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Obtaining Fast Service in a Queueing System Via Performance-Based
Allocation of Demand

Abstract
Any buyer that depends on suppliers for the delivery of a service or the production of a make-to-order
component should pay close attention to the suppliers’ service or delivery lead times. This paper studies a
queueing model in which two strategic servers choose their capacities/processing rates and faster service is
costly. The buyer allocates demand to the servers based on their performance; the faster a server works, the
more demand the server is allocated. The buyer’s objective is to minimize the average lead time received from
the servers. There are two important attributes to consider in the design of an allocation policy: the degree to
which the allocation policy effectively utilizes the servers’ capacities and the strength of the incentives the
allocation policy provides for the servers to work quickly. Previous research suggests that there exists a trade-
off between efficiency and incentives, i.e., in the choice between two allocation policies a buyer may prefer the
less efficient one because it provides stronger incentives. We find considerable variation in the performance of
allocation policies: Some intuitively reasonable policies generate essentially no competition among servers to
work quickly, whereas others generate too much competition, thereby causing some servers to refuse to work
with the buyer. Nevertheless, the trade-off between efficiency and incentives need not exist: It is possible to
design an allocation policy that is efficient and also induces the servers to work quickly. We conclude that
performance-based allocation can be an effective procurement strategy for a buyer as long as the buyer
explicitly accounts for the servers’ strategic behavior.
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Abstract

Any buyer that depends on suppliers for the delivery of a service or the
production of a make-to-order component should pay close attention to the
suppliers’ service or delivery lead times. This paper studies a queuing model
in which two strategic servers choose their capacities/processing rates and
faster service is costly. The buyer allocates demand to the servers based on
their performance; the faster a server works, the more demand the server is
allocated. The buyer’s objective is to minimize the average lead time re-
ceived from the servers. There are two important attributes to consider in
the design of an allocation policy: the degree to which the allocation policy
effectively utilizes the servers’ capacities and the strength of the incentives
the allocation policy provides for the servers to work quickly. Previous re-
search suggests that there exists a tradeoff between efficiency and incentives,
i.e., in the choice between two allocation policies a buyer may prefer the less
efficient one because it provides stronger incentives. We find considerable
variation in the performance of allocation policies: some intuitively rea-
sonable policies generate essentially no competition among servers to work
quickly whereas others generate too much competition, thereby causing some
servers to refuse to work with the buyer. Nevertheless, the trade-off between
efficiency and incentives need not exist: it is possible to design an allocation
policy that is efficient and also induces the servers to work quickly. We
conclude that performance-based allocation can be an effective procurement
strategy for a buyer as long as the buyer explicitly accounts for the servers’
strategic behavior.

Keywords: game theory, joining behavior, Nash equilibrium, procurement,
sourcing, supplier management.



Fast service is clearly important. Less obvious is how to go about obtaining fast service

from suppliers or service providers. One technique is to make servers compete by allocating

business to them based on their performance, i.e., the faster server is rewarded with a

greater share of demand. For example, Sun Microsystems maintains multiple memory chip

suppliers and allocates demand with a scorecard system: a score is periodically assigned to

each supplier that depends on a number of factors, delivery lead time among them, and a

supplier’s allocation of Sun’s business is increasing as they improve their score relative to

the other suppliers (Farlow, Schmidt, and Tsay 1996). GE Lighting and Air Products and

Chemicals also allocate demand towards better performing suppliers (Pyke and Johnson,

2003).

This paper studies, in the context of a stylized queueing model, the issue of how performance-

based demand allocation can induce competition among suppliers to obtain faster service or

delivery lead times. A precursor to this line of research is the extensive body of work on

queue-joining behavior, pioneered by Naor (1969). That literature focuses on the behav-

ior of strategic customers/jobs: e.g., whether or not to join a queue (e.g., Naor, 1969) or

which of several queues to join (Bell and Stidham, 1983). It is generally found that the

behavior of individual jobs creates externalities on other jobs (e.g., over congestion of the

faster server). (See Hassin and Haviv 2003 for a review of the queue joining literature with

strategic customers/jobs.) Those externalities do not occur in our setting because a single

buyer controls all of the jobs. Instead, we have strategic servers; servers that can regulate

how fast they work, and working faster is costly.

In our model the buyer pays a fixed amount for each job, so the buyer’s task is to choose

an allocation policy to minimize the average lead time to complete jobs. We study allocation

policies that can be classified into two groups, state-dependent policies (the allocation of a

job to a server depends on the servers’ current workload) and state-independent policies (the

allocation of a job does not depend on the number of jobs currently in the servers’ queues).

With non-strategic servers it is clear that a state-dependent policy can deliver faster lead

times than a state-independent policy because, in part, a state-independent policy risks

allocating jobs to busy servers while other servers remain idle, i.e., a state-dependent policy

can do a better job of pooling the servers’ capacities.1 However, are state-dependent policies

1 Pooling is not necessarily a good idea if servers have significantly different capacities.
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better when the servers are strategic? Suppose a state-independent policy induces servers to

work more quickly than a state-dependent policy. Then the buyer may be better off with

a state-independent policy even though the system’s capacity is not as effectively utilized.

In other words, incentives may trump efficiency. In fact, Gilbert and Weng (1998) arrive

at that conclusion. Nevertheless, there are several reasons why this might not be the best

conclusion. First, we show that there is an error in their equilibrium existence proof, so

it is not always meaningful to compare their two allocation policies. Second, and more

importantly, they do not compare optimal policies. We compare the buyer’s best state-

dependent policy with the buyer’s best state-independent policy and find that the buyer

is better off with the state-dependent policy, i.e., the buyer can have both incentives and

efficiency. In general, we find that there is considerable variation in the performance of

intuitively reasonable policies. For example, the buyer’s optimal state-independent policy

with non-strategic servers is found to perform poorly in the presence of strategic servers,

and proportional allocation, which is probably the most intuitive allocation policy, can be

the worst performer of the policies we consider.

The next section describes our model in detail. Section 2 expands upon the related

literature. Section 3 studies the buyer’s allocation policy choice and the competition between

servers under several different allocation policies. Section 4 discusses several extensions to

the model. The final section concludes with a summary of our results.

1 The model

A buyer procures a good (e.g., a make-to-order component, as in the Sun Microsystems

example) or a service. For ease of exposition, we assume a service is procured. There

are two servers. (Most of our results extend to more than two servers; see Zhang 2004 for

details.) Demand for the service arrives according to a Poisson process with rate λ. Each

demand is referred to as a job and all jobs are eventually completed. Server i’s average

service rate is μi and service times are exponentially distributed. We refer to μi as server i’s

capacity and μ = (μ1, μ2) denotes the capacity vector. A server with capacity μi incurs a

Rubinowitch (1985a) characterizes the conditions under which a job should never be

allocated to the slow server in a two-server queueing system.

2



capacity cost at rate c(μi), no matter whether the capacity is utilized or idle, where c(0) = 0,

c0(·) > 0 and c00(·) ≥ 0 are assumed. The servers’ variable cost per job is normalized to zero.
We say that a job is allocated to a server when it is certain that server will complete the

job. The buyer pays R per allocated job. We assume R > r1, where

r1 = c(λ/2)/(λ/2),

because it is the minimal requirement for the suppliers to earn a non-negative profit and

deliver finite lead times (see Zhang 2004). We assume R is exogenous: there could be an

industry standard price that the buyer is unable to negotiate away from, or the price could

be set via negotiations that involve issues beyond the scope of this model.

The buyer controls her allocation policy (i.e., how jobs are allocated to servers) and the

servers choose their capacities. The buyer seeks to minimize the average delivery lead time

over an infinite horizon subject to the constraint that each server earns a non-negative profit,

and the servers seek to maximize their average profit:

πi(μ) = Rλi(μ)− c(μi), (1)

where λi(μ) is the rate server i is allocated jobs.2 Hence, we assume the buyer and the

servers do not discount future cash flows and they expect a long term relationship. We

focus on equilibria in which the servers adopt open-loop strategies, i.e., strategies that are

independent of the history of play. As a result, this infinite horizon capacity game among

servers can be analyzed as a single decision capacity game. Previous research on strategic

servers also restricts attention to open-loop strategies. In Section 3.3 we discuss lead-time

based allocation rather than capacity-based allocation.

