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Abstract

We analyze the competitive capacity investment timing decisions of both established firms
and start-ups entering new markets which are characterized by a high degree of demand uncer-
tainty. Firms may invest in capacity early (when the market is highly uncertain) or late (when
market uncertainty has been resolved), possibly at different costs. In our model, established
firms choose investment timing and capacity level to maximize expected profits. Start-ups are
prone to bankruptcy if profit turns out to be too low, and hence choose investment timing and
capacity level to maximize the probability of survival. Surprisingly, we find that in monopoly
situations, a start-up is more likely to prefer early investment than an established firm, despite
the presence of demand uncertainty. In duopoly situations with one start-up and one estab-
lished firm competing in the same market, we characterize the equilibria of a strategic capacity
investment timing game in which firms choose when to build capacity. We find that when
demand uncertainty is high and costs do not decline too severely over time, the unique equilib-
rium of this game is for the start-up to take a leadership role and invest first in capacity while
the established firm follows; by contrast, when two established firms compete in an otherwise
identical game, high demand uncertainty leads to both firms investing late. Thus, the threat of
bankruptcy leads to an increase in sequential investment outcomes in which the start-up leads,
a result that we demonstrate persists even if the start-up is concerned with both profit and
bankruptcy risk or profit above the bankruptcy threshold. We conclude that the threat of firm
failure significantly impacts the dynamics of competition involving start-ups.

1 Introduction

Firms entering new markets face numerous operational challenges. Among the most crucial are

issues related to capacity investment. Particularly when the size of a market is uncertain, two

∗A previous version of this paper was titled “Capacity Investment by Competitive Start-ups.” The authors thank
the Mack Center for Technological Innovation at the Wharton School for support of this project, and the Department
Editor, Associate Editor, and three anonymous referees for many helpful comments.

1



common yet diffi cult decisions are how much capacity to invest in, and when to do it. When choos-

ing how much capacity to build or reserve with a supplier, the trade-off is clear: too much capacity

results in underutilized facilities (if output is reduced to match market demand) or depressed prices

(if output remains high despite low demand), while too little capacity results in reduced sales and

suboptimal profit and growth.

Timing the capacity investment decision presents even subtler considerations. Uncertainty

surrounding market size typically reduces over time, meaning a firm that invests in capacity early

is subject to a higher degree of demand uncertainty than a firm that postpones the investment

decision. On the other hand, in competitive situations, a firm investing earlier than its rivals

becomes the first-mover in the market, which may yield a strategic advantage. Indeed, the cost

of capacity itself may change over time, either increasing (e.g., if contract capacity becomes scarce

as the market matures) or decreasing (e.g., if learning enables lower-cost processes). These factors

combine to make the decision of when to invest in capacity just as diffi cult and perilous, if not more

so, as the decision of how much capacity to build or purchase.

The timing of capacity investment when entering new markets is precisely the issue that we

consider. We first examine stylized monopoly models in which the sole entrant to a new market

must build or source capacity in anticipation of future demand. Eventual market size is uncertain,

and the firm is allowed to invest in one of two periods: if the firm invests early, then it makes

the capacity decision before knowing market size, whereas if it invests late, all demand uncertainty

is eliminated and capacity is built or sourced after learning market size. The cost of capacity is

allowed to vary between periods. Thus, a monopolist firm must trade off the value of information

(which is gained if the investment decision is delayed) with potential cost advantages from early

investment.

Because new markets are often pursued by nascent firms, we focus on how the timing of capacity

investment differs between start-ups and established firms. We consider the primary difference

between these two types of firms to be the threat of bankruptcy or firm failure. Large established

firms diversifying into new markets are unlikely to face imminent peril should demand in that market

turn out to be low; start-ups, on the other hand, are typically smaller firms wholly invested in a

single market, and thus, to a far greater extent than their established counterparts, face potentially

disastrous consequences should the market fail to materialize as expected. The presence of this risk,
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combined with the high degree of demand uncertainty that typically accompanies the development

of a new market, implies that start-ups should have a utility function which takes into account

the risk and consequences of failure. Hence, in our model, the objective of a start-up is to time

the capacity investment decision to maximize the probability of survival. Established firms, by

contrast, do not face an imminent risk of failure, and hence make capacity decisions to maximize

expected profit.

In the monopoly setting, we examine how start-ups differ in their capacity timing decisions from

established firms, characterizing how market uncertainty, capacity costs, and the threat of failure

influence both capacity levels and investment timing. We find that established firms are likely

to prefer late investment even if early investment is cheaper, because the flexibility to respond to

market conditions engendered by late investment allows the firm to capture higher profits, particu-

larly in high demand states. By contrast, start-ups prefer to invest in capacity whenever capacity

is least expensive—that is, if capacity costs increase over time, start-ups prefer early investment—

because lower capacity costs minimize the threshold market size that results in firm survival and

hence maximize the probability of survival.

We then proceed to analyze duopoly models in which two firms simultaneously consider entry

into a new market. In addition to all of the trade-offs inherent in the monopoly model, the

competitive interaction introduces a strategic aspect to the capacity investment timing decision:

a firm investing earlier than a competitor may gain a leadership position in a sequential game.

We find that when a start-up competes with an established firm, if market uncertainty is high

(as in a new market) and costs do not decline severely over time, then the unique equilibrium is

for the start-up to invest early, while the established firm invests late. By contrast, when two

established firms compete, the only equilibrium when demand uncertainty is high is simultaneous:

both firms invest late. We thus conclude that the threat of failure experienced by a start-up tends

to push capacity investment earlier—in both monopolistic and competitive situations—and leads to

asymmetric investment timing equilibria in which start-up firms, remarkably, act as first-movers

in new markets, despite the apparent advantages of established firms in terms of resources and

technology.

In this regard, our findings relate to several streams of research, for example the literature on

disruptive innovation. The seminal works on this topic are Bower and Christensen (1995), Chris-
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tensen and Bower (1996), and Christensen (1997); Schmidt and Druehl (2008) provide a recent

review. A disruptive innovation is an improvement in a product or service that fundamentally

changes its cost, performance, or target market in new or unexpected ways.1 Such innovations are

typically enabled by scientific, technological, or process advancements; for example, the rise of inex-

pensive, physically compact desktop computers enabled the emergence of the personal computing

market over the minicomputer and mainframe markets, and the development of cheap, tiny digital

flash storage technologies helped contribute to the dominance of digital photography over film pho-

tography. A recurring question in this literature is: why do large, established firms typically fail

to embrace disruptive innovations early, while smaller start-up firms often take a leadership role

in bringing the innovations to market? Our model supports one possible answer to this question,

namely, that it is the natural equilibrium of an endogenous timing game between a start-up and

an established firm.

The remainder of this paper is organized as follows. §2 provides a brief review of the literature.

§3 analyzes the monopoly model, while §§4—5 analyze the duopoly model. §6 presents several

extensions to the basic model, and §7 concludes the paper.

