible that the supplier who wishes to have a 

more reliable product may actually lower MTBR since he may perform more frequent 

inspections.  Although the answer to this question should ultimately be obtained empirically, it is 
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true that most practitioners view MTBR as a leading indicator of product reliability.  This is so 

because a removal is typically a very costly and time-consuming process which occurs only 

when an engine actually fails randomly in the field or when it is necessary to perform a removal 

to execute a scheduled maintenance check which is mandated at specified time periods.  

Removals, for whatever cause, lead to lack of product availability which leads to reduced value 

generation, and, thus, they are associated with a reduction in reliability.  Consistent with this 

widespread convention in practice, we use the terms product reliability and MTBR 

interchangeably. 

Although use of MTBR as a metric of product reliability is well justified, it still poses 

nontrivial issues for our analysis because removals are quite rare.  In our observation period of 5 

years, the majority of products in the dataset (67%) are removed only one time and another 27% 

are removed only two times
6
 which somewhat limits our ability to compute the true MTBR of a 

product.  Additionally, the data suffers from censoring as information on any removals that 

occurred before July 2002 or after July 2007 are excluded.  Therefore, we build a proxy for 

MTBR that adjusts for the unobserved data and use it as a dependent variable.  There are several 

candidates for such a proxy, but as we show later on, the conclusion of our analysis is quite 

insensitive to proxy choices. 

We illustrate the procedure used to calculate the proxy with an example (see Figure 1). 

Consider a product that was installed in an aircraft at time T0, before the beginning of the 

observation period TB (July 2002 in our case).  Assume that a first removal occurred at time T1 < 

TB, i.e., this removal was unobservable to us.  We observe the 2 removals at times T2 and T3, 

which occurred before the end of the observation period TE.  Let TSN(T) denote the time since 

new (flying hours) of a product at time T.
7
  In the example, the (true) MTBR is given by 

TSN(T3)/3, but we do not observe the first removal and we do not even know if this removal 

took place.  In other words, we only know the values of TB, T2, T3, TE, and the respective 

measures TSN(T2), TSN(T3), and TSN(TE), but not the values of T0 (the time at which the 

product was installed), T1 (the time the first removal occurred), the corresponding flying hours 

TSN(T1), and the initial age of the product at the beginning of the observation period TSN(TB).  

                         
6 It should be noted that the products that were never removed during the observation period are not included in the 

sample, since no removal record exists for them. Therefore, we are in fact considering a conditional MTBR in our 

analysis: i.e. MTBR of a product given that a removal has occurred at least once in the sample period. 
7 Note that TSN is measured in flying hours, i.e. hours of actual activity in the air, which is different from calendar 

time. In Figure 1, the former is shown in the y-axis and the latter is in the x-axis. 
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Figure 1: Example of a removal sequence for a product. 

 

We built a proxy for MTBR to account for the effect of this unobserved data. The proxy is 

defined in the following equation
8
: 

 

TSN(lastet observed removal)  TSN( )
MTBR

# observed removals

BT
   

 

In the example, our proxy for the MTBR is given by [TSN(T3)- TSN(TB)]/2.  However, as we 

pointed out, the data do not include the value TSN(TB).  We compute an estimate for TSN(TB), 

say TSN*(TB), by assuming that there was a constant rate of usage for the product throughout the 

observation period.  Specifically, we estimate this value as a linear projection of the line defined 

by the first observed removal and the age of the product measured at the end of the observation 

                         
8 In the robustness section we discuss alternative proxies that treat the data censoring issue differently, and show that 

the results of the paper are not affected by alternative definitions of the MTBR variable. 
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period.  In our example, we estimate the slope of the constant usage line using T2, TE, TSN(T2), 

and TSN(TE).  We then project the line back to TB in order to obtain an estimate of the initial age 

of the product defined as max{0, TSN*(TB)}.  We believe that this approximation provides a 

reasonable estimate for MTBR.  Note that our adjusted measure gives the correct value for 

MTBR if the product was not installed before July 2002.  The bias introduced by this metric will 

vary since it depends on the number of unobserved removals.  We attempt to reduce the potential 

bias by subtracting the initial product age. We have confirmed with managers of the company 

that the magnitude of the estimates based on this approach is in line with actual measures that the 

company tracks. 

Table 1 displays summary statistics for the variables MTBR, the initial age of the product 

(ini_age) and the number of removals (nremovals) in our final sample.  The MTBR and the 

initial age of the product are measured in flying hours. Based on sample averages, products 

covered by T&M contracts have a slightly greater MTBR than PBC products do.  Also note that 

there is more variability in MTBR for products covered by T&M in comparison to PBC 

products. 

 
Overall sample T&M only PBC only 

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

MTBR 3441.9 1768.8 3711.7 2336.8 3368.6 1574.2 

ini_age 3381.8 2788.8 4324.9 3314.2 3125.6 2572.1 

nremovals 1.41 0.65 1.25 0.50 1.45 0.68 

Table 1: Summary statistics 

 

An alternative approach would be to infer MTBR (as an output of the analysis) by estimating 

the underlying distribution of the time between removals using techniques drawn from duration 

modeling (see, for example, Cameron and Trivedi 2005), instead of computing the MTBR for 

each individual product and using it as a dependent variable in the linear regression analysis.  