2 Literature review

Kalai, Kamien, and Rubinovitch (1992) were the first to study strategic servers, but they

2 Note that servers are paid for allocated jobs rather than completed jobs. If they were

paid for completed jobs then their profit function would be πi(μ) = Rmin{μi, λi(μ)} −
c(μi). The equilibrium analysis of this profit function is significantly more complex due to

the kink created by the min function. Nevertheless, our qualitative results are not

different. See Zhang (2004) for details.
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only consider a simple state-dependent policy in which jobs are allocated to idle servers with

equal probability. Gilbert and Weng (1998) expand upon their model to include a state-

independent allocation policy that allocates jobs to servers immediately upon arrival. They

conclude that a state-independent policy can be better for the buyer than a state-dependent

policy. Our results are different, as we explain in detail in the subsequent sections. Christ

and Avi-Itzhak (2002) extend those models to include customer balking, but we do not have

balking.

Ha, Li, and Ng (2003) study the competition between two suppliers serving one buyer in

which delivery frequency is an element of the buyer’s allocation decision. But they study

deterministic demand, so, although they consider similar issues to ours, a direct comparison

between their work and ours is not meaningful.

There are papers that compare sole-sourcing versus dual sourcing, whereas we assume a

dual-sourcing strategy has been adopted: e.g., Anton and Yao (1989, 1992), Anupindi and

Akella (1993), Benjaafar, Elahi, and Donohue (2004), Seshadri (1995), Seshadri, Chatterjee,

and Lilien (1991). See Minner (2003) and Elmaghraby (2000) for reviews of the literature

on sourcing strategies.

There are papers that study a buyer’s procurement policy when there are multiple sup-

pliers with exogenously determined characteristics: e.g., Bonser and Wu (2001), Chen, Yao

and Zheng (2001), Li and Kouvelis (1999), Martinez de Albeniz and Simchi-Levi (2003),

Sedarage, Fujiwara, and Luong (1999), and Talluri (2002). In our model the servers’ lead

times depend on their choices and the buyer’s allocation policy.

Several papers study coordination and competition in supply chains with multiple suppli-

ers: Bernstein and DeCroix (2004); Wang and Gerchak (2003); and Nagarajan and Bassok

(2003). In these papers limited capacity leads to demand truncation rather than slower

delivery times. Bernstein and de Vericourt (2005) consider a market with multiple suppliers

and multiple buyers. Their suppliers have fixed processing rates and compete by offering

different lead times to buyers which they obtain via holding inventory.

There are a number of papers that study server competition in which firms choose oper-

ational strategies to adjust their delivery times: e.g., Allon and Federgruen (2003), Cachon

and Harker (2002), Chayet and Hopp (2002), Lederer and Li (1997) and So (2000). In

those papers the structure of how firms compete is exogenous, whereas in our model it is

4
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determined by the buyer via her allocation policy.

There is literature on capacity allocation (e.g., Cachon and Lariviere 1999a, 1999b, 1999c

and Deshpande and Schwarz 2002) in which a single manufacturer allocates scarce capacity

among multiple buyers. Although similar allocation policies are implemented to ours, those

models are analytically quite different.

Li (1992) and Armony and Plambeck (2005) study models in which a buyer submits

duplicate orders to multiple suppliers. In our model each job is allocated to a single server,

but we briefly discuss order duplication in section 4.

3 Allocation and the servers’ capacity game

Our model can be analyzed in two inter-dependent parts. The first part is the buyer’s

allocation policy choice, i.e., how will the buyer allocate jobs among the two servers. The

second part is the capacity choice game played between the servers, which clearly depends

on the particular allocation policy the buyer has selected. Furthermore, the attractiveness

of an allocation policy to the buyer depends on the capacities chosen by the servers as well

as how jobs are routed through the system. We treat these two parts sequentially.

The set of allocation policies can be divided into two broad classes: state-independent

policies and state-dependent policies. With a state-independent policy the buyer allocates

jobs to servers based only on their capacities (which are inferred from past allocations and

resulting delivery times) and not on the current state of the system (e.g., how many jobs

are allocated to each server, which server is idle, etc.) Because no current information is

utilized with a state-independent policy, the buyer immediately allocates a job to a server

upon its arrival, i.e., there is no benefit to wait to allocate a job if waiting does not change

the allocation decision process. In contrast, with a state-dependent allocation policy the

buyer allocates jobs based on the current state of the system. For example, the buyer may

choose to allocate jobs only to idle servers.

Given a fixed capacity vector, the buyer’s optimal state-dependent policy is clearly never

worse (and can be strictly better) than the buyer’s optimal state-independent policy because

state-independent policies are a subset of the set of state-dependent policies. To be more

specific, assume both servers choose capacity μi so that it is optimal for the buyer to allocate

half of the jobs to each server. The optimal state-dependent policy allocates jobs only to idle

5
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servers and so the average lead time, Wsd(μi), is equivalent to an M/M/2 queueing system,

Wsd(μi) =
μi

μ2i − (λ/2)2
.

The optimal state-independent policy allocates jobs upon arrival to servers with equal prob-

ability, which yields an average lead time,Wsi(μi), that is equivalent to twoM/M/1 systems,

Wsi(μi) =
1

μi − λ/2
.

Assuming stable systems, μi > λ/2, it is intuitive that the state-dependent lead time is faster

than the state-independent lead time,Wsd(μi) < Wsi(μi), because the state-dependent policy

does a better job of pooling the servers’ capacities: with the state-dependent policy a job is

never waiting while there is an idle server, but that inefficient outcome can occur with the

state-independent policy.

In addition to how jobs are routed through the system, the buyer’s lead time depends on

the capacities chosen by the servers. Again assuming the servers choose identical capacities,

it is easy to see that both Wsd(μi) and Wsi(μi) are decreasing in μi, i.e., the buyer’s lead

time with either type of allocation is reduced as the servers work faster. Because working

faster is costly to the servers, there exists a maximum rate, μ̄, at which the servers earn zero

profit given that they are allocated half of the jobs, i.e., μ̄ is the solution to c(μ̄) = Rλ/2.

From the buyer’s perspective, the ideal state-dependent allocation policy induces the servers

to choose capacity μ̄ and routes jobs so that the resulting lead time is Wsd(μ̄). Similarly,

the ideal state-independent policy induces the servers to choose capacity μ̄ and routes jobs

so that the lead time is Wsi(μ̄).
3 It remains to be determined whether those ideals can be

achieved, i.e., does there exist an allocation policy that achieves μ̄ as an equilibrium outcome

3 We assume the buyer desires to have two symmetric servers. Given that the servers

have the same capacity cost function, it is either optimal for the system to have one

server that is allocated all jobs or two servers that are allocated half of the jobs, where the

latter is more likely as the capacity cost function becomes more convex. There could

be other reasons for maintaining multiple servers even if the capacity cost function suggests

one server would be optimal. We do not attempt to model those alternative reasons,

so we assume throughout that the buyer desires to dual-source and equally divide jobs

between the servers.
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of the servers’ capacity game? If so, then clearly the optimal state-dependent policy would

be strictly better for the buyer than the optimal state-independent policy.

3.1 State-independent allocation policies

Bell and Stidham (1983) identify the state-independent allocation policy, which we call Bell-

Stidham allocation, that minimizes the buyer’s lead time for any fixed capacity vector, μ :

λi(μ) =

⎧⎪⎨⎪⎩ μi −
Ã
μ
1/2
i /

n̂P
j=1

μ
1/2
j

!Ã
n̂P

j=1

μj − λ

!
for i ≤ n̂

0 for i > n̂,

(2)

where the servers’ capacities are sorted in decreasing order and n̂ ≤ 2 is the largest integer
such that λn̂ (μ) ≥ 0.4 This allocation rule equates the marginal change in the average

number of jobs at each queue with respect to the arrival rate. Naturally, Bell-Stidham

allocation assigns half of the jobs to each server when the servers have the same capacity,

μbs, thereby achieving the lead time Wsi(μbs).

Bell-Stidham allocation was designed for non-strategic servers. With strategic servers,

according to Theorem 1, a symmetric equilibrium exists in this capacity game only under cer-

tain conditions. The capacity cost function restriction is relatively mild, but the restrictions

on R are significant. (All proofs are in the appendix.)

Theorem 1 With Bell-Stidham allocation, (2), if R > r2 = 2c0(λ/2), c000(μi) ≥ 0, and

πi(μbs) ≥ 0, where μbs is the unique solution toµ
R

4

¶µ
1 +

λ/2

μbs

¶
− c0(μbs) = 0, (3)

then μi = μbs > λ/2 is the unique symmetric Nash equilibrium.