2 Related Literature

There are three primary streams of research related to our work: the operations literature on ca-

pacity investment under uncertainty; the economics literature on competitive capacity investment;

and the strategic management literature on new market entry and disruptive innovation. The

latter topic was discussed in §1; here, we briefly review the remaining two broad areas, with further

references to relevant works included throughout the remainder of the paper.

Our model is one of capacity investment with stochastic demand. As such, it is related to

the extensive operations literature on this topic—see the comprehensive review by Van Mieghem

(2003). A number of papers consider the value of delaying capacity investment in order to obtain

more accurate demand information—see, e.g., the literature on postponement, such as Van Mieghem

1We abstract from the details of innovation and focus on the outcome of innovation resulting in highly uncertain
new markets; thus, while we use the term “disruptive” as it invokes an image of significant market upheaval and
uncertainty, innovation in our context could in fact be any of the four types of technological change described by
Lange et al. (2009)—sustaining, disruptive, architectual, and competence destroying discontinuities—so long as the
result is uncertainty in the size of the resultant market.
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and Dada (1999), Anand and Girotra (2007), and Anupindi and Jiang (2008), though these works

differ from ours in that they do not consider the possibility of firm bankruptcy and the implications

it may have on the timing incentives of a start-up firm. Some works of particular relevance in

this stream include Archibald et al. (2002), Babich et al. (2007), Babich (2008), Swinney and

Netessine (2009), and Boyabatli and Toktay (2007), all of which consider the impact of bankruptcy

risk on capacity or inventory decisions. Tanrisever et al. (2008) consider the related issue of

simultaneous investment into capacity and process improvement in the presence of bankruptcy.

While these papers address various consequences of bankruptcy on operational decisions (including

process development, capacity levels, financial subsidies to suppliers, and contracting and sourcing

strategies), no paper in the literature, to our knowledge, considers the impact of bankruptcy or firm

failure on capacity investment timing. Indeed, there is a relative lack of research in the operations

literature on the topic of capacity investment timing for entry into new markets.

We analyze duopoly models consisting of two firms strategically investing in capacity before

either begins to sell in the market. Similar models, frequently referred to as “endogenous leadership

games”in the economics literature, have been studied by Gal-Or (1985), Saloner (1987), Hamilton

and Slutsky (1990), Maggi (1996), and Bhaskaran and Ramachandran (2007). Maggi (1996)

considers an endogenous leadership game with demand uncertainty, much like ours, although two

key differences are that the differing objectives of start-ups (and hence the impact of bankruptcy)

are not considered, and further capacity investment may occur in multiple periods (whereas in our

model, capacity investment occurs in at most one period, due to, e.g., high fixed costs). Also

related along these lines is the long stream of research on capacity investment for entry deterrence,

pioneered by Spence (1977).

Lastly, there is an extensive literature on entry timing for reasons not related to strategic

capacity investment. Some examples include social influence (Joshi et al. 2009), quality or cost

improvements (Lilien and Yoon 1990), product technology (Bayus and Agarwal 2007), and product

design (Klastorin and Tsai 2004). Our paper differs from these by focusing solely on the impact of

bankruptcy risk on capacity investment timing under demand uncertainty, and exploring how such

risk impacts timing in duopolistic settings.
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3 Monopolistic Firms

In this section, we introduce and analyze two different monopoly models of capacity investment

timing in a new market with uncertain demand: §3.1 discusses an established, profit-maximizing

firm, while §3.2 considers a start-up prone to bankruptcy. The established firm model is a relatively

standard formulation, and serves as a vehicle to introduce the dynamics of our setting and also as a

baseline for comparison with the bankruptcy-prone start-up. We defer all discussion of competition

until §4.

3.1 A Monopolistic Established Firm

An established firm (denoted by the subscript e) sells a single product.2 The quantity of the

product released to the market is Qe. The market price is given by the linear demand curve

p (Qe) = A−Qe. Prior to determining the production quantity, the firm must invest in production

capacity Ke which determines its maximum output. This capacity may be internal to the firm

(e.g., if the firm in question is a manufacturer) or external (e.g., if the firm outsources production

to a contract manufacturer). There is no constraint on the total amount of capacity that can be

built or reserved in either case.

Capacity investment may occur at one of two times: either early or late. Early investment

is suffi ciently far in advance of the selling season that the total market size is uncertain. The

uncertainty in market size is reflected in the demand intercept, A, which is modeled as a continuous

random variable with positive support, distribution function F , mean µ, and variance σ2.

Late investment, on the other hand, is suffi ciently close to the start of the selling season that all

uncertainty in A is eliminated—hence, capacity investment is made after observing the realized value

of A. Demand uncertainty may be reduced or eliminated via a variety of mechanisms. For example,

uncertainty may be resolved exogenously if demand depends highly on overall market or economic

conditions at the time of product release, or if demand is a function of overriding consumer trends

in the category. The firm may take actions to resolve demand uncertainty, such as performing

extensive market research, employing consumer focus groups, or working with retailers to improve

2We implicitly assume that the established firm—diversifying into the new market—has already evaluated the
impact (if any) that market entry will have on sales of its existing products, and determined that entry is profitable;
Druehl and Schmidt (2008) analyze this related problem of how new market entry can encroach on sales of existing
(substitutable) products.
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forecasts. Lastly, the firm may even produce some (economically insignificant) number of units

(e.g., using outsourced capacity) to sell in test markets, postponing full capacity investment until

a later date.

Regardless of when the firm chooses the capacity, the production quantity (Qe) is determined

after A has been observed and Ke has been fixed (i.e., just before the selling season), and hence

output is subject to the constraint Qe ≤ Ke. We assume that capacity investment, whenever it is

made, is irreversible. Furthermore, capacity investment can occur in at most one period.3 The

total capacity cost is linear in the amount of capacity reserved, and the marginal cost of capacity

may vary over time. The unit cost in the early period is denoted c1 and the unit cost in the

late period is denoted c2. We make no ex-ante assumption on the ordering of c1 and c2. Costs

that decrease over time (i.e., c1 > c2) may be reflective of exogenous technological or process cost

improvements, innovation, or raw materials cost decreases; similarly, costs that increase over time

(c1 < c2) could occur if contract manufacturers offer a discount for early investment, if capacity

in the later period is scarce, or if second period capacity must be installed more quickly, incurring

expedited construction or configuration costs. The reasons behind inter-temporal cost variation are

outside the scope of this paper; rather, we will present results that hold conditional on a particular

cost trend.