Duration modeling is a nonlinear regression method that requires estimating the distribution of 

the time between removals.  In fact, the sample in our dataset represents multiple-spell durations, 

since many products have more than one removal.  The main advantage of this estimation 

technique is that it has a built-in mechanism to deal with some of the censoring issues, which are 

common in duration data such as ours.  Unfortunately, there is currently no widely accepted 

econometric procedure to account for endogeneity within the framework of duration modeling.  
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As we noted previously, uncovering endogenous contract choices by customers is a central 

feature of our problem, and thus our purpose is better served by using an alternative two stage 

estimation approach using MTBR as a dependent variable.  Unlike duration modeling, this 

approach allows us to explicitly and consistently deal with the endogeneity that is inherent in the 

data and has important implications for testing our key hypothesis concerning the impact of 

contract choice on reliability.  For this reason, the main part of analysis in the subsequent 

sections builds on this proxy-based approach.  For completeness, we present in Section 6.4 the 

results of an analysis based on one method that combines duration modeling with instrumental 

variables, which has been used by some researchers to account for endogeneity. 

5.  Econometric Model 

We first introduce the econometric framework we use in the analysis, and then elaborate on the 

model specification. 

5.1   Econometric Framework 

Our goal is to build a model that properly captures the effect of contract type on product 

reliability, i.e., MTBR.  A major challenge associated with isolating the true marginal effect of 

different contract types on product reliability is the inherent endogeneity associated with contract 

type choice by customers.  Indeed, customers do not sign on for either a T&M or PBC contract 

randomly, but rather respond to several factors that influence this decision, i.e., self-selection is 

expected in our setting.  A number of empirical studies have considered the issue of contract 

choice decisions by firms in different contexts (see, for example, Slade (1996) for an application 

in the oil industry and Crocker and Reynolds (1993) for an application to the Air Force engine 

procurement process).  In these and other studies, endogeneity of contract choice has been 

regarded as a key econometric issue in testing contract design hypotheses (Masten and Saussier 

2002).  As our results will indicate, there is evidence that endogeneity of contract choice by a 

customer is present in our data as well.  As a consequence, usual ordinary least squares (OLS) 

estimation would lead to biased estimates of the marginal effect of contract choice on product 

reliability.  General econometric discussions on the importance of accounting for self-selection 

and related methods can be found elsewhere (e.g., Heckman 1979, Maddala 1983, Greene 2008). 
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To account for endogeneity present in contract selection, we utilize a two-stage treatment 

effects model (see Maddala 1983, p. 120).  This approach allows us to estimate the effect of a 

binary treatment (PBC) on a numeric outcome (MTBR), given that the treatment assignment is 

not random but rather is determined by an endogenous decision process, which the customer 

carries out.  The approach utilizes a two-stage structure that involves a first stage to explain 

contract choice (Eq. 2) and a second stage to explain product reliability (Eq. 1). 

 

𝒚𝒊 = 𝒙𝒊𝜷 + 𝜹𝒛𝒊 + 𝜺𝒊  
(Eq. 1) 

𝒛𝒊 = 𝟙[𝒘𝒊𝜸 + 𝝊𝒊 > 0]  (Eq. 2) 

 

The observed MTBR of product i – denoted by yi – is explained by the exogenous covariates 

xi and the binary endogenous variable zi (that in our case is equal to 1 for products covered by 

PBC contracts and 0 otherwise).  As in standard discrete choice models with latent variable 

representation, e.g., probit, the binary variable for contract choice (zi) is modeled as an indicator 

function, dependent on a set of exogenous covariates wi, which drive the choice process.  The 

error terms (휀𝑖 , 𝜐𝑖) of the outcome and choice equations, respectively, account for unobservable 

characteristics which are allowed to be correlated, and are modeled as a bivariate normal random 

variable with distribution 𝑁2(0,0,𝜍2, 1,𝜌); where the variance of 𝜐𝑖  is normalized to one for 

identification purposes.  If the correlation between both error terms is equal to zero then the 

outcome and choice equations can be estimated independently (Eq. 1 could be estimated by 

OLS), i.e., endogeneity is not relevant for the problem.  For additional information on this 

model, including a discussion of identification, the reader is referred to Maddala (1983, p.117-

125).  A good illustration of the biases that can be generated by not accounting for self-selection 

in an application to firm entry and performance can be found in Shaver (1998). 