An equilibrium (with finite lead times) may fail to exist with Bell-Stidham allocation

because the buyer’s price may be too low, R ≤ r2 : the servers do not feel the need to build

enough capacity to provide a stable system (i.e., they prefer to work at 100% utilization

than to compete for additional demand by working more quickly and operating at less than

4 They also provide results for M/G/1 queues and allow waiting time costs to vary

across queues. In this application the waiting time cost is naturally the same across

all queues. We discuss in Section 4 our results with non-exponential service times.
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100% utilization). (Note, because c(·) is convex, it is straightforward to show that r1 < r2.)

Alternatively, an equilibrium may fail to exist because the buyer pays too much, thereby

causing so much competition between the servers that they both cannot earn a positive

profit.5 Furthermore, it is apparent from (3) that the servers may not choose in equilibrium

the buyer’s ideal capacity, i.e., μbs 6= μ̄ is possible.

Although Bell-Stidham allocation is optimal for the buyer for any given capacity vector, it

does not take into consideration the behavior of strategic servers, and, as a result, it does not

necessarily provide the correct incentives for servers to choose a desirable capacity vector.

With strategic servers it is important to recognize that the buyer’s allocation policy need not

be optimal for all capacity vectors (as is Bell-Stidham). The role of the allocation policy is

to establish incentives for the servers to converge to a particular capacity equilibrium that is

desirable for the buyer, ideally (μ̄, μ̄). As a result, it is worthwhile to consider other allocation

policies that achieve an equal division of jobs in equilibrium, as with Bell-Stidham, but

allocate jobs differently than Bell-Stidham for non—equilibrium/non-symmetric capacities.

Gilbert and Weng (1998) propose balanced allocation: with balanced allocation the buyer

attempts to equalize (i.e., balance) the servers’ lead times for all capacity vectors (and only

fails to do so if all jobs are allocated to one server because of a large disparity in their

processing rates):

λi(μ) =

(
λ λ+ μj ≤ μi¡

μi − 1
2

¡
μi + μj − λ

¢¢+
otherwise

. (4)

Theorem 2 With balanced allocation, if R ≥ r2 = 2c0(λ/2), c00(μi) > 0 and c0(μb) ≥
c(μb)/λ, where μb is the unique solution to c0(μb) = R/2, then {μb, μb} is the unique Nash
equilibrium and the servers’ average lead times are finite. Otherwise, there does not exist

an equilibrium with finite lead times.

As with Bell-Stidham allocation, balanced allocation leads to a symmetric equilibrium

but the two allocation policies need not result in the same capacity, μbs 6= μb, and balanced

allocation also generally results in less than the buyer’s desired capacity, μb ≤ μ̄. Further-

more, three conditions are needed for an equilibrium to exist with balanced allocation. First,

5 For example, with a quadratic capacity cost function it can be shown that there exists

an upper bound, r3, such that there does not exist an equilibrium with R > r3.
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balanced allocation requires that the buyer’s price is sufficiently high, R ≥ r2, otherwise the

reward for working fast is insufficient to provide an incentive to work. Second, the capacity

cost function must be strictly convex, c00(μi) > 0, which rules out the important case of

linear capacity costs. Gilbert and Weng (1998) correctly recognized those first two condi-

tions, but did not recognize the necessary third condition, c0(μb) ≥ c(μb)/λ, which requires

the servers to earn a non-negative profit in equilibrium (e.g., with a quadratic cost function

c(μi) = aμ2i + bμi, a > 0, this condition translates into R ≤ 2
³
2aλ+

p
b2 + 4a2λ2

´
). They

erred by believing each server’s profit function is globally concave. In fact, it is concave

and decreasing for μi ∈ [0, μj − λ] and concave for μi > μj − λ. Hence, each server’s global

optimum is either the maximum of the first concave range, μi = 0, or the maximum of the

second concave range, μi > μj − λ. As a result, each server’s reaction function (the optimal

capacity given the capacity of the other server) harbors a discontinuity, which creates the

possibility of no equilibrium. However, if an equilibrium exists, then Gilbert and Weng

(1998) correctly identify the equilibrium.

An alternative allocation policy is needed that can be parameterized so as to adjust up

or down as needed the level of competition between the servers. We offer two such policies:

linear allocation and proportional allocation. With linear allocation,

λi(μ) =

⎧⎪⎨⎪⎩ θμρi − 1
n̂

Ã
θ

n̂P
j=1

μρj − λ

!
for i ≤ n̂

0 for i > n̂,

(5)

where the servers’ capacities are sorted in decreasing order, θ > 0, 0 < ρ ≤ 1 and n̂ ≤ 2 is the
largest integer such that λn̂ ≥ 0 and μn̂ > 0. A server does not necessarily receive a positive
allocation even if the server builds some capacity, but a server surely receives no allocation

if the server builds no capacity. If θ = 1 and ρ = 1 then linear allocation is almost identical

to balanced allocation: the only exception is the additional μn̂ > 0 requirement to receive

a positive allocation. (That reasonable requirement facilitates the uniqueness equilibrium

proof.) Hence, linear allocation can be considered a generalization of balanced allocation.

The parameters θ and ρ could potentially enable linear allocation to achieve many different

capacity vectors as an equilibrium to the servers’ capacity game. But as already discussed,

the buyer’s desired outcome from the servers’ capacity game is (μ̄, μ̄) with an even division

of jobs between the servers. According to the next theorem, linear allocation can achieve

that objective. Hence, linear allocation is an optimal state-independent allocation policy.
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Theorem 3 Given linear allocation:

i. If c00(μi) > 0 , θ = 2c0(μl)/R and ρ = 1 then μi = μl = μ̄ for all i is a unique Nash
equilibrium and the average lead times are finite.

ii. If c(μi) = bμi (b > 0), θ = 4μ
1/2
l c0(μl)/R and ρ = 1/2, then μi = μl = μ̄ for all i is the

unique Nash equilibrium and the average lead times are finite.

The parameters provided in Theorem 3 are not the only ones that achieve our objective

(that (μ̄, μ̄) is the unique Nash equilibrium), so we choose intuitive values for ρ : with strictly

convex capacity cost the ρ parameter is not necessary (hence, set to ρ = 1), but with a linear

capacity cost ρ < 1 is necessary to create an interior optimum for each server.

Proportional allocation is another policy that can be parameterized to adjust the level of

competition between the servers. With proportional allocation server i’s share of the buyer’s

jobs is

λi(μ) =

Ã
μβi

μβ1 + μβ2

!
λ (6)

where β ≥ 1 is a parameter. In particular, increasing β raises the intensity of competition,
thereby allowing the buyer to achieve the desired capacity vector, (μ̄, μ̄). Hence, proportional

allocation can also be an optimal state-independent allocation policy. However, because the

servers’ profit functions are not necessarily well behaved as β is increased, Theorem 4 provides

results only for a quadratic capacity cost function.

Theorem 4 Given proportional allocation and a quadratic capacity cost function c(μi) =

aμ2i + bμi, a ≥ 0, b ≥ 0, a+ b > 0, if

β =
2μ̄c0(μ̄)

c(μ̄)
,

where c(μ̄) = Rλ/2 (i.e., μ̄ is the server’s break-even capacity), and R > r1 = c(λ/2)/(λ/2),

then μi = μ̄ for all i is the unique Nash equilibrium and average lead times are finite.

Although β > 1 is desirable for the buyer, it is worthwhile to mention that β = 1

yields an intuitively appealing allocation mechanism: with β = 1 a server’s demand share

equals the server’s share of total capacity and the servers’ utilizations are equated (i.e., each

server has the same number of jobs on average) Recall, Bell-Stidham allocation equates the

marginal change in the number of jobs at each server with respect to that server’s arrival

rate. However, existence of an equilibrium with β = 1 requires the buyer to pay a sufficiently

large price and the servers’ capacities are less than ideal for the buyer, μp < μ̄.
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Theorem 5 With proportional allocation and β = 1, if R > r2 = 2c
0(λ/2) then μi = μp for

all i is a unique Nash equilibrium with finite lead times, where μp is the unique solution to

c0(μp) =

µ
R

4

¶µ
λ

μp

¶
.

Otherwise, a Nash equilibrium does not exist with finite lead times.

3.2 State-dependent allocation

The simplest state-dependent policy is common-queue allocation, first studied by Kalai,

Kamien and Rubinovitch (1992): jobs are only allocated to idle servers, where each idle

server is equally likely to be allocated a job, and jobs are maintained on a queue if both

servers are occupied. For convenience, the following lemma repeats their results.