The marginal production cost is zero, and for analytical tractability, we assume that the firm

adheres to a production clearance strategy: that is, the firm always produces up to its capacity and

releases the maximum quantity to the market, Qe = Ke. (The issue of holdback, i.e., producing

a quantity less than the total capacity, is discussed in §6.3.) The established firm, being a large,

diversified company, faces minimal risk of bankruptcy as a result of entry into this new market—

hence, facing uncertainty in market size (A), the established firm seeks to maximize expected profit,

which is denoted E (πe (Ke)), where the absence of the expectation operator, πe (Ke), is used to

denote profit for a particular realization of A. Throughout the analysis, optimal values (capacities,

profits, etc.) are denoted by the superscript ∗.
3 In reality, firms may be able to invest in capacity in multiple periods. Allowing such an option clearly does not

impact the evaluation of deferred (late) investment, though it may increase the value of early investment. If fixed
costs of capacity installation or expansion are high, then the value of an option to invest in both periods is relatively
low—in the extreme case, if fixed costs are high enough, then firms will only invest in capacity in one period. This is
the case that we consider.

7



Given this formulation, the firm’s optimal expected profit from early capacity investment is

E (π∗e) = max
Ke≥0

E ((A−Ke − c1)Ke) , (1)

while the firm’s optimal expected profit from late capacity investment is

E (π∗e) = E
(

max
Ke≥0

((A−Ke − c2)Ke)

)
. (2)

Thus, when the firm is deciding whether or not to invest in capacity in the early period, it must

compare (1) with (2). The following theorem provides the details of the optimal capacity timing

and investment level.

Theorem 1 A monopolist established firm prefers early investment if and only if

σ2 < (µ− c1)2 − (µ− c2)2, (3)

yielding optimal capacity K∗e = (µ − c1)/2 and expected profit E (π∗e) = (µ − c1)2/4. Otherwise,

the firm prefers late investment, yielding optimal capacity K∗e = (A − c2)/2 and expected profit

E (π∗e) = (µ− c2)2/4 + σ2/4.

Proof. All proofs appear in the appendix.

As Theorem 1 demonstrates, an established monopolist prefers early investment if and only if

equation (3) holds, i.e., if demand uncertainty is low and early investment is cheaper than late

investment (c1 < c2). Note that if capacity costs decrease over time (c1 > c2), the firm prefers

late investment for any feasible variance (i.e., for any σ2 ≥ 0). If capacity costs increase over

time (c1 < c2), the firm may prefer early or late investment, depending on the level of demand

uncertainty.

3.2 A Monopolistic Start-up

A common feature of new markets, particularly those enabled by ground-breaking or unforeseen

technological innovation, is that they are characterized, ex ante, by a large amount of demand

uncertainty. Thus, far more so than their established counterparts, smaller start-up firms are
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exposed to a serious risk: the risk of bankruptcy or firm failure, should demand turn out to be low.

Consequently, while it is quite natural to assume that established firms make decisions to maximize

expected profits, it is less clear that start-ups should or do behave in the same way: as Radner and

Shepp (1996) and Dutta and Radner (1999) demonstrate, a firm prone to bankruptcy that purely

maximizes expected profit over an infinite horizon will fail with probability one. The objective

of a start-up should, then, take into account the acute risk of failure associated with entry into a

new market. This implies that firms particularly prone to bankruptcy—for our purposes, start-ups

entering new markets—in fact have a utility function that depends both on operating profit and the

risk of failure, e.g.,

Total Utility = Operating Profit − Cost of Bankruptcy × Probability of Bankruptcy, (4)

where the “cost of bankruptcy”represents either real costs (e.g., default penalties on loans), or a

virtual penalty term embodying the expected consequences of bankruptcy.4 This type of utility

function can be found, for example, in the seminal paper by Greenwald and Stiglitz (1990) and in

Brander and Lewis (1988) and Walls and Dyer (1996). If the probability of default due to the

outcome of this particular market is very low, then the firm may safely ignore the last term and

simply maximize expected operating profits; this would be the case with large, established firms

considering diversifying entry into a new market that represents a small potential fraction of their

total business. Our model in the preceding section addressed precisely this scenario.

Alternatively, if the cost of bankruptcy is large compared to the assets of the firm and would

result in financial ruin, or if the probability of bankruptcy is high (either of which is likely to be the

case for a start-up), the second term dominates the expression; the maximization problem may then

be thought of as approximately equal to minimizing the probability of bankruptcy or, equivalently,

maximizing the probability of survival. As a result, in what follows, we assume that the presence

of failure risk implies that start-ups have a different objective than established firms: instead of

maximizing expected profits, they maximize their chance of survival. Essentially, while any firm

has a true profit function that accounts for both operating profits and the chance of bankruptcy as

4From the accounting and financial points of view, the meaning of the word “bankruptcy”is often complex and does
not necessarily imply that the company fails; the actual event of bankruptcy can have varying degrees of consequence
to a firm, ranging from reorganization (Chapter 11 bankruptcy) to total liquidation (Chapter 7 bankruptcy). When
using this term we simply imply that the company becomes insolvent and ceases to exist due to the negative cash-flow.
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depicted in (4), we examine extreme cases: established firms are entirely concerned with operating

profits while start-ups are entirely concerned with the probability of bankruptcy. As Chod and

Lyandres (2008) discuss, the owners of private firms (e.g., start-ups in our model) are typically less

diversified than the owners of public firms (established firms in our model), and hence are more

sensitive to the risk inherent in a single venture and the corresponding chance of failure. Thus, it’s

reasonable that start-ups and established firms have different objectives—see Chod and Lyandres

(2008) and references therein for a detailed discussion of this matter. This dichotomization of

the objective function, while stylized, allows us to obtain sharp results; we extend our analysis

numerically to the case of other, more complicated, objective functions in §6.4.

Consequently, the details of the model are identical to those introduced in §3.1, except for the

objective function of the firm. We use the subscript s to denote a start-up firm. The start-up

seeks to time its capacity investment and set the precise capacity level in order to maximize the

probability of survival, denoted ψs(Ks). We assume that survival occurs for the start-up if, at the

end of the selling season, total revenues are greater than debt, where debt is defined to be the sum

of two components: fixed, capacity-independent debt α, and variable, capacity-dependent debt,

which is linear in the installed capacity.

The fixed component of debt, α, is an exogenous parameter which may represent, for example,

loans taken to fund initial start-up expenses, overhead, market research, or R&D costs. This

aspect of the start-up’s debt is pre-existing and fixed at the start of our model, and the terms of

the loan are structured such that α must be repaid after the start-up begins generating revenues.

In other words, the start-up raises capital in multiple rounds; early rounds fund R&D and start-up

expenses while late rounds fund capacity investment. We analyze the stage of the game after the

early rounds but before the later rounds, i.e., after the start-up’s initial capital structure, R&D

expenses, etc. have been fixed, similar to the second stage of the two-stage capital structure and

capacity games analyzed in Brander and Lewis (1986) and Brander and Lewis (1988).