5.2   Model Specification 

We postulate that contract type can affect a product‟s MTBR.  As we have discussed, under PBC 

the supplier of the service gets paid in proportion to the flying hours generated by the customer, 

creating an incentive to maintain or improve product reliability.  Theoretical support for this 

hypothesis has been discussed extensively in a previous analytical research (see Kim et al. 2008 

for details).  What then are some of the actions that the supplier and customer can take to 

improve product reliability under PBC?  First, on the supplier side, given that the supplier does 
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not receive any benefit for having product on-the-ground under PBC, he can give priority to 

products covered by PBC through more rapid support service, which in turn increases product 

availability for the PBC customer.  The supplier may also provide a higher quality of service 

(fewer errors, more careful testing, etc.) to a PBC customer.  While this behavior primarily 

impacts service time, it also may indirectly affect product reliability as measured by MTBR 

which captures the frequency of support events.  More directly, the supplier can invest in pre-

emptive maintenance in order to avoid future product failures.  This is particularly important if 

we take into account the fact that there is an important difference between minor product 

revisions / scheduled maintenance checks, for which repair service can take several days, and 

major product failures and maintenance checks, for which the average shop visit takes about 5 

weeks.  Pre-emptive maintenance actions can reduce the frequency and duration of future checks 

as well as lead to fewer failures.  Perhaps the most important impact that the supplier can have 

on reliability, however, is through product re-design and engineering change.  Investment in such 

activity results in a more reliable product and improved versions of parts used for product 

support which supersede existing, less reliable versions. 

On the customer side, the intensity of product utilization and the procedures customers use to 

maintain the product could also impact product reliability.  For example, under a PBC 

arrangement the customer may request removals more frequently and engage in more pre-

emptive maintenance.  They are encouraged to do so under PBC since, beyond opportunity costs, 

there are no direct expenses to the customer associated with a maintenance shop visit.  In 

contrast, T&M customers need to pay for all support services consumed regardless of the impact 

of such services on performance improvement.  This conjecture is in fact in line with the 

statistics displayed in Table 1, that show that on average, the number of removals during the 

observation period is greater for PBC than for T&M products.  The arguments above motivate 

the main hypothesis we test in this research, i.e. product reliability increases under PBC. 

Although we have provided arguments that support this hypothesis, note that while an increased 

number of removals will reduce the observed values of MTBR, pre-emptive maintenance may 

reduce the occurrence of random failures and thus could actually increase the time between 

removals which would increase observed values for MTBR.  The net effect of customer response 

to a PBC is thus, a priori, not obvious and is ultimately an empirical question. 
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Another factor that can influence the observed MTBR is the initial condition of the product.  

In fact, it is expected that older products are more likely to fail than new ones, particularly in the 

case of very old products.  However, it can also be argued that at the very beginning of a 

product‟s life cycle, the product is likely to need more adjustments than mature products do, 

resulting in more frequent shop visits, which can reduce the value of the observed MTBR.  To 

check these conjectures, we plot the distribution of MTBR for different ranges of initial product 

age in Figure 2.  The graph suggests that MTBR is lower for both new and old products, and is 

higher for medium age products, which is in line with the reasoning proposed above.  In fact, 

there appears to be a concave relationship between MTBR and initial age.  In order to account 

for such effects, we include both linear and quadratic terms for the initial age of the product in 

our model specification.  The linear term should take care of the initial increasing trend in 

product reliability, while the quadratic term should reflect the decreased MTBR for old products.  

Since our observation period is five years, it is important to note that we do not necessarily 

observe five years of behavior for all products, as some of them (15%) were new at the 

beginning of the observation period.  This measurement issue also makes it important to control 

for initial age of the product in order to isolate the effect of PBC on MTBR.  

 

 

Figure 2: MTBR vs. Initial age (flying hours). Variable initial age is categorized as follows: 

‟1‟ 0<initial age<=1000, „2‟   1000<initial age<=2000, ...,  „9‟  8000<initial age<=9000, 

„10‟  9000<initial age 
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Finally, product model identity can also be correlated with the MTBR, especially since 

different products in our sample were not launched simultaneously and have different designs.  

We include product model dummies as control variables in the outcome equation of our model 

specification, to account for these factors.  This completes our specification of the outcome 

equation. 

In order to specify the choice equation, we need to include covariates that influence the type 

of contract selected by a customer.  According to supplier managers who we interviewed, a 

factor that greatly influences contract selection is customer size, i.e., customers with a larger fleet 

are more likely to choose a PBC contract for after-sales support.  This conjecture is in line with 

the data: the median fleet size of T&M and PBC customers are 2 and 9, respectively.  We 

measure fleet size as the number of products that a customer has registered with the service 

provider.  A larger fleet size is expected to be associated with greater total fleet-flying-hours (at 

the customer level), e.g., a customer with a fleet of 50 products is likely to have, as a customer, 

more flying hours per year than a customer with 10 products.  This may cause larger firms to 

expect to use the MRO service more frequently, which may influence the likelihood to sign on 

for PBC.
9
  Alternatively, a smaller fleet may lead to more intense use per aircraft, which would 

also lead to more frequent maintenance events, providing an incentive for PBC.  Finally, larger 

customers may have internal capabilities to deal with maintenance and therefore may not desire 

comprehensive coverage through PBC.  Thus, although we do not have a clear theoretical 

prediction with respect to the impact of customer size on the contract choice, we include fleet 

size as a control variable.  Our main model uses the logarithm of fleet size of the customer in the 

choice equation in order to smooth out the distribution of this variable.  Measures of size have 

been widely used to explain contract choice in different contexts; see Lafontaine and Slade 

(2001), and the references therein, for examples. 