Lemma 6 Given c00(μi) > 0 and the buyer implements common-queue allocation, let μc be

the unique solution to

c0(μc) =
Rλ2

2μc(2μc + λ)
.

If R > r2 = 2c
0(λ/2) then {μc, μc} is the unique Nash equilibrium in the capacity game and

the servers’ average lead times are finite. If R ≤ r2 then there does not exist an equilibrium

with finite lead times.

Common-queue allocation has the desirable feature that it pools the capacities of the

servers (there are never waiting jobs and idle servers at the same time). Hence, with non-

strategic and identical servers, common-queue is in fact optimal for the buyer. But an

equilibrium with finite lead times does not exist with common-queue allocation if the price

is too low, R ≤ r2. Furthermore, Gilbert and Weng (1998) demonstrate that with strategic

servers common-queue can be worse for the buyer than balanced allocation because it does

not provide sufficient incentives for the servers to work quickly. Hence, a state-dependent

allocation policy may actually perform worse than a state-independent policy.

Although common-queue is optimal for the buyer given symmetric capacities, it is not

optimal for the buyer with asymmetric capacities. Intuitively, if one server is much slower

than the other server, then the buyer may be better off allocating a job to the busy fast

server than to the idle slow server; e.g., a fast server may be able to complete two jobs faster

than the slow server can complete one job. This intuition suggests a threshold allocation

policy which is implemented as follows. One server is labeled the primary server and the
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other the secondary server. A single parameter, m ∈ {0, 1, 2...}, regulates how jobs are
allocated to the primary and secondary servers: allocate a job to the primary server if the

primary server is idle or if the primary server has fewer than m jobs in queue; allocate a job

to the secondary server only if the secondary server is idle, the primary server is busy and

has m jobs in queue. It is natural to think of the faster server as the primary server, but

the policy can also be implemented with the slower server designated as the primary.

Given non-strategic servers, Rubinovitch (1985b) provides a numerical method to evaluate

the system’s performance under threshold allocation and Lin and Kumar (1984) prove that

a threshold policy is the buyer’s optimal allocation with two servers, i.e., the average time

in the system for each unit is minimized. Additional proofs are available from Koole (1995)

and Walgrand (1984).

It is intuitive that as the threshold parameter, m, increases, the primary server’s share of

the buyer’s demand increases and the secondary server’s share decreases . Withm =∞ the

primary server earns the buyer’s entire demand while the secondary server is never allocated

a job. Hence, by varying which server is designated the primary and by randomizing

between different m values, the buyer is able to allocate to the faster server any portion of

the buyer’s demand.6 As a result, it is possible to design a threshold policy in which server

i’s allocation exactly equals his allocation with linear allocation for any chosen capacities.

Servers only care about their share of the buyer’s jobs, not how that allocation is achieved

or the resulting lead time for the buyer. Therefore, if the described threshold policy is used,

the equilibrium in the capacity game is equivalent to the equilibrium with linear allocation.

Furthermore, in equilibrium the servers have equal capacity, so the threshold ism = 0, i.e., in

equilibrium the servers build capacity as if linear allocation were implemented but the system

actually achieves the same lead time as common-queue allocation. Although the techniques

in Rubinovitch (1985b) allow for the evaluation of the proper thresholds, a threshold policy

is clearly not as simple to evaluate as the other allocation policies we discuss. But, in

theory, it provides in equilibrium the maximum capacity like linear allocation while also

providing the operational efficiency of common-queue allocation. Hence, it is an optimal

6 Even with m = 0, the faster server, when designated the primary, can earn more

than 50% of the buyer’s demand. Threshold allocation can assign less demand to the

faster server only if the faster server is designated the secondary server.
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state-dependent policy for the buyer. We conclude that there need not exist a trade-off

between incentives and efficiency: the optimal state-dependent policy, threshold allocation,

performs better than the optimal state-independent policy, linear allocation.

Additional comparisons among the policies can be made via some graphical examples. For

each allocation policy, Figures 1 and 2 show the relationship between R and the equilibrium

lead times with two examples: c(μi) = 4μi and λ = 1; and c(μi) = 4μ
2
i and λ = 1. We see

from these figures that for a given price the buyer’s lead time can vary considerably. In all

cases common-queue and proportional allocation with β = 1 perform poorly. Bell-Stidham

allocation gives intermediate performance. Balanced allocation performs reasonably well

when an equilibrium exists, but an equilibrium exists for a relatively limited range of prices

(it never exists with linear capacity cost). Overall, threshold allocation is clearly the best,

but linear allocation, especially given its simplicity, is a good second choice.

The next lemma explores further the difference between linear and threshold allocation.

Lemma 7 Define z(R) = Wsd(μt(R))/Wsi(μl(R)), where μt(R) and μl(R) are the equilib-

rium capacities under threshold and linear allocations respectively when the price is R. Recall

that μt(R) = μl(R), i.e., for a fixed wholesale price threshold and linear allocation generate

the same capacity. The ratio z(R) is concave and increasing from 1/2 to 1.

The comparison between threshold and linear allocation is intuitive: if system utilization

is quite high, because R is low, then threshold allocation has a single queue with a large

number of jobs whereas linear allocation has two queues with a large number of jobs (i.e.,

threshold’s lead time is half of linear’s lead time); but if system utilization is quite low,

because R is high, then jobs never wait with either allocation policy. Although Lemma

7 indicates that linear allocation is significantly worse than threshold allocation when the

buyer’s price is low, this result is somewhat misleading. Suppose now that the buyer is able

to modify her price somewhat. Let Rt be the price with threshold allocation and let Rl

be the price with linear allocation and choose these prices such that they lead to the same

delivery lead time, Wsd(μt(Rt)) =Wsi(μl(Rl)). According to the next lemma, if Rt is either

low or high, then there is a small price premium needed with linear allocation to achieve the

same lead time.

Lemma 8 Let ρ be the system’s utilization in equilibrium. Rl/Rt → 1 as either ρ→ 1 or
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ρ→ 0.

3.3 Lead-time based allocation

This section considers whether the buyer could do better (or at least as well) with an allo-

cation policy based on the servers’ lead times rather than based on their capacities. In a

lead-time based allocation, the buyer announces the demand share function λi in terms of

servers’ lead time vector W = (W1,W2) > 0, the servers submit their bids on lead times,

demand shares are determined and each server i builds capacity μi(Wi, λi(W )) to fulfill its

lead-time bid, where μi is a decreasing function of Wi. Assume

λ1(W )− λ1(Wε) < μ1 (W1, λ1(W ))− μ1 (W1 + ε, λ1(Wε)) (7)

where Wε = (W1 + ε,W2) and ε > 0 : if server one promises a longer lead time then server

one’s required capacity to achieve that lead time decreases more than server one’s demand

allocation. The analogous assumption is taken for the other server as well. This assumption

holds, for example, when each server operates an M/M/1 queue, in which case

μi(Wi, λi(W )) = 1/Wi + λi (W ) . (8)

Lead-time based allocation is analytically cleaner than capacity-based allocation because

there is no issue with the stability of the queues: by definition, the buyer’s lead time is

positive and finite for any strategic choice vector of the servers, whereas with capacity-based

allocation the servers may fail to choose a sufficient capacity to yield a finite lead time for

the buyer. However, according to the next lemma, analytical tractability can come with a

price.

Lemma 9 Consider any continuous lead-time allocation with λi decreasing inWi. If (W1,W2)

is a Nash equilibrium with corresponding demand shares (λ1, λ2) and μi(Wi, λi(W )) satisfies

(7) , then μi(Wi, λi(W )) ≤ μ̂ for all i, where μ̂ is the solution to c0(μ̂) = R. (If c(μ) is linear,

let μ̂ =∞).

Recall that μ̄ is the servers’ maximum capacity (i.e., c(μ̄) = Rλ/2) and the capacity

achieved with linear or threshold allocation based on capacities. It is possible that the

maximum achievable capacity with a lead-time based allocation policy, μ̂, is less than the

maximum with a capacity based allocation policy, μ̄.We demonstrate this with two examples
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in which the relationship between a server’s lead time and its capacity is given by (8), i.e., a

state-independent allocation policy is implemented. First, suppose the capacity cost function

is quadratic, c(μ) = aμ2 + bμ and a > 0. Then μ̄ > μ̂ for all R ∈ (r1, aλ+
√
b2 + a2λ), i.e.,

for sufficiently small R in the feasible range (R > r1) the buyer cannot design a continuous

allocation policy based on the servers’ lead times that achieves the maximum capacity, μ̄.