The variable component of debt, linear in the capacity level, is only raised at the time that

capacity is installed. Regardless of when the capacity investment is made (early or late) the terms

of the loan state that repayment occurs after the start-up has generated revenues, i.e., at the end of

the selling season. Consequently, the start-up must generate enough operating revenue during the

selling season to pay both components of its debt; otherwise, it will fail. In other words, survival
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Figure 1. The sequence of events in the monopolistic start-up model.

occurs if

Operating Revenue ≥ α + Capacity Costs,

or, equivalently, if operating profit (revenues minus capacity costs) is greater than the fixed debt

α. The sequence of events is summarized in Figure 1.5

In what follows, we assume that the start-up’s capacity costs are identical to the established

firm analyzed in the preceding section (c1 and c2 for early and late investment, respectively), with

the understanding that, in general, the cost of capacity may be different for a start-up, particularly

if the cost of capital differs from an established firm. §6.2 explores a generalization of our model

with heterogeneous capacity costs.

The optimal survival probability from early investment is thus

ψ∗s = max
Ks≥0

Pr ((A−Ks − c1)Ks ≥ α) , (5)

while the optimal survival probability from late investment is

ψ∗s = Pr

(
max
Ks≥0

((A−Ks − c2)Ks) ≥ α
)
. (6)

Note that, in equation (6), we have assumed that a start-up investing late, no longer subject to

5 In reality, financing costs (and hence the cost of financed capacity and the probability of bankruptcy) would be
determined in a creditor-firm equilibrium and may be a function of existing debt (α), the amount of installed capacity
(K), and the default risk of the firm. Moreover, we have not addressed the case when some capacity is funded using
internal equity and some capacity is paid for by financing. We make a simplifying assumption that financing costs
are exogenous and all capacity is paid for by financing to obtain insights into the competitive timing game; however,
analysis of the full equilibrium with internal equity and endogenous financing costs may prove to be an interesting
direction for future work.
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any uncertainty in demand, chooses a capacity level to maximize profit; at this stage, the start-up

does not maximize the probability of survival because the lack of uncertainty makes this quantity

ill-defined. However, by maximizing profit after observing market size under late investment, the

start-up survives in the largest number of demand states of any possible alternative strategy, and

hence this strategy is optimal in terms of maximizing the ex-ante survival probability. (Also, we

observe that it’s possible for A to be suffi ciently low that survival is impossible. In this case,

the start-up still enters the market and invests in the profit maximizing capacity despite the fact

that it is doomed to failure. Because the start-up is already accountable for the initial debt, α,

it cannot avoid bankruptcy by investing in zero capacity. But building the profit maximizing

capacity ensures that the start-up’s lenders can be repaid to the greatest extent possible—as might

be the case, e.g., if the start-up enters bankruptcy and its assets are managed to repay as much

debt as possible before liquidation.)

The following theorem describes the optimal investment timing and capacity decisions, given

equations (5) and (6).

Theorem 2 A monopolist start-up prefers early investment if and only if c1 < c2, yielding optimal

capacity K∗s =
√
α and survival probability ψ∗s = 1 − F (2

√
α+ c1). Otherwise, the firm prefers

late investment, yielding optimal capacity K∗s = (A − c2)/2 and survival probability ψ∗s = 1 −

F (2
√
α+ c2).

Theorem 2 demonstrates that a start-up prefers early investment only if costs increase over time

(c1 < c2). If costs decrease over time, the start-up prefers late investment. While the latter result

is identical to the established firm case, the former is not; Theorem 1 shows that the established

firm can prefer late investment even if costs increase over time, so long as demand uncertainty is

large enough. Thus, we conclude from Theorems 1 and 2 that, given any particular set of problem

parameters, a monopolistic start-up is more likely to prefer early investment than an established

firm.

It is somewhat counterintuitive that a start-up, prone to such serious consequences should

failure occur, is more willing to invest in capacity early than an established firm (given that the

two firms have equal capacity costs); moreover, the start-up’s decision is curiously unaffected by

the degree of demand uncertainty. The reason for the latter result is that the start-up maximizes
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the probability of survival by maximizing the range of demand outcomes in which it survives.

To accomplish this, it chooses the capacity that leads to survival at the lowest possible demand

threshold—with this capacity level, the firm will survive for all higher demand realizations. This

threshold demand level is independent of the demand variance, hence variance does not impact the

start-up’s survival-maximizing capacity decision.

In addition, because the start-up chooses the capacity level which ensures survival over the

largest range of demand outcomes, the ability to respond to demand via late investment is not

valuable to the start-up; late investment does not change the minimum demand level which ensures

survival, and hence does not increase the start-up’s survival probability. What does impact survival

probability is capacity cost: lower capacity costs lead to a lower survival threshold and hence a

greater survival probability. Consequently, as Theorem 2 shows, when capacity costs change over

time, the survival probability will be greater in the lower cost period, which leads to the result that

the start-up prefers to invest in the period with the lowest cost.

Lastly, we observe that the expression for the optimal capacity level under early investment,

K∗s =
√
α, can lead to seemingly counterintuitive behavior. The fact that the optimal capacity

is independent of both demand uncertainty and cost is a consequence of our stylized objective

function; a more complicated (and realistic) objective function that incorporates both profit and

bankruptcy risk will, in general, yield optimal capacities dependent on α, demand uncertainty, and

capacity costs.

Qualitatively, however, the insights generated by these stylized results are compelling. For

instance, if α is very small the optimal capacity is also very small, suggesting the start-up is

very risk-averse for a small bankruptcy threshold; if α is very high, the optimal capacity is also

large, suggesting the start-up is very risk-seeking when the chance of bankruptcy is high. But a

start-up maximizing the probability of survival is neither risk-averse nor risk-seeking: it is averse

to bankruptcy. The optimal capacity K∗s =
√
α is entirely consistent with a notion of avoiding

bankruptcy: if α is small, bankruptcy can only occur if demand is very low relative to capacity,

hence the optimal action (to minimize the chance of bankruptcy) is to set a very small capacity;

similarly, if α is very large, survival can only occur if demand is high and the firm can capitalize

on this, so the optimal action is to set a high capacity and “hope for the best.” Thus, a start-up

at high risk of bankruptcy (high α) can act in a seemingly aggressive manner, while a start-up
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with a low risk of bankruptcy (low α) has far greater incentive to be conservative in its capacity

investment; this type of behavior will play a key role in determining the outcome of competition in

the following sections.

4 Duopoly Model

We now move to the duopoly model. The details of the model are identical to the monopoly

model addressed in the previous section, except there are now two firms competing with perfectly

substitutable products in the new market. One firm is a start-up (denoted s) and maximizes

the probability of survival, while the other is an established firm (denoted e) that maximizes

expected profit. The quantity of the product released to the market by firm i is Qi, i ∈ {s, e}.

The market price of the product is given by the linear demand curve p (Qi, Qj) = A − Qi − Qj .