Other factors that can influence contract choice for a given product are the value of the 

aircraft equipment, the customer‟s risk profile, and contract terms. These variables, however, 

were not available in our sample.  We note that the product models owned by a customer also 

may be an indicator for some of these factors. For example, product models are expected to 

partially reflect customer fleet valuation.  It can also be the case that customers‟ propensity to 

                         
9 Of course, another major variable that is likely to affect contract choice is pricing.  Unfortunately, we do not 

possess pricing data. 
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repair certain models of products under a particular contract type with the supplier varies 

depending on the product model, due to, e.g., the customer‟s ability to perform certain 

maintenance or repair tasks in-house for particular product models.  In fact, our data show that 

some product models are more likely to be covered by PBC contracts than others: the proportion 

of units covered by PBC contracts is equal to 59.6%, 81.2%, 50.9%, 81.1% and 95.7%, for 

product models 1, 2, 3, 4 and 5, respectively. This suggests existence of correlation between 

product model and contract type so we include the product model as a control variable in the 

choice equation. 

Naturally, other variables could have explanatory power for contract choice.  For example, a 

factor that has been recognized to play a role in theoretical models is the level of risk aversion of 

the customer.  Unfortunately, and as has been recognized in previous research, from an empirical 

point of view, it is virtually impossible to measure this factor (Lafontaine and Slade 2001).  

Thus, our specification of the choice equation is somewhat constrained by data availability.
10

  It 

is, however, plausible, that customer fleet size variable is a partial proxy for risk aversion. 

Summarizing, our model specification postulates that the MTBR of a product can be 

explained by the contract type under which the product is serviced (PBC vs. T&M), the product 

age at the beginning of the observation period (linear and quadratic terms), and the product 

model.  Note that these variables are representative of some of the key factors that could drive 

the decision to remove a product for maintenance, i.e., contract terms, nature of the product, and 

the usage environment.  The contract type under which a product is serviced is explained by the 

customer fleet size and the product model. 

Finally, note that our modeling approach allows for correlation between the unobservable 

effects of the outcome and choice equations.  This feature is especially useful since we do not 

observe variables related to the risk profile of the customer, which can influence both product 

reliability and contract choice.  For example, the choice of PBC may be more likely for more 

risky customers, if they expect to use their fleet and MRO services more frequently.  In addition, 

products owned by more risky customers are expected to show a lower MTBR in comparison to 

those owned by low-risk customers, due to the higher risk of failures.  Similar arguments have 

been discussed in the case of extended warranties for new car buyers (Padmanabhan 1995), 

where it is hypothesized that heavy users have stronger incentives than light users to sign on for 

                         
10 We discuss alternative specifications in the robustness section. 
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extended warranties, since their products are more likely to experience failures.  In our case, we 

expect that the correlation between both error terms will be different from zero due to self-

selection of the customers, and in particular, for the reasons outlined above, we expect the 

correlation between both the unobserved effects to be negative. 

6.  Analysis and Results 

6.1   OLS Analysis 

To illustrate the relevance of the endogeneity problem in the isolation of the effect of contract 

choice on MTBR, we begin by estimating the model defined by Eq. 1 using a regular OLS 

regression.  Of course, this does not take into account the self-selection problem by customers 

over contract types, as defined by Eq. 2. Table 2 presents the results obtained with OLS with 

regular standard errors (column 1) and clustered standard errors at the customer level (column 2) 

to account for possible correlations across engines owned by the same customer. 

  Cluster SE 

VARIABLE SE  (customer) 

prodmodel2 -435.4* -435.4 

 (248.1) (376.7) 

prodmodel3 -660.6* -660.6* 

 (310.1) (345.7) 

prodmodel4 -2620*** -2620*** 

 (275.1) (440.1) 

prodmodel5 -1866*** -1866*** 

 (345.7) (503.9) 

ini_age 0.122** 0.122* 

 (0.047) (0.072) 

ini_age_sq -0.00002*** -0.00002** 

 (0.000004) (0.000006) 

PBC -255.3* -255.3 

 (138.6) (338.5) 

Constant 4533*** 4533*** 

 -287.7 (391.7) 

Observations 763 763 

R-squared 0.277 0.277 

Adj. R-squared 0.27 0.27 

 

Table 2: OLS estimation. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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OLS results suggest that there is a negative effect of PBC on product reliability, counter to 

our hypothesis.  This effect is partially significant when regular standard errors are used, and 

largely insignificant under clustered standard errors.  We have argued that contract type is 

endogenous, as it is expected to be correlated with the error term of the regression in Eq. 1 

because of unobserved customer characteristics that are embedded in the error term (e.g. 

customer risk profile) that are also correlated with the contract choice.  If that is the case, OLS 

regression generates biased estimates.  In particular, we have argued that the unobserved term in 

the choice equation is expected to be negatively correlated with the unobserved term in the 

outcome equation, which implies that the OLS coefficient for PBC would be biased downwards. 