Next suppose c(μ) = aμγ for a > 0 and γ > 1. In this case,

μ̄

μ̂
=

¡
Rλ
2a

¢ 1
γ³

R
γa

´ 1
γ−1

=

µ
γ
³r1
R

´ 1
γ

¶ 1
γ−1

,

where recall that r1 = c(λ/2)/(λ/2) = a (λ/2)γ−1 . It follows that μ̄ > μ̂ when R ∈ (r1, r1γγ),
i.e., lead-time based allocation is likely to be inferior to capacity based allocation as the

buyer’s price is low and as the capacity cost function becomes more convex (γ increases).

Despite the one-to-one relationship between a server’s lead time and the server’s capacity

for a fixed allocation, lead-time based allocation may not be as effective as capacity-based

allocation because lead-time based allocation has a self-restraining property that dampens

competition among the servers: committing to a higher service level requires more investment

than committing to a higher capacity. A similar result is obtained in Cachon and Zipkin

(1999) in the context of inventory management in a serial supply chain with two independent

firms: with non-strategic firms the optimal policy can be implemented as either a set of

installation base stock policies or as a set of echelon base stock policies (briefly, these policies

differ in what information they use) but with strategic firms these two approaches yield

different equilibrium results.

4 Discussion

This section discusses several modeling issues. Although we assume exponential processing

times, some of our results extend to more general processing time distributions. As in Bell

and Stidham (1983), suppose μ is the service rate and the service time S has first moment

E(S) = 1/μ and second moment E(S2) = bμ−2. The variance is then (b − 1)μ−2 and the
coefficient of variation is constant, (b− 1)1/2. For an M/G/1 queue with the above service
time distribution, the average lead time (duration in the system) is

W (λ) =
1

μ
+

bλ

2μ(μ− λ)
.

15

https://www.researchgate.net/publication/227445383_Individual_versus_Social_Optimization_in_the_Allocation_of_Customers_to_Alternative_Servers?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227445383_Individual_versus_Social_Optimization_in_the_Allocation_of_Customers_to_Alternative_Servers?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447234_Competitive_and_Cooperative_Inventory_Policies_in_a_Two-Stage_Supply_Chain?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447234_Competitive_and_Cooperative_Inventory_Policies_in_a_Two-Stage_Supply_Chain?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==


Balanced, linear, proportional, Bell-Stidham and threshold allocations readily extend to this

general distribution because demand is allocated based only on the servers’ capacities and

not on their lead times. However, the extension is not straightforward for common-queue

because then the servers’ shares of demand are endogenously determined.

Throughout our analysis we have assumed that each job is processed by only one server.

In practice there are examples in which firms duplicate their orders across multiple suppliers

or servers (see Armony and Plambeck 2005, Li 1992 and Yoffie 1990). If order duplication

is feasible then it is ideal from the point of view of system efficiency: even if there is only

one job in the system all servers are working at their full rate. However, as we have

demonstrated, it is also important for an allocation policy to provide sufficient incentives for

strategic servers to work hard. Zhang (2004) demonstrates that order duplication performs

poorly on incentives, so poorly that its overall performance tends to be worse than linear

allocation. Hence, even if operating conditions are ideal for order duplication, a buyer

should avoid order duplication.

We use demand allocation as the motivator to provide fast service, but other motivators

may exist. For example, if the buyer has some control over the price, R, then raising the

price, as we see in Figures 1 and 2, generates faster service (but with some allocation policies

it also eliminates the existence of an equilibrium). The buyer could make a trade-off between

the higher price paid and the faster service received. Nevertheless, unless the price paid

is extremely high, there remains considerable variation in the performance of the allocation

policies.

Instead of allocating demand, the buyer could try to motivate faster service by posting a

payment schedule that is contingent on the servers’ capacities or lead times. For example,

suppose the buyer wants each server to build μ∗i > λ/2 capacity. This is achievable with

the following price schedule, R(μi),

R00(μi) < 0, R0(μ∗i )(λ/2) = c0(μ∗i ) and R(μ∗i ) (λ/2) = c(μ∗i ) :

the first condition ensures a unique μi maximizes the server’s profit, the second condition

ensures that μ∗i is optimal for the server and the third condition makes the server’s profit

condition binding. It is also possible that the R(μi) schedule could be implemented with a

fixed price and late fees because then the late fees paid are contingent on the chosen capacity.

(See Cachon and Zhang 2006 for a similar model with sole sourcing and late fees.) Our
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model does not address whether demand allocation is preferable to these or other contracting

methods. However, we point out that these contracting methods require the buyer to posses

significant bargaining power over the servers — the buyer must be able to control the pricing

schedule used and its parameters, whereas demand allocation can be implemented by the

buyer even if the buyer has little bargaining power. Therefore, because allocation policies

are simple to implement and observed in practice, we suspect they are desirable vis-a-vis

other techniques along at least some dimensions. Overall, additional research is needed to

identify the situations in which demand allocation is the best option for the buyer.

In our analysis we assume the suppliers have identical cost functions, which is reasonable in

markets that have homogeneous technologies. This naturally leads to symmetric equilibria.

With heterogenous cost functions, equilibrium analysis is more challenging. Zhang (2004)

provides some initial results and finds that existence is less likely as costs become more

heterogeneous: as one supplier gains a cost advantage it becomes necessary to dampen the

competition among the suppliers to prevent one supplier from driving the other supplier out

of the market, just like the problem we see when R is too high in the symmetric cost case.

Hence, performance based allocation of demand appears to be most effective when suppliers

have comparable costs.

Our model assumes that each supplier only serves the buyer, as in the case when a supplier

builds or reserves dedicated capacity for the buyer. In some cases each supplier may cater

to multiple buyers, thereby creating two strategic decisions for each supplier: how much

capacity to build and how to prioritize that capacity across buyers. Furthermore, there may

be different prices for different priorities. The analysis of these systems is clearly beyond

the scope of this research, but we again suspect that the buyer could use a smartly designed

allocation policy to obtain higher priority from suppliers.

We conduct our analysis in the context of a queuing system, but there are also situations

that may be better modeled as an inventory system: e.g., each supplier could choose a base

stock policy and the buyer is concerned with some dimension of the supplier’s delivery lead

time distribution. While the specifics of the analysis would differ, we suspect that demand

allocation would again be a useful tool for the buyer to motivate for better reliability among

her suppliers.

Our analysis is conducted exclusively in steady state. For example, we assume that the
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buyer is able to infer each server’s capacity from the servers’ delivery times so that the correct

demand share can be implemented. In practice the buyer would only obtain an estimate of

each server’s capacity. The significance of sampling error on our results is an open question.

Finally, we have implicitly assumed that the buyer is able to credibly commit to implement

the chosen allocation policy. Without that ability, the buyer’s set of allocation policies to

choose from is quite limited. For example, if the buyer must implement a state-independent

policy, then only Bell-Stidham allocation is credible because it minimizes the buyer’s waiting

time for any set of capacities chosen. If the buyer implements a state-dependent policy,

then only threshold allocation is credible, but not necessarily the same threshold policy

discussed in Section 3.2: again, the threshold policy must be chosen so as to minimize the

buyer’s waiting time for any capacity vector. Hence, the ability to credibly commit to an

allocation policy is important to the buyer. We note that this same issue occurs in many

other settings. For example, in the supply chain contracting literature, many coordinating

contracts are studied and observed that require commitments: a buy-back contract is an a

priori commitment by a supplier to pay a retailer for units returned by the retailer after

stochastic demand occurs even though the supplier has no ex post incentive to do so.

5 Conclusion

In this paper two queuing servers strategically choose their capacities/processing rates in

response to a buyer’s demand allocation policy. The buyer’s objective is to design the

allocation policy to achieve the shortest possible average delivery time from the servers, either

by motivating the servers to build more capacity or by ensuring that the available capacity is

effectively utilized. We focus on allocation policies based on the servers’ capacities because

we show that lead-time based allocation policies may not perform as well.

Previous research suggests that there may exist a trade-off between incentives and effi-

ciency: an allocation policy that efficiently utilizes the servers’ capacity may provide weak

incentives for them to work quickly and an allocation policy with strong incentives to work

quickly may not effectively utilize the servers’ capacity. We indeed demonstrate that there

is considerable variation in the performance across allocation policies. Many allocation poli-

cies either provide absolutely no incentive for the servers to deliver quickly or provide too

much competition among servers, thereby leading to unpredictable behavior. Even policies
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that are optimal for the buyer with non-strategic and symmetric servers can perform poorly

with strategic servers. However, we show that there need not be a trade-off between incen-

tives and efficiency, i.e., there exists an allocation policy, threshold allocation, that induces

the servers to work at their maximum rate and minimizes the buyer’s lead time given the

resulting capacities.