As before, A is a random variable with positive support, distribution function F , mean µ, and

variance σ2. Firms have identical capacity costs, which, as in the monopoly case, may vary over

time (heterogeneous costs are discussed in §6.2). Note that we implicitly assume that neither firm

is an incumbent in the market, thus a typical nomenclature in the disruptive innovation literature—

entrant vs. incumbent firms—does not exactly apply to our model. It might be natural, though,

to assume that the established firm is an incumbent in a related market or industry. Examples

of this scenario include: Amazon.com and Barnes & Noble, both of whom entered the online book

space at roughly the same time, despite the fact that Barnes & Noble was an “incumbent”in the

related market of brick-and-mortar book retailing; and Webvan, a start-up which competed with

existing traditional grocery stores in the emergent online grocery market in the early 2000s.

Before the early period (e.g., during an even earlier “decision period”), the firms simultaneously

make their capacity timing decision. Each firm has two possible actions: either commit to invest

in the early period, or commit to delay until the late period. We assume that these actions are

credible and irreversible. This initial game is referred to as the investment timing game, or merely

the timing game. There are four possible pure-strategy outcomes to the timing game: both firms

invest early, both firms defer until the late period, and the two asymmetric outcomes in which one

firm invests early and one firm invests late. The timing game, and the abbreviations used to refer
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Established Firm Early Established Firm Late
Start-up Early (E,E) (E,L)
Start-up Late (L,E) (L,L)

Table 1. The four possible sequences of moves and their abbreviations.

Figure 2. The sequence of events in the duopoly model.

to its outcomes, are depicted in Table 1.6

The capacity subgame then unfolds according to the sequence of moves determined by the timing

game. In the late period, we assume all actions from the early period are publicly observable (e.g.,

if the established firm invests in the early period and the start-up defers, the start-up observes the

precise capacity level of the established firm at the beginning of the late period before choosing

its own capacity level). Thus, in addition to the informational and cost considerations from the

monopoly model, there are strategic factors in play with the timing of capacity investment: if one

firm moves early and the other moves late, the early-moving firm enjoys a leadership position in

a sequential game while the late-moving firm is a sequential follower. As before, we assume that

capacity investment is irreversible, and firms may invest in capacity in at most one period. The

sequence of events is depicted in Figure 2.

In the following four lemmas, we analyze the equilibria to each of the four capacity subgames

6We note that while we consider a first stage investment timing game with embedded capacity subgames for its
analytical convenience, this game is equivalent to a game in which firms do not first decide on an investment time,
but rather simultaneously decide whether and how much to invest in the early period (i.e., whether to “invest now
or wait”), under one key condition: if a firm unilaterally deviates from a particular equilibrium investment sequence,
its competitor is allowed to optimally adjust capacity (but not investment timing) in response to this deviation. We
believe this is a plausible scenario in reality, as capacity investment is a lengthy process and hence a firm sensing its
competitor will deviate from a timing sequence (e.g., that the competitor will move from early to late investment)
seems likely to modify its capacity level in the midst of the investment/construction process.
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depicted in Table 1. Once we have derived these equilibria, we may in turn analyze the equilibrium

to the investment timing game.

We first consider the case in which both firms invest in capacity late, i.e., after observing A.

Because there is no randomness, as in the monopoly model, the start-up will choose capacity to

maximize profit. The following lemma describes the equilibrium capacity investments for each firm

in this game, in addition to providing the ex-ante survival probability of the start-up (ψ∗s) and the

ex-ante expected profit of the established firm (E (π∗e)).

Lemma 1 If both firms invest in capacity late, then equilibrium capacities are K∗e = K∗s = A−c2
3 .

The ex-ante equilibrium expected profit of the established firm is

E (π∗e) =
σ2 + (µ− c2)2

9
, (7)

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(
3
√
α+ c2

)
. (8)

We now move to the game in which the established firm invests late while the start-up invests in

capacity early, i.e., prior to observing A. The following lemma describes the equilibrium capacity

levels, expected profit, and survival probability.

Lemma 2 If the start-up invests early while the established firm invests late, equilibrium capacities

are K∗e = A−
√
2α−c2
2 and K∗s =

√
2α. The ex-ante equilibrium expected profit of the established

firm is

E (π∗e) =
σ2 +

(
µ− c2 −

√
2α
)2

4
, (9)

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(

2
√

2α+ 2c1 − c2
)
. (10)

We next consider the case in which both firms invest in capacity early, i.e., before observing the

value of A. Lemma 3 describes the equilibrium.
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Lemma 3 If both firms invest early, equilibrium capacities are K∗e = µ−
√
α−c1
2 and K∗s =

√
α.

The ex-ante equilibrium expected profit of the established firm is

E (π∗e) =
1

4

(
µ− c1 −

√
α
)2
, (11)

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(

2
√
α+

µ−
√
α+ c1
2

)
. (12)

Lastly, we address the case in which the start-up invests in capacity late while the established

firm invests in capacity early. The following lemma describes the resulting equilibrium.

Lemma 4 If the established firm invests early while the start-up invests late, equilibrium capaci-

ties are K∗e = µ−2c1+c2
2 and K∗s = 2A−µ+2c1−3c2

4 . The ex-ante equilibrium expected profit of the

established firm is

E (π∗e) =
(µ+ c2 − 2c1)

2

8
, (13)

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(

2
√
α+

µ− 2c1 + 3c2
2

)
. (14)

5 Equilibrium to the Timing Game

Having derived equilibria to each of the capacity investment subgames, we may now derive the

equilibrium to the investment timing game. The following theorem describes all of the possible

equilibria to this game:

Theorem 3 Let ∆c ≡ c1 − c2, let

Σ1 ≡
(
µ− c1 −

√
α
)2 − (µ− c2 −√2α

)2
(15)

and let

Σ2 ≡
9

8
(µ+ c2 − 2c1)

2 − (µ− c2)2 . (16)
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Then the following pure strategy equilibria to the investment timing game exist:

1. If σ2 < Σ1 and ∆c < 1
3

√
α, then both firms invest early.

2. If σ2 > Σ1 and ∆c < 3−2
√
2

2

√
α, then the start-up invests early while the established firm

invests late.

3. If σ2 > Σ2 and ∆c > 3−2
√
2

2

√
α, then both firms invest late.

4. If σ2 < Σ2 and ∆c > 1
3

√
α, then the start-up invests late while the established firm invests

early.

There are several interesting consequences of these results. First, we note that the equilibrium

regions are not exhaustive in covering the parameter space, nor are they mutually exclusive. As

a result, regions of no (pure strategy) equilibria can occur, as can regions of multiple equilibria

(in particular, regions in which late investment by both firms and early investment by both firms

are both possible equilibria). In all, there are six potential equilibrium regions to the investment

timing game: one region each for (L,L), (E,L), (L,E), and (E,E); one region in which (E,E) and

(L,L) are both possible; and one region in which no equilibrium exists. It may also be the case

that the regions of (L,E) equilibrium existence, non-existence and multiple equilibria are empty,

depending on the parameter values.