6.2   Two-stage Approach: Estimation and Results 

We now turn to the estimation and results obtained for the two-stage model defined by Eqs.1 and 

2. The likelihood for product i is given by: 

 

𝐿𝑖(𝛽, 𝛿, 𝛾,𝜍,𝜌) = [𝑓 𝑦𝑖 𝑧𝑖 = 1 𝑃(𝑧𝑖 = 1)]𝑧𝑖[𝑓 𝑦𝑖 𝑧𝑖 = 0 𝑃(𝑧𝑖 = 0)]1−𝑧𝑖  

Given the bivariate normality assumption, 𝝊𝒊  can be expressed as 𝝊𝒊 =
𝝆

𝝈
𝜺𝒊 + 𝜼𝒊 , where 𝜼𝒊 ∼

𝚴(𝟎,𝟏 − 𝝆𝟐), independent of 𝜺𝒊.  The log-likelihood of the model can then be written as: 

 

 𝐿𝐿 𝛽, 𝛿, 𝛾,𝜍,𝜌 

=   𝑧𝑖  −
1

2

 𝑦𝑖 − 𝑥𝑖𝛽 − 𝛿 2

𝜍2
− ln  2𝜋𝜍 + ln Φ 

𝑤𝑖𝛾 +
𝜌
𝜍
 𝑦𝑖 − 𝑥𝑖𝛽 − 𝛿 

 𝟏 − 𝝆𝟐
  

𝑁

𝑖=1

+ (1 − 𝑧𝑖)  −
1

2

 𝑦𝑖 − 𝑥𝑖𝛽 
2

𝜍2
− ln  2𝜋𝜍 + lnΦ −

𝑤𝑖𝛾 +
𝜌
𝜍
 𝑦𝑖 − 𝑥𝑖𝛽 

 𝟏 − 𝝆𝟐
   , 

where  is the cdf of the standard normal distribution.  

We estimate the model in STATA by fully maximizing likelihood.  Table 3 displays the 

results obtained from the two-stage model, including estimates for both the outcome and choice 

equations, considering two types of standard errors.  Columns (1) and (2) display results with 

regular standard errors for the maximum likelihood estimation, while columns (3) and (4) display 

results with clustered standard errors at the customer level. Clustered standard errors at the 



22 
 

customer level allow for correlation between products of the same customer, while maintaining 

the independence assumption for products of different customers. This is particularly important 

in our case, as we have argued that the error terms of the outcome and choice equations involve 

customer unobservables.  In the case of cluster standard errors at the customer level, the 

variance-covariance matrix of the estimates involves the computation of the sum of the 

interactions between the residuals and the covariates for each of the products of a given 

customer, which is repeated for each customer (see e.g. Greene 2008 pp.188-190, Wooldridge 

2002 pp.328-331, for further details). 

 

  SE Cluster SE (customer) 

VARIABLE Out. Eq Ch. Eq. Out. Eq Ch. Eq. 

prodmodel2 -667.4*** 0.305 -667.4 0.305 

 (258.5) (0.212) (597.3) (0.659) 

prodmodel3 -568.7* -0.464* -568.7 -0.464 

 (319.9) (0.264) (492.9) (0.564) 

prodmodel4 -2853*** 0.735*** -2853*** 0.735 

 (285.2) (0.239) (566.3) (0.647) 

prodmodel5 -2266*** 1.159*** -2266*** 1.159 

 (362.7) (0.391) (678.6) (0.805) 

ini_age 0.112**  0.112  

 (0.046)  (0.071)  

ini_age_sq -0.00002***  -0.00002***  

 (0.000004)  (0.000007)  

PBC 790.3***  790.3*  

 (248.4)  (460.7)  

lfleetsize  0.468***  0.468*** 

  (0.0436)  (0.146) 

Constant 3936*** -1.403*** 3936*** -1.403* 

 (314.8) (0.248) (615.8) (0.762) 

# Obs. 763 763 763 763 

Table 3: The two-stage model. Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

 

 Our estimate for the effect of PBC on MTBR is positive and indicates that, on average 

and all else being equal, PBC increases the MTBR of a product by 790.3 flying hours in our five 

year observation period.  This effect is significant at all relevant significance levels when regular 

standard errors are used, and remains significant when cluster standard errors at the customer 
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level are employed, though only at the 90% confidence level in this case (p-value=0.086)
11

.  For 

the two different standard error measures outlined above, a 90% confidence interval for the 

effect of PBC on MTBR is given by (382, 1199), (32, 1548), respectively.  Results of a 

likelihood ratio test (see e.g. Wooldridge 2002 p. 397) for the null hypothesis of no correlation 

between the error terms of Equations 1 and 2 provide strong statistical evidence to reject the null 

hypothesis of independent equations: p-value<0.001 for SE and p-value=0.0026 for cluster SE 

(customer level).  This is in line with our hypothesis of the endogeneity for the variable PBC, 

confirming that the model cannot be estimated by OLS due to the endogeneity in the contract 

selection decision.  In fact, the estimate of the correlation between both error terms is -0.455, 

also in line with our expectation that they are negatively correlated.  Overall, these results 

provide important support for our main hypothesis that employing PBC increases product 

reliability.  It is important to note that this result is consistent with the results of previous 

economic modeling of performance-based contracts that predict that suppliers will invest more in 

product reliability improvement when they are under a performance contract as compared to 

their behavior under a T&M type of contract (Kim et al. 2008). 