Unfortunately, threshold allocation is complex. For example, its optimal parameters

cannot be determined in closed form. We offer linear allocation as an alternative. Linear

allocation also induces the servers to work at the maximum possible rate, but linear allocation

does not utilize the servers’ capacity as effectively as threshold allocation. In particular,

because linear allocation allocates jobs immediately upon arrival and the assignment of jobs

does not depend on the current state of the system (it is a state-independent allocation

policy), linear allocation may allocate a job to a busy server while the other server is idle.

Nevertheless, we show that linear and threshold allocations converge in performance at high

utilizations, which suggests that linear allocation is attractive along many dimensions.

To conclude, a buyer should not ignore demand allocation as a strategy to obtain faster

service, especially given its simplicity: there is no need to negotiate new contract terms or

pricing with the servers because demand allocation can be implemented by a buyer without

the explicit consent of the servers. But creating competition among servers via their past

performance requires some sophistication; a haphazard application of this strategy could

have little impact.

Appendix
Proof of Theorem 1. Server i’s profit function is πi(μi) = Rλi−c(μi). Let μ0i be defined such
that μ0i > 0 and λi(μ

0
i ) = 0 or μ

0
i = 0. πi(μi) is then concave and decreasing for μi ∈ [0, μ0i ].

Now differentiate πi,

∂πi(μi)

∂μi
= R

⎛⎜⎝1− μ
1/2
iP
μ
1/2
j

−
¡P

μj − λ
¢
μ
1/2
j

2μ
1/2
i

³P
μ
1/2
j

´2
⎞⎟⎠− c0(μi)

and, for notational convenience, let B = μj − λ,

∂2πi(μi)

∂μ2i
=

Rμ
1/2
j

4(
P

μ
1/2
j )3

(μ
1/2
j Bμ

−3/2
i + 3Bμ−1i − 3μ

1/2
j μ

−1/2
i − 1)− c00(μi).
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Define f(μi) = Bμ
1/2
j μ

−3/2
i + 3Bμ−1i − 3μ

1/2
j μ

−1/2
i − 1. If B ≤ 0, then π00i (μi) ≤ 0 and

πi(μi) is concave. Otherwise it can be shown that df/dμi = 0 has only one positive solution.

Moreover, f →∞ and df/dμi < 0 as μi → 0 and f < 0 as μi →∞. Thus f decreases from
the positive domain to the negative domain. Since c000(μi) ≥ 0, there exists a μ1i ≥ μ0i such

that πi(μi) is concave and decreasing for μi ∈ [0, μ0i ], convex for μi ∈ [μ0i , μ1i ] and concave
for μ1i < μi. Because πi(0) = 0, it follows that any interior solution to server i’s first-order

condition is a global optimum if at that solution profit is non-negative.

The following equation provides the unique solution to the first-order conditions given the

constraint μi = μj: µ
R

4

¶µ
1 +

λ/2

μi

¶
− c0(μi) = 0.

(Because c(μi) is convex, the left hand side is decreasing, so there is a unique solution.) The

lower bound on R ensures that μbs > λ/2. The condition πi(μbs) ≥ 0 ensures that μbs is
indeed a global optimum for all servers.¤
Proof of Theorem 2: There are two significant complications to this analysis which prevent

the use of standard existence and uniqueness results. (1) πi is not unimodal (if μ2 > λ,

then π1 is concave and decreasing for μ1 ∈ [0, μ2 − λ] and concave for μ1 > μ2 − λ, but not

globally concave), which may create a discontinuity in the servers’ best reply functions. (2)

πi is not differentiable at μi = λ − μj, which prevents the unconditional use of first-order

conditions to determine the global maximizer of πi. Let’s first establish when {μb, μb} is a
Nash equilibrium under the given conditions. The servers’ first-order conditions are satisfied

when c0(μb) = R/2, which yields a finite lead time only if μb > λ/2, which simplifies to the

first condition. But because μi = 0 can be optimal for a server, μb is an optimal response

only if πi(μb, μb) ≥ 0, i.e., if Rλ/2 ≥ c(μb), which can be written as c
0(μb) ≥ c(μb)/λ (the

second condition). Now let’s rule out other equilibria. Suppose {μi, μj} is an equilibrium,
μi ≥ μj. Several cases need to be considered. (i) μi ≥ λ+ μj. If μj > 0, then server j earns

a negative profit, so this is not an equilibrium. If μj = 0, then it must be that μi = λ. For

server j we have πj(λ, μb) = c0(μb)μb− c(μb) > 0, breaking the equilibrium. (ii) μi+μj < λ

which implies μj < λ/2. From server j’s first-order condition we get c0(μj) = R > 2c0(λ/2),

which implies μj > λ/2 because c0(·) is increasing. Hence, we have a contradiction, so no

equilibrium. (iii) μi + μj = λ. For this to be optimal for both servers it must be that

R ≤ 2c0(μi) and R ≤ 2c0(μj), which cannot both be satisfied because R > 2c0(λ/2). (iv)
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μi+μj > λ and μi < λ+μj. Now the only solution to the first-order conditions is {μb, μb}.
To obtain an equilibrium with finite lead times, we need μi + μj > λ. Since μi ≥ λ+ μj

cannot be an equilibrium, there must be μi < λ+μj, which implies that {μb, μb} is the only
solution to the first-order conditions. But {μb, μb} is not an equilibrium if c0(μb) < c(μb)/λ

and μb < λ/2 if R < r2.¤
Proof of Theorem 3. (i) For Nash equilibrium we need to show that μl maximizes server i’s

profit if the other server chooses μj = μl. The primary complication is due to the revenue

term, Rλi(μ), in the profit function. Server i’s allocation is

λi(μ) = min
©
(θμi/2− θμl/2 + λ/2)+ , λ

ª
= min

(µ
θμi/2−

λ

2

µ
c0(μl)μl
c(μl)

− 1
¶¶+

, λ

)
The second term is negative. So there exists some μ0i such that λi = 0 for all μi ≤ μ0i . If

μi = μl then λi(μ) = λ/2. The condition R > r1 ensures that λ/2 < μl, so it follows that

μ0i < μl. The server’s profit function is concave and decreasing for μi ≤ μ0i and concave and

continuous for μi > μ0i , although possibly not differentiable when λi(μ) = λ. For μi > μ0i ,

by construction of the parameters, πi is maximized with μi = μl and πi = 0 with μi = μl.

Therefore, μl is optimal for server i. Lead times are finite because μl > λ/2. Next we

concentrate on uniqueness.

Suppose μ is a Nash equilibrium of the capacity game. The proof first rules out asymmetric

equilibrium with positive capacity for all servers and then equilibrium with μi = 0 for some

i are ruled out.

Suppose in some equilibrium μi > 0 for all i. It must be then that λi > 0 for all i

(otherwise server i would make negative profit). Thus, the first-order condition for each

server must be satisfied given n̂ = 2, but that yields μi = μl for all i because the solution to

each server’s first-order condition depends only on μi.

Now suppose there exists a μi = 0 in equilibrium. All servers choosing μi = 0 cannot

be an equilibrium because then one server could build a small amount of capacity and earn

positive profit. If server 1 has the only positive capacity, then server 1 receives λ1(μ) = λ

as long as μ1 > 0; this cannot be an equilibrium because then server 1’s optimal capacity is

some arbitrarily small capacity, which then allows the other server to build positive capacity

and earn positive profit. (The condition μi > 0 for all i ≤ n̂ in the allocation function is
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critical to this result.)

(ii) The proof is similar to (i), so it is omitted.¤
Proof of Theorem 4. For server i

∂πi(μ)

∂μi
= Rλβ

μβ−1i μβj

(
P

j μ
β
j )
2
− (2aμi + b), i = 1, 2.