To help understand the behavior described in Theorem 3, it is useful to graphically compare

possible equilibrium outcomes to the monopoly case. Figure 3 does this for a typical scenario.

First, note that Figure 3a shows the optimal investment timing for a monopolist as a function of

the variance of demand (vertical axis) and the cost differential ∆c = c1−c2: the solid line represents

the boundary between early and late investment for a profit maximizing firm, while the dashed line

represents the boundary for a survival maximizing start-up. As the figure shows, the start-up

prefers early investment for a much larger portion of the parameter space.

Figure 3b depicts the timing equilibrium regions in the competitive model using the same

parameter values as Figure 3a. The first observation one can make is that in the competitive case,

early investment (for both firms) is far more likely. Moreover, if demand uncertainty is suffi ciently

high and costs do not decrease too much over time (∆c is not too large and σ2 is not too small,
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Figure 3. (a) Optimal investment timing for a monopolist. The solid line represents the boundary for an
established firm and the dashed line for a start-up firm. (b) Equilibria to the investment timing game

between a start-up and an established firm. In both examples, c1 = 1, α = 10, and µ = 20.

case (2) of the theorem), the unique equilibrium to the investment timing game is for the start-up

to invest early and the established firm to invest late.

This equilibrium precisely describes the situation discussed by Bower and Christensen (1995):

a new market enabled by disruptive technology with highly uncertain demand, in which a start-up

plays the role of leader and the established firm the role of follower. This occurs because of three

competing forces in the model. The first is that early investment is valuable due to first-mover

advantage in a sequential capacity game (if the competitor invests late). The second is that late

investment is valuable due to the ability to exploit demand variance. The third is that the cheaper

investment period is valuable due to cost savings, which can impact the value of either period.

As we have already seen in the monopoly model, the second reason does not impact a start-up;

hence, if costs do not decline severely over time, the start-up prefers early investment due to the

leadership position in the capacity game. (Note that, unlike the monopoly model, a start-up

facing competition from an established firm may invest early in capacity even if late investment is

cheaper.)

By contrast, the established firm does value late investment due to the ability to exploit demand

variance; hence, if variance is suffi ciently high, the established firm prefers late investment even

though it cedes a leadership position to the start-up. In particular, the start-up continues to choose

the minimum capacity level that ensures survival over the widest range of demand outcomes, and
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hence does not exploit its leadership position to greatly increase capacity as a profit-maximizing

firm might; consequently, it would appear that the established firm does not surrender as much by

following a start-up as it might by following another established firm, a hypothesis that we verify

in §6.1 by analyzing a model of two competing established firms.

We also observe that when costs decrease significantly over time, the picture can become compli-

cated. In particular, a unique equilibrium may exist (either both early or both late, or the start-up

following the established firm), multiple equilibria may exist, or a pure strategy equilibrium may

fail to exist. In the region of non-existence (denoted by the null symbol in Figure 3b), the start-up

prefers to invest at the same time as the established firm (i.e., the start-up would like to exploit

cost reduction and information but only if it does not mean giving up a leadership position), while

the established firm prefers to invest at the opposite time of the start-up. As a result, the outcome

of the game is unclear in this region (although, it should be noted, the region of non-existence

typically covers a very small portion of the parameter space). Moreover, it is possible for an (L,E)

equilibrium to exist if ∆c is suffi ciently large (or if α is suffi ciently small) and demand uncertainty

is small—however, this equilibrium never exists for the parameter values used to generate Figure

3. Indeed, the equilibrium does not exist for most reasonable parameter values, since the decline

in capacity costs over time must be very large relative to the mean demand and the bankruptcy

threshold α—for example, if c1 = 1 and c2 = 0.8, representing a 20% cost reduction from period 1

to period 2, then for (L,E) to be an equilibrium it must be true that the bankruptcy threshold

α < 0.77.

6 Extensions

6.1 Competition with Two Established Firms

In this section, we analyze an investment timing game identical to the one discussed in §5, with one

key difference: rather than competition between a start-up and an established firm, both firms are

established, profit maximizing firms. We assume, as before, that the firms are ex-ante identical in

all other respects. This allows us to compare the outcomes of the timing game with heterogeneous

firms to an otherwise identical game with two mature firms, thus isolating the impact of bankruptcy

risk on capacity investment timing. The following theorem presents the equilibrium to the timing
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game in this case.

Theorem 4 If two established firms compete in an investment timing game, then there exists some

threshold σ∗ such that, for all σ > σ∗, the unique equilibrium of the investment timing game is for

both firms to invest late.

As the preceding theorem demonstrates, a high degree of demand uncertainty leads to a unique

equilibrium outcome when established, profit-maximizing firms compete: both firms invest in ca-

pacity late. This is in stark contrast to the investment timing equilibrium when a start-up competes

with an established firm: in that case, we observed that high demand uncertainty can lead to equi-

librium outcomes in which the start-up acts as a sequential leader in the investment game. We

note that, in the game with two established firms, asymmetric outcomes can occur for lower de-

mand variability; however, they can never occur if demand variability is suffi ciently large, unlike the

model with one start-up and one established firm. Hence, we conclude that a start-up’s propensity

to avoid bankruptcy can have a significant effect on the dynamics of competition, particularly when

demand uncertainty is high in the context of new markets.

6.2 Firms with Heterogeneous Capacity Costs

In this extension, we return to the base model (one start-up and one established firm) and consider

the impact of heterogeneous capacity costs. For the sake of simplicity, we will assume that costs

are constant over time for both firms, since we have already explored the impact of time-varying

costs. Let the cost of the established firm be ce and the cost of the start-up be cs. Our analysis

of the asymmetric capacity games in fact already accommodates heterogeneous costs (since costs

in the base model varied over time, when firms invest at different times, costs are by definition

heterogeneous). Thus, we need only modify our analysis to account for heterogeneous costs in

the symmetric investment games. The following lemma summarizes the equilibria to the capacity

investment games:

Lemma 5 If firms have heterogeneous capacity costs that are constant over time, then:

1. (L,L) If both firms invest in capacity late, then equilibrium capacities are K∗e = A+cs−2ce
3 and
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K∗s = A+ce−2cs
3 . The ex-ante equilibrium expected profit of the established firm is

E (π∗e) =
σ2

9
+

(
µ+ cs − 2ce

3

)2
,

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(
3
√
α+ 2cs − ce

)
.

2. (E,L) If the start-up invests early while the established firm invests late, equilibrium capacities,

profits, and survival probabilities are identical to those derived in Lemma 2, with ce = c2 and

cs = c1.

3. (E,E) If both firms invest early, equilibrium capacities are K∗e = µ−
√
α−ce
2 and K∗s =

√
α.

The ex-ante equilibrium expected profit of the established firm is

E (π∗e) =
1

4

(
µ− ce −

√
α
)2
,

while the ex-ante equilibrium survival probability of the start-up is

ψ∗s = 1− F
(
µ+ 3

√
α+ 2cs − ce

2

)
.