Results in Table 3 also provide support for the hypothesis of a non-linear relationship 

between MTBR and the initial age of the product. The linear term is positive while the quadratic 

term is negative, which suggest a concave functional form, also in line with our data and 

hypothesis, indicating that medium-age products have greater MTBR than very new and very old 

products.  Both coefficients remain significant under the two standard error measures, with the 

exception of the linear term for cluster standard errors at the customer level. The mean of the 

residuals for the predicted MTBRs is -0.0000545, which suggests no general bias in the 

predictions. 

With respect to the choice equation, the results indicate that both fleet size and product model 

dummies have explanatory power, although the latter lose significance under clustered standard 

errors.  In particular, our results show that customers with greater fleet sizes are more likely to 

choose PBC than T&M contracts, in line with our hypothesis, data, and managerial expectations.  

                         
11 We have alternatively considered clustered standard errors at the aircraft level, as it is possible to argue that 

products of the same aircraft type may exhibit some correlation, e.g., given that an aircraft is on-the-ground due to a 

product failure, a customer may be more likely to include other products of the same aircraft type in a shop visit. 

Results under clustered standard errors at the aircraft level are more significant than clustered standard errors at the 

customer level, i.e. we are reporting the most conservative case. In particular, under clustered standard errors at the 

aircraft level, the p-value for the PBC coefficient is 0.003. 
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This result holds no matter what standard errors are used.  The choice model correctly predicts 

81.1% of the observations in the sample, in line with accuracy levels reported in related 

applications in the literature (e.g. Terwiesch et al. 2005). 

6.3   Robustness Checks 

We have shown that our main result – the positive effect of PBC on MTBR – is robust to 

different standard error measures, given our specification.  In this section we perform further 

robustness checks of our results to alternative model specifications.  For simplicity, we focus the 

analysis on our main hypothesis that PBC increases product MTBR.  

First, we consider several specifications that vary between original scale and logarithmic 

forms for our numeric variables.  Our main model uses the logarithm of fleet size of the customer 

in the choice equation in order to smooth out the distribution of this variable.  If we use the 

original scale variable (fleet size) instead of the logarithm form – so that all the numeric 

explanatory variables are in their original form – our estimate for PBC is 699 (p-value=0.012; 

0.362, for the two standard error measures, respectively).  Similarly, if we use logarithms instead 

of the original scale values for the linear and quadratic terms of initial age in the outcome 

equation – so that all the numeric explanatory variables are in logarithm form – our estimate for 

PBC is 887 (p-value=0.000; 0.049).  

Second, we consider the inclusion of other variables in the choice equation.  For example, if 

we view the initial age of the product as a proxy for the risk of specific customer equipment, it 

can be argued that the initial age of the product can influence the decision of a customer to 

choose PBC instead of T&M contracts.  When a linear term for the initial age of the product is 

included in the choice equation, the estimate for PBC is 790 (p-value=0.002; 0.092); when both a 

linear and a quadratic term are included, the estimate for PBC is 787 (p-value=0.002; 0.088). 

Similarly, a factor that can influence the decision of the type of contract is the expected usage 

of the service.  It can be hypothesized that customers that expect to use their fleet more 

frequently are more likely to choose PBC contracts.  Such customers may give more weight to 

having access to future maintenance services without having to make a payment for the resources 

consumed each time the service is needed.  We consider different measures that attempt to 

capture aggregate customer usage: average usage per year and several ranking indicators across 

customers based on average usage per year.  Our estimates for PBC are in the range 391 to 842, 
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with p-values ranging from 0.001 to 0.1, depending on the proxy used to capture this effect.  

Ideally, we would calculate a proxy for the expected frequency of usage based on, for example, 

pre-sample data, to derive an exogenous measure not directly related with our measure of MTBR 

thus avoiding circularity problems.  In the absence of this exogenous source though, we built the 

proxies for this variable (as indicated above) based on our in-sample data.  

Our estimates for the effect of PBC on MTBR of a product are remarkably robust to many 

model variations.  The main finding that PBC has a positive and significant marginal effect on 

product MTBR remains robust in virtually all cases, with coefficients ranging from 391 to 887 

flying hours. Equally importantly, our tests reject the null hypothesis of uncorrelated error terms 

(outcome and choice equations) in all cases, providing strong evidence to support the self-

selection hypothesis, which justifies our econometric modeling approach. 

We also test the robustness of the results with respect to the definition of the variable MTBR. 

We have discussed the assumptions and approximations used to calculate the MTBR variable in 

section 3, in particular, we noted the censoring issue in our data. We explore three alternative 

proxies that involve a different treatment of the censored data, which we define using the 

example in Figure 1 (we use different names for clarity): 
 

 MTBE = average{TSN(T2) – TSN(TB), TSN(T3) – TSN(T2), TSN(TE) – TSN(T3)}. 