Given R and β, simple algebra reveals that μi = μp is a symmetric solution to the first order

conditions and it is the only solution. If each server chooses μp, then each server earns a

zero profit. So it is an equilibrium if maxπi = 0. Differentiate:

∂2πi(μ)

∂μ2i
= Rλβ

μβ−2i μβj³
μβi + μβj

´3 h(β − 1)μβj − (β + 1)μβi i− 2a.
Note that β = 2μ̄c0(μ̄)/c(μ̄) > 2. It can be shown (see Zhang 2004 for details) that πi is

concave-convex-concave if μj = μp. Because πi = 0 and π
0
i < 0 when μi = 0, it must be that

maxπi = 0. Therefore, μ1 = μ2 = μp is the unique Nash equilibrium of the capacity game.¤
Proof of Theorem 5. First demonstrate that μi = μp for all i is a unique Nash equilibrium

when R > r2. The first-order conditions must be satisfied:

∂πi(μ)

∂μi
= Rλ

μj
(
P

j μj)
2
− c0(μi) = 0, i = 1, 2. (9)

The first-order conditions imply μi = μj, so the only solution must be μi = μp for all i.

The condition R > r2 ensures the solution to the first-order conditions has μi > λ/2, which

provides finite lead times. Now suppose R ≤ r2 and there is an equilibrium with finite lead

times. If the lead times are finite then the first-order conditions (9) hold and only μi = μj

satisfy them. Again, because lead times are finite, it must be that μi = μj > λ/2. Because

each first-order condition is increasing in R, each first-order condition is maximized with

R = r2, in which case (9) can be written as

c0(λ/2)λ/(2μi)− c0(μi) < 0

which means that μi = μj cannot be an equilibrium.¤
Proof of Lemma 6. See Kalai, Kamien, and Rubinovitch (1992).¤
Proof of Lemma 7. It is easy to determine that z(R) = μl/ (μl + λ/2) and the results follow

immediately given that μl ≥ λ/2.¤
Proof of Lemma 8. Each generates the maximum capacity, so c(μl) = Rl(λ/2) and c(μt) =
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Rt(λ/2), which imply Rl/Rt = c(μl)/c(μt). If waiting times are equivalent, then

μt
μ2t − (λ/2)2

=
1

μl − λ/2

which simplifies to μl/μt = 1− ρ2 + ρ.¤
Proof of Lemma 9. Server i’s profit is

πi(W ) = λi(W )R− c(μi (Wi, λi(W ))).

Let W be an equilibrium with μ1 (W1, λ1(W )) > μ̂. Define Wε = (W1 + ε,W2) and λε =

λ1(W )−λ1(Wε) : server 1 is allocated λε fewer units of demand because of the slower service

provided to the buyer. Next we show that there exists an ε > 0 that would increase server

1’s profit, which leads to a contradiction. The difference between the profit functions can be

written as

π1(W )− π1(Wε)

= λεR− [c(μ1 (W1, λ1(W )))− c(μ1 (W1 + ε, λ1(Wε)))].

We know that μ1 (W1, λ1(W )) > μ̂ implies c0(μ1 (W1, λ1(W ))) > R. Since λ1 is continuous,

for a sufficiently small ε, there is also c0(μ1 (W1 + ε, λ1(Wε))) > R. By assumption,

λε < μ1 (W1, λ1(W ))− μ1 (W1 + ε, λ1(Wε)) ,

i.e., the required capacity decreases more than demand when the server provides worse

service, we know that

λεR < c(μ1 (W1, λ1(W )))− c(μ1 (W1 + ε, λ1(Wε)))

or π1(W )− π1(Wε) < 0. Therefore, there exists an ε that would increase server 1’s profit.

As a result, W cannot be an equilibrium.¤

References
Allon, G., A. Federgruen. 2003. Competition in service industries. forthcoming Operations

Research.

Anton, J.J., D.A. Yao. 1989. Split awards, procurement, and innovation. Rand Journal of

Economics. 20(4) 528-552.

23

https://www.researchgate.net/publication/220244326_Competition_in_Service_Industries?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220244326_Competition_in_Service_Industries?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/24048692_Split_Awards_Procurement_and_Innovation?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/24048692_Split_Awards_Procurement_and_Innovation?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==


–, –. 1992. Coordination in split award auctions. The Quarterly Journal of Economics.

Anupindi, R., R. Akella. 1993. Diversification under supply uncertainty. Mgmt Sci. 39(8)

944-963.

Armony, M., E. Plambeck. 2005. The impact of duplicate orders on demand estimation and

capacity investment. Mgmt Sci. 51(10):1505-1518.

Bell, C., S. Stidham. 1983. Individual versus Social Optimization in the Allocation of Cus-

tomers to Alternative Servers. Mgmt Sci. 29. 831-839.

Benjaafar, S., E. Elahi, K. Donohue. 2004. Outsourcing via service quality competition.

forthcoming Management Science.

Bernstein, F., G. DeCroix. 2004. Decentralized pricing and capacity decisions in a multi-tier

system with modular assembly. Mgmt Sci. 50. 1293-1308.

–, F. de Vericourt. 2005. Competition for procurement contracts with service guarantees.

forthcoming Operations Research.

Bonser, J.S., S.D. Wu. 2001. Procurement planning to maintain both short-term and adap-

tiveness and long-term perspective. Mgmt Sci. 47(6) 769-786.

Cachon G.P., P.T. Harker. 2002. Competition and outsourcing with scale economies. Mgmt

Sci. 48(10) 1314-1333.

–, M.A. Lariviere. 1999a. Capacity allocation using past sales: when to turn and earn.

Mgmt Sci. 45(5) 685-703.

–, –. 1999b. Capacity choice and allocation: strategic behavior and supply chain perfor-

mance. Mgmt Sci. 45(8) 1091-1108.

–, –. 1999c. An equilibrium analysis of linear, proportional and uniform allocation of scarce

capacity. IIE Transactions. 31(9) 835-850.

Cachon, G.P., F. Zhang. 2006. Procuring fast delivery: sole-sourcing with information asym-

metry. Mgmt Sci. 52(6). 881-96.

Cachon, G.P., P.H. Zipkin. 1999. Competitive and cooperative inventory policies in a two-

stage supply chain. Mgmt Sci. 45(7) 936-953.

Chayet, S., W. Hopp. 2002. Lead time competition under uncertainty. Working paper, North-

western University.

24

https://www.researchgate.net/publication/24091352_Coordination_in_Split_Award_Auctions?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227445383_Individual_versus_Social_Optimization_in_the_Allocation_of_Customers_to_Alternative_Servers?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227445383_Individual_versus_Social_Optimization_in_the_Allocation_of_Customers_to_Alternative_Servers?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534316_Procuring_Fast_Delivery_Sole_Sourcing_with_Information_Asymmetry?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534316_Procuring_Fast_Delivery_Sole_Sourcing_with_Information_Asymmetry?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534504_The_Impact_of_Duplicate_Orders_on_Demand_Estimation_and_Capacity_Investment?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534504_The_Impact_of_Duplicate_Orders_on_Demand_Estimation_and_Capacity_Investment?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220535065_Decentralized_Pricing_and_Capacity_Decisions_in_a_Multitier_System_with_Modular_Assembly?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220535065_Decentralized_Pricing_and_Capacity_Decisions_in_a_Multitier_System_with_Modular_Assembly?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446541_Diversification_Under_Supply_Uncertainty?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446541_Diversification_Under_Supply_Uncertainty?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447218_Capacity_Allocation_Using_Past_Sales_When_to_Turn-and-Earn?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447234_Competitive_and_Cooperative_Inventory_Policies_in_a_Two-Stage_Supply_Chain?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447234_Competitive_and_Cooperative_Inventory_Policies_in_a_Two-Stage_Supply_Chain?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447421_Procurement_Planning_to_Maintain_Both_Short-Term_Adaptiveness_and_Long-Term_Perspective?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447421_Procurement_Planning_to_Maintain_Both_Short-Term_Adaptiveness_and_Long-Term_Perspective?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/226227618_An_equilibrium_analysis_of_linear_proportional_and_uniform_allocation_of_scarce_capacity?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/226227618_An_equilibrium_analysis_of_linear_proportional_and_uniform_allocation_of_scarce_capacity?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/280801421_Competition_and_outsourcing_with_scale_economies?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/280801421_Competition_and_outsourcing_with_scale_economies?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==


Chen, J., D.D. Yao, S. Zheng. 2001. Optimal replenishment and rework with multiple unre-

liable supply sources. Oper. Res. 49(3) 430-443.

Christ, D., B. Avi-Itzhak. 2002. Strategic equilibrium for a pair of competing servers with

convex cost and balking. Mgmt Sci. 48(6): 813-820.

Deshpande, V., L. Schwarz. 2002. Optimal capacity choice and allocation in decentralized

supply chains. Working paper, Purdue University.