4. (L,E) If the established firm invests early while the start-up invests late, equilibrium capacities,

profits, and survival probabilities are identical to those derived in Lemma 4, with ce = c1 and

cs = c2.

Armed with the equilibrium survival probabilities and expected profits, we may derive the

equilibrium to the capacity investment timing game:

Theorem 5 If firms have heterogeneous capacity costs that are constant over time, a unique equi-

librium to the timing game exists. Let

Σ1 ≡
(
µ− ce −

√
α
)2 − (µ− ce −√2α

)2
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and let

Σ2 ≡
µ+ cs − 2ce

2
√

2
.

Then the following pure strategy equilibria to the investment timing game exist:

1. If σ2 > Σ1, the start-up invests early while the established firm invests late.

2. If σ2 < Σ1 and
√
α > ce − cs, both firms invest early.

3. If σ2 < Σ2 and
√
α < ce− cs, the established firm invests early while the start-up invests late.

Intriguingly, when costs are constant over time but differ between the two firms, only one

equilibrium is possible when demand uncertainty is high: the start-up is the leader. This preserves

our main result—that bankruptcy risk leads to an increased frequency of equilibria in which start-ups

lead established firms—and demonstrates that it is not sensitive to the homogenous cost assumption.

6.3 Holdback

Throughout our analysis, we have assumed that firms always produce to their maximum capacity—

that is, both firms follow a production clearance strategy. From a modeling perspective this allows

for a simple and relatively clean analysis of the capacity investment decision—in the absence of

this assumption, closed form solutions for equilibrium capacities, profits, and survival probabilities

cannot be obtained—and moreover the clearance assumption may be thought of as the outcome of

selling the product at a series of different prices until capacity is exhausted or fully utilized, in

which case the “market price”is actually an average price. Additionally, firms frequently produce

at maximum capacity because of high fixed costs of starting and stopping the production process

(e.g., in the chemical or semiconductor industries): see Goyal and Netessine (2007).

From a practical standpoint, though, it may be unwise for a firm to always produce at maximum

capacity. Other papers (e.g., Chod and Rudi 2005) have demonstrated that a clearance assumption

typically has a negligible impact on analytical outcomes, however, it is useful to verify this result in

our setting. Hence, in this section, we discuss the impact of the alternative assumption: a holdback

strategy, in which the firms may produce any ex-post profit maximizing quantity subject to their

individual capacity constraints.
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It is first useful to consider the qualitative impact of holdback. In fact, our previous analysis

accommodates a holdback strategy whenever a firm invests late—this is because we assume that late

investment occurs after the resolution of demand uncertainty, hence the firm would never invest in

more capacity than necessary for maximizing profit (i.e., a firm investing in capacity late always

produces to full capacity). Thus, the analysis for any firm investing late is unchanged if holdback is

allowed. Furthermore, the analysis of a start-up investing early is also unchanged by the option of

holdback. Recall that a start-up investing early chooses the minimum capacity level that supports

survival—in other words, if a start-up invests in Ks units of capacity, it must sell all Ks units to

survive. As a result, a start-up investing early will always produce up to its maximum capacity

level if it survives; holdback could only occur in demand states in which the start-up does not

survive, which does not impact the start-up’s subsequent probability of survival.

It follows, then, that holdback only affects an established firm investing early. Intuitively,

granting such a firm the option of producing less can only increase the value of early investment

relative to late investment. Some incentive for late investment remains, though, particularly if

capacity costs are significant relative to marginal production costs; in that case, there is still value

to waiting for the resolution of demand uncertainty to avoid sinking excess money into costly

capacity. Hence, we postulate that allowing holdback increases the established firm’s incentives

for early investment without completely eliminating incentives for late investment.

While this thought experiment helps to understand the impact of holdback on firm profit, with-

out further analysis, it’s unclear how holdback affects the competing start-up’s survival probability

and the equilibrium of the timing game. To that end, we conducted a numerical study to explore

precisely this issue. The model employed in the study is identical to the one analyzed in the

rest of the paper, save for the fact that firms are allowed to engage in holdback. The additional

complication is that a quantity game occurs at the start of the selling season: after observing the

realized value of market size (A), firms choose production quantities to maximize profit, subject to

their individual capacity constraints. (As in the base model, production is assumed to be costless,

though positive production costs do not qualitatively change any results).

To analyze this more complicated model, we must make an additional assumption concerning

the order of moves in the quantity game. A variety of plausible options exist (e.g., the leader

in the capacity game is the leader in the quantity game; the established firm is the leader in the
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Parameter Values
Demand Distribution (A) Gamma

µ 10
σ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}
c1 1
c2 {0.333, 0.667, 1, 1.333, 1.667}
α {10, 20, 30, 40, 50}

Table 2. Parameter values used in numerical experiments.

quantity game due to greater market power; firms strategically time their quantity decisions just

as they do their capacity decisions). We choose the simplest sequence: simultaneous quantity

competition. Thus, the firms engage in capacitated Cournot competition in the quantity game—see

Gabszewicz and Poddar (1997) for a proof of existence of an equilibrium in this subgame (as well

as an analysis of a similar ex-ante capacity investment game, but with two profit-maximizing firms

moving simultaneously).

We examined 200 parameter instances consisting of every combination in Table 2, which were

selected to provide a wide range of possible scenarios (e.g., low to high demand variability, various

product margins, etc.). In each case, we calculated the equilibrium to the investment timing game

with holdback and with clearance. Comparing the incidence of specific equilibria between the two

possible assumptions allows us to determine the impact of holdback on our theoretical results.

Our results are summarized in the first two rows of Table 3. As expected, since the value of

early investment is higher with an option to produce less than capacity, early investment becomes

a more attractive option for the established firm with holdback: the established firm invests early

in only 10% of cases with clearance, but 63% of cases with holdback. Conversely, the impact on

the start-up’s equilibrium investment timing is far less: the start-up invests early in 79% of cases

with clearance and 86% of cases with holdback. Importantly, holdback never results in the reverse

sequential outcome (i.e., the established firm leading and the start-up following). Moreover, even

with the possibility of holdback, (E,L) equilibria in which the start-up leads still occur in roughly

one quarter of our numerical examples (although at a more moderate frequency than under the

clearance assumption).
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6.4 Alternative Objective Functions

In the preceding analysis, we assumed that the start-up chooses a capacity level and investment

time to maximize its probability of survival. As we discussed in the introduction, if the probability

of survival is low or the consequences of failure are severe, it is safe to assume that a start-up pays

little attention to immediate profits and focuses more on simply avoiding bankruptcy. However,

an interesting question is how the behavior of the start-up changes if it cares about both profit and

the probability of survival. Moreover, start-ups financing their activities may be subject to limited

liability should bankruptcy occur, which implies that while profit may be a factor in the objectives

of start-ups, it is only the profit above the bankruptcy threshold which truly matters (Jensen and