 MAXMTBRMTBE = max{MTBR, MTBE} 

 InvFRate = [TSN(TE) – TSN(TB)]/[number of observed removals]  
 

Thus, the MTBE (mean time between events) includes the most recent portion of the time in 

which an engine was not removed, i.e., it considers that as an „event‟. The MAXMTBRMTBE 

also includes that information by contrasting the MTBE with the MTBR.  Finally, the InvFRate 

represents the inverse of the failure rate, the latter being calculated as the number of observed 

removals over the flying hours of an engine during the observation period.  Our main findings 

remain robust to these three variations.  When OLS is used for estimation, PBC has a negative 

effect on reliability.  When our two-stage approach is used to estimate the model, we find a 

positive and significant effect of PBC on product reliability.
 12

  In all cases, likelihood ratio tests 

confirm the endogeneity of the contract choice variable. The coefficient of PBC remains 

essentially in the same range: 470.9 (MTBE), 744.9 (MAXMTBRMTBE), 751.2 (InvFRate).  

                         
12Significance is lost when clustered standard errors at the customer level are used though. 
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These experiments confirm the main findings obtained with our base model, i.e. when the 

endogeneity inherent to contract choice is accounted for, PBC have a positive effect on product 

reliability. 

6.4   Duration Model Analysis 

Thus far, our analysis has relied on constructing proxies for the MTBR of each product and 

performing a two-stage estimation.  As mentioned earlier, the duration model offers an 

alternative way to analyze our data, despite its aforementioned deficiency related to 

incorporating endogeneity into the model.  As research on how to deal with this issue is ongoing, 

currently there is no agreed upon method or statistical package that we can adopt for our 

purposes (see Bijwaard (2007) for a recent contribution to this research stream).  However, the 

following informal approach has been used by some researchers: (1) run the probit model (Eq. 2) 

to predict contract choices, (2) calculate the selectivity term from this analysis, and (3) perform 

duration analysis using the computed residuals as one of the regressors.  A similar approach in 

the context of sample selection for duration models was used by Rao et al. (2001), based on the 

generalization of the Heckman selection model proposed in Lee (1983).  Although consistency of 

this approach is not, to our knowledge, yet fully established, we use this procedure in this 

subsection as a final robustness check. 

In order to proceed with this approach, we must analyze the data at the removal level (instead 

of at the product level), and we must examine the influence of contract type on the respective 

removal rates.  As is standard in duration analysis, we conduct experiments using both semi-

parametric (Cox) and parametric (exponential, log-logistic, and log-normal) transition rate 

models.  Beyond the change in the dependent variable, the explanatory variables remain the 

same; the only modification in explanatory variables we incorporated is to replace the initial age 

of the product with the age of the product at the time of the previous removal (if any) in Eq. 1.
13

  

We estimate the models in STATA, using clustered standard errors at the customer level.  When 

the models are estimated disregarding the endogeneity of PBC, we find that PBC has a positive 

effect on the removal rate, i.e., analogously to the OLS analysis of the MTBR, we find that PBC 

decreases reliability.  This effect is non-significant no matter which hazard rate model is used.  

                         
13 For example, for the 3rd removal of a product unit, instead of the initial age (age of the product at the beginning of 

the sample period) we include the age of the product unit at the moment of the 2nd removal (for both the linear and 

quadratic terms). 
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To account for endogeneity in duration models, we employ the two-stage procedure 

described above: first, we run a probit regression to estimate the contract choice equation (Eq. 2). 

From the results of this first stage, a selectivity term can be derived as follows (see e.g. Maddala 

1983 p.121): 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑒𝑟𝑚_𝑖 =

 
 

 
𝜙(𝑤𝑖𝛾)

Φ(𝑤𝑖𝛾)
 , 𝑖𝑓 𝑧𝑖 = 1

−𝜙(𝑤𝑖𝛾)

1−Φ(𝑤𝑖𝛾)
 , 𝑖𝑓 𝑧𝑖 = 0

  

Here,  and  are the density and the cumulative distribution function of the standard normal 

variable.  This selectivity term is then used as an explanatory variable in the hazard rate model, 

as a way to capture the true effect of PBC on the removal rate taking into account the self-

selection involved in the PBC variable.  Using this procedure, we find a negative and significant 

effect of PBC on the removal rate, in all of the four different semi-parametric and parametric 

transition rate models under consideration.  Thus, the conclusion that PBC increases reliability 

remains the same under this alternative modeling approach, which also reaffirms the relevance of 

accounting for endogeneity to estimate the effect of PBC.  We suppress detailed output from the 

duration model analysis for the sake of brevity but we conclude that this analysis is consistent 

with the two-stage approach that we utilize in the rest of the paper. 