Elmaghraby, W.J. 2000. Supply contract competition and sourcing strategies. MSOM. 2(4)

350-371.

Farlow, D., G. Schmidt, A. Tsay. 1996. Supplier management at Sun Microsystems (A).

Stanford Business School Case.

Gallien, J., L.M. Wein. 2005. A smart market for industrial procurement with capacity

constraints. Management Science. 51(1). 76-91.

Gilbert, S.M., Z.K. Weng. 1998. Incentive effects favor nonconsolidating queues in a service

system: the principle-agent perspective. Mgmt Sci. 44(12) 1662-1669.

Ha, A.Y., L. Li, S.-M. Ng. 2003. Price and delivery logistics competition in a supply chain.

Mgmt Sci. 49(9) 1139-1153.

Hassin, R., M. Haviv. 2003. To Queue or Not to Queue: Equilibrium Behavior in Queueing

Systems. Kluwer Academic Publishers.

Kalai, E., M.I. Kamien, M. Rubinovitch. 1992. Optimal service speeds in a competitive

environment. Mgmt Sci. 38(8) 1154-1163.

Koole, G. 1995. A simple proof of the optimality of a threshold policy in a two-server queuing

system. Systems and Control Letters. 26. 301-303.

Lederer, P.J., L. Li. 1997. Pricing, production, scheduling, and delivery time competition.

Oper. Res. 45(3) 407-420.

Li, C.-L., P. Kouvelis. 1999. Flexible and risk-sharing supply contracts under price uncer-

tainty. Mgmt Sci. 45(10) 1378-1398.

Li, L. 1992. The role of inventory in delivery-time competition. Mgmt Sci. 38(2) 182-197.

Lin, W.P. R. Kumar. 1984. Optimal control of a queuing system with two heterogeneous

servers. IEEE Transactions Automat. Control. 29. 696-703.

25

https://www.researchgate.net/publication/2362101_Optimal_Replenishment_and_Rework_with_Multiple_Unreliable_Supply_Sources?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/2362101_Optimal_Replenishment_and_Rework_with_Multiple_Unreliable_Supply_Sources?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/228338886_Optimal_capacity_choice_and_allocation_in_decentralized_supply_chains_Working_Paper?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/228338886_Optimal_capacity_choice_and_allocation_in_decentralized_supply_chains_Working_Paper?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/5074137_Pricing_Production_Scheduling_and_Delivery-Time_Competition?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/5074137_Pricing_Production_Scheduling_and_Delivery-Time_Competition?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534955_A_Smart_Market_for_Industrial_Procurement_with_Capacity_Constraints?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/220534955_A_Smart_Market_for_Industrial_Procurement_with_Capacity_Constraints?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446370_The_Role_of_Inventory_in_Delivery-Time_Competition?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446425_Optimal_Service_Speeds_in_a_Competitive_Environment?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446425_Optimal_Service_Speeds_in_a_Competitive_Environment?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447083_Incentive_Effects_Favor_Nonconsolidating_Queues_in_a_Service_System_The_Principal--Agent_Perspective?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447083_Incentive_Effects_Favor_Nonconsolidating_Queues_in_a_Service_System_The_Principal--Agent_Perspective?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447168_Flexible_and_Risk-Sharing_Supply_Contracts_Under_Price_Uncertainty?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447168_Flexible_and_Risk-Sharing_Supply_Contracts_Under_Price_Uncertainty?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447988_Supply_Contract_Competition_and_Sourcing_Policies?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447988_Supply_Contract_Competition_and_Sourcing_Policies?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447521_Strategic_Equilibrium_for_a_Pair_of_Competing_Servers_with_Convex_Cost_and_Balking?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447521_Strategic_Equilibrium_for_a_Pair_of_Competing_Servers_with_Convex_Cost_and_Balking?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==


Martinez de Albeniz, V., D. Simichi-Levi. 2003. Competition in the supply option market.

Working paper, MIT.

Minner, S. 2003. Multiple-server inventory models in supply chain management: a review.

International Journal of Production Economics. 81-82 265-279.

Nagarajan, M., Y. Bassok. 2003. A bargaining framework in supply chains. Working paper,

USC.

Naor, P. 1969. On the regulation of queue size by levying tolls. Econometrica. 37. 15-24.

Pyke, D., E. Johnson. 2003. Sourcing strategies and server relationships: alliances vs. epro-

curement. Forthcoming inThe Practice of Supply Chain Management, eds. C. Billington,

H. Lee, J. Neale, T. Harrison. Kluwer Publishing.

Rubinovitch, M. 1985a. The slow server problem. J. of Applied Prob.. 22 205-213.

Rubinovitch, M. 1985b. The slow server problem: a queue with stalling. J. of Applied Prob..

22 879-892.

Sedarage, D., O. Fujiwara, H.T. Luong. 1999. Determining optimal order splitting and re-

order level for N-server inventory systems. Euro. J. of Oper. Res. 116 389-404.

Seshadri, S. 1995. Bidding for contests. Mgmt Sci. 41(4) 561-576.

–, K. Chatterjee, G.L. Lilien. 1991. Multiple source procurement competitions. Marketing

Sci. 10(3) 246-263.

So, K.C. 2000. Price and time competition for service delivery. MSOM. 2(4) 392-409.

Talluri, S. 2002. A buyer-seller game model for selection and negotiation of purchasing bids.

Euro. J. of Oper Res. 143(1) 171-180.

Walgrand, J. 1984. A note on “Optimal control of a queuing system with two heterogeneous

servers”. Systems Control Letters. 4. 131-134.

Wang, Y., Y. Gerchak. 2003. Capacity games in assembly systems with uncertain demand.

MSOM, 5(3) 252-267.

Yoffie, D.B. 1990. The global semiconductor industry, 1987. In International Trade and

Competition: Cases and Notes in Strategy and Management. D.B. Yoffie (ed). McGraw-

Hill. New York. 389-413.

Zhang, F. 2004. Coordination of lead times in supply chains. Dissertation, University of

26

https://www.researchgate.net/publication/227442002_Multiple_Source_Procurement_Competitions?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227442002_Multiple_Source_Procurement_Competitions?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/4803415_Competition_in_the_Supply_Option_Market?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/4803415_Competition_in_the_Supply_Option_Market?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227448049_Capacity_Games_in_Assembly_Systems_with_Uncertain_Demand?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227448049_Capacity_Games_in_Assembly_Systems_with_Uncertain_Demand?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/222688519_A_buyer-seller_game_model_for_selection_and_negotiation_of_purchasing_bids?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/222688519_A_buyer-seller_game_model_for_selection_and_negotiation_of_purchasing_bids?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/5202445_The_Slow_Server_Problem_A_Queue_with_Stalling?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/5202445_The_Slow_Server_Problem_A_Queue_with_Stalling?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/4894358_The_Regulation_of_Queue_Size_by_Levying_Tolls?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227446751_Bidding_for_Contests?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/265367675_The_Slow_Server_Problem?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/227447990_Price_and_Time_Competition_for_Service_Delivery?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/248743533_Determining_optimal_order_splitting_and_reorder_levels_for_n_-_supplier_inventory_systems?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==
https://www.researchgate.net/publication/248743533_Determining_optimal_order_splitting_and_reorder_levels_for_n_-_supplier_inventory_systems?el=1_x_8&enrichId=rgreq-be02010631d374a752f08100adc52fc3-XXX&enrichSource=Y292ZXJQYWdlOzIyMDUzNDgwMDtBUzoyMDE2ODI3NzMzODUyMjhAMTQyNTA5NjMyODk2Nw==


Pennsylvania.

27



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4 6 8 10 12 14 16 18 20 22 24 26 28 30
R

Le
ad

 ti
m

e

t l bs p c

 
Figure 1: The lead time received by the buyer as a function of the price paid, R, and the 

allocation policy with capacity cost ( ) 4i ic μ μ=  and λ = 1.  t = threshold policy, l = 
linear allocation, bs = Bell-Stidham, c = common queue, p = proportional allocation 
with β = 1. (Balanced allocation is not included because an equilibrium does not exist 
in this setting.)  
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Figure 2: The lead time received by the buyer as a function of the price paid, R, and the 

allocation policy with capacity cost 2( ) 4i ic μ μ=  and λ = 1.  t = threshold policy, l = 
linear allocation, b = balanced allocation, bs = Bell-Stidham, c = common queue, p = 
proportional allocation with β = 1. 
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