6.5   Limitations 

Although we have shown that there is strong evidence to support our conclusions, our analysis is 

not free of limitations.  There are several issues regarding the nature of the data.  First, we 

analyze product removals from an aircraft, and calculate a proxy for product reliability for the 

products we observed, which are those products that were removed from an aircraft at least once 

during the observation period.  Thus, our analysis is driven by the nature of our dependent 

variable, the mean time between removals.  Our analysis is silent, however, with respect to those 

products that were never removed.  Second, in our sample we observe a small proportion of 

products covered by T&M contracts (21.4%), which may suggest the risk of sample selection 

bias.  Recall that we use data from only one supplier in the market, so it is possible that 

customers that prefer a T&M contract scheme choose a different supplier for their repair and 

maintenance service.  Naturally, we do not observe such customers, and we do not have any 
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basis to construct a model to explain a potential sample selection of suppliers by customers.
14

  

Although our study is limited in this regard, we nonetheless believe that the insights from our 

analysis are relevant to wide range of firms, especially those in the aerospace and defense 

industry which are undergoing a major shift toward the PBC approach.  Moreover, to make sure 

that the uneven proportion of PBC and T&M products in our sample is not playing a role in our 

results, we conduct further experiments estimating our model with balanced samples (50% PBC, 

50% T&M) by randomly selecting units from the pool of PBC observations; our results and main 

findings remain qualitatively the same under this variation. Third, while our dataset is rich in 

terms for characterizing the removal incidents for a given product, we have only limited data to 

characterize a customer.  In particular, unobservables related to customer risk profile and 

behavior might have an impact on our results.  It is also true that our dataset is not rich in 

describing the specific terms of the contracts in each case; we only distinguish between T&M 

contracts and PBC.  This does not allow us to explore the influence of price and other contract 

conditions on the customer‟s contract choice although the supplier suggested to us that there are 

no major differences in contract parameters: most of them are signed at common list prices.  

Finally, we do not observe data before/after adoption of PBC, which would have made possible 

to study the dynamics, e.g., by using difference-in-differences estimators. 

With respect to our modeling approach, the main assumption we impose is the exogeneity of 

the independent variables (other than PBC) in our model specification.  In essence, we assume 

that the unobservables related to customer risk profile and behavior are uncorrelated with the 

initial age of the product, the product model and the fleet size.  This assumption rules out the 

possibility that customer behavior might vary depending on the initial age of the product, or that 

customer risk exposure will change for different product models.  Thus, while our approach 

explicitly deals with the endogeneity of contract choice, our results need to be understood in the 

context of the exogeneity assumption for the rest of the covariates. 

7.  Conclusion 

                         
14 The supplier has informed us that the majority of their products are covered by PBC contracts while maintenance 

for the majority of T&M removals is conducted by independent contractors.  Such contractors generally have a good 

reputation for both cost and turnaround time, but their impact on reliability is unknown.  These observations are 

consistent with our sample. 
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We have examined the impact of performance-based contracts on product reliability (as 

measured by the time between removals), in an application to the aerospace and defense 

maintenance and repair services industry.  Using a proprietary dataset from Rolls-Royce, a major 

supplier of engines, we propose a two-stage approach that allows us to explicitly account for the 

endogeneity inherent in contract choice by a customer.  The first stage of the econometric model 

describes the customer decision with respect to selecting a contract and the second stage analyzes 

the impact of contract type on product reliability.  Our analysis shows that there is a positive and 

statistically significant effect of PBC on the MTBR of a product, i.e., performance-based 

contracts induce improvements in product reliability in our sample.  Our estimates indicate 

reliability improvements under PBC in the 10-25% range, in comparison to traditional T&M 

contracts. We have also shown that there is strong statistical evidence to support the hypothesis 

of correlation between the error terms of the outcome and choice equations, confirming that the 

coefficient of PBC cannot be identified without taking into account the inherent endogeneity of 

contract type selection by customers.  These findings are supported by several robustness checks 

under a number of alternative model specifications, which also allowed us to measure the impact 

of other covariates on product reliability and contract choice.  

Our analysis focuses on the marginal effect of performance-based contracts on product 

reliability.  Our results provide a first step towards understanding the overall impact of 

performance-based contracts, and our approach was largely driven by data availability.  The 

availability of richer data about customers, financial and managerial information, and the specific 

contract terms between them and the supplier, would enable a more complete analysis to cover a 

number of open questions.  Such analysis, which is underway by the authors, could lead to a 

deeper understanding of the benefits of PBC contracts, e.g., what drives reliability improvement?  

Is this reliability improvement profitable to the supplier?  Does the cost of pre-emptive 

maintenance exceed the benefits due to reliability improvement? Is the price charged to the 

customer appropriate?  How do specific contract terms moderate the impact on reliability?  

These questions remain open for future research. 

This paper is one of the few studies that empirically estimate the impact of a performance vs. 

non-performance contract type and other causal factors on supply chain outcomes.  Our findings 

are relevant not only to the aircraft repair and maintenance service industry but also to all 

industries that provide after-sales support for mission critical products.  The results are especially 
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relevant for practitioners since this is the first attempt to test the reliability improvement 

hypothesis for performance contracting based on transactional data.  While there are numerous 

papers that model various supply chain contracts, there is little empirical evidence of the impact 

of such contracts on supply chain outcomes.  Our paper thus makes a step in closing the gap 

between theoretic modeling and empirical evidence.   
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