Meckling 1976, Brander and Lewis 1986). To that end, in this section we numerically examine

the impact of two alternative objective functions for a start-up. The first is referred to as the

integrated objective function, and is equal to the expected operating profit (π) minus an exogenous

bankruptcy penalty (D) times the probability of bankruptcy (1− ψ)

E (πs)−D × (1− ψs). (17)

As one might expect, since this objective is a linear combination of the previously analyzed survival

probability and profit objectives, the behavior of a firm choosing capacity and investment time to

maximize (17) lies somewhere between that a purely profit and a purely survival focused firm. In

particular, the firm places more weight on the potential cost advantages of early investment (because

this lowers the chance of bankruptcy) and less weight on the variance-exploiting advantages of late

investment than a purely profit maximizing firm. Consequently, depending on the precise value of

D (and hence the relative weight placed on each portion of the objective function), the equilibria to

the timing game resembles a mixture of the cases previously analyzed (with a survival maximizing

firm, and with two profit-maximizing firms).

The second alternative objective function is called the limited liability objective function. In

this scenario, the start-up is assumed to lose all profit if bankruptcy occurs (e.g., any remaining

funds are distributed to debtholders) while keeping any excess profit above the survival threshold;
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consequently, the start-up only cares about expected profit in excess of the survival threshold, i.e.,

E (πs − α|πs ≥ α)× ψs. (18)

Unlike the integrated objective function, (18) is not a linear combination of the profit maximizing

and survival maximizing functions. As a result, how this objective function impacts the equilibrium

to the investment timing game is, at first, not obvious.

While neither of these functions permits the relatively clean analytical treatment of a survival

maximizing objective function, it is possible to analyze both using numerical methods. Table 3

presents the results of applying the same large-scale numerical study from the previous section

(i.e., using the 200 parameter combinations depicted in Table 2) to models in which the start-up

optimizes a limited liability or integrated objective function. For the sake of comparison, the first

row of the table lists equilibrium incidence for our base model (a survival maximizing start-up) and

the last row lists results for a model with two profit maximizing firms. As the table shows, both

the limited liability and integrated objective models yield results somewhere between the survival

maximizing and profit maximizing cases.

The table nicely demonstrates a key feature of our model: that bankruptcy tends to shift

equilibria toward the sequential outcome with the start-up as the leader. The intuition behind

this result is clear in the case of the integrated objective function, as it is a linear combination

of expected profit and survival probability: later investment allows the firm to exploit demand

variance, which increases the value of the profit portion of the objective function, while earlier

investment (particularly if it is less costly) allows the firm to reduce the chance of bankruptcy and

hence reduce the impact of the bankruptcy penalty. Hence, depending on the value of the penalty

parameter (D), the frequency of equilibria occurrence is somewhere between that of the purely

profit maximizing and purely survival maximizing cases.

As the table demonstrates, similar to the integrated objective, the incidence of equilibria under

limited liability also lie somewhere between that of the base survival maximizing case and the profit

maximizing case. Compared to the profit maximizing case, fewer (L,L) equilibria and more (E,L)

equilibria occur; in other words, with limited liability, sequential outcomes (with the start-up as

leader) are more likely than sequential outcomes in competition between two profit maximizing
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Investment Sequence
Model (E,E) (E,L) (L,E) (L,L)

Base Model 10% 69% 0% 24%

Base Model + Holdback 63% 23% 0% 18%

Limited Liability Startup 8% 29% 0% 66%

Integrated Objective Start-up, D = 10 12% 4.5% 0% 88%
Integrated Objective Start-up, D = 100 12% 11% 0% 81%
Integrated Objective Start-up, D = 1000 12% 32% 0% 59%
Integrated Objective Start-up, D = 10000 12% 56% 0% 35%

Two Profit Maximizing Firms 10% 2.5% 2.5% 90%

Table 3. Incidence of equilibria to the investment timing game under various models. Note that the total
percentages of equilibrium incidence may sum to more or less than 100, due to regions of potential

non-existence and multiple equilibria.

firms.

These numerical tests show a shift toward sequential outcomes persists regardless of the precise

way in which bankruptcy risk is incorporated into the start-up’s objective function. With a purely

survival maximizing start-up, there is a very strong push towards sequential outcomes; with an

objective function concerned with the upside of potential profit (such as the integrated objective

or the limited liability objective) this effect is tempered somewhat, but not entirely eliminated.

Consequently, we conclude that these results support our findings that the threat of bankruptcy—

manifested in the start-up’s objective function in a number of different ways—can lead to a greater

chance of sequential outcomes in which the start-up takes a leadership role.

7 Conclusion

In this work, our chief goal was to analyze how the threat of bankruptcy impacts the capacity

investment and timing decisions of firms entering new markets. We find that in monopoly markets,

start-ups are more likely to prefer early capacity investment than profit-maximizing established

firms. In competitive markets, when demand uncertainty is large, the outcome of a strategic

investment timing game leads to an equilibrium in which the start-up invests early while the

established firm invests late—starkly contrasting to a model with two established firms, which leads
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to simultaneous late investment under high demand uncertainty.

We arrived at these results despite invoking several assumptions intended to minimize the

incidence of sequential equilibria. For example, in previous literature, one explanation offered for

established firms failing to seize opportunities in disruptive markets is that their demand forecasts

are too pessimistic or simply inaccurate. We have found, on the contrary, that even if both

firms have identical demand forecasts (i.e., identical beliefs about the distribution of market size),

sequential equilibria arise if a start-up is present. If we incorporated pessimistic forecasts by

established firms into our model, this would have the effect of decreasing the expected market

size in the established firm’s profit function, qualitatively preserving our results (and giving the

established firm even more incentive to invest late). Similarly, we assumed that both firms have

access to the technology that enables the new market at the start of the strategic investment game—

in other words, no firm is playing catch-up from a technological standpoint, and both are capable

of capacity investment at any time.

In addition, because start-ups may face financial constraints that limit the maximum possible

expenditure on capacity, one might reasonably suppose that it is appropriate to incorporate such

a constraint into our formulation. Recall that the optimal capacity level of the start-up at either

investment time is the minimum capacity level at which survival can occur– if the start-up has

insuffi cient funds to support this capacity, then survival can never occur, and hence the survival

probability is zero. Alternatively, if the start-up has more funds than necessary to support this

minimum capacity level, the constraint is not binding and hence is irrelevant. Thus, at least in

the survival maximizing case, such a constraint has a very “bang-bang” impact on the model: it

is either irrelevant or it reduces the survival probability to zero. A financial constraint is more

meaningful if the start-up considers some combination of profit and bankruptcy costs, e.g., as in

§6.4. In this case, any constraint will likely limit the value of late investment as it reduces the ability

of the start-up to react to high demand states with a high capacity level– consequently, though

we do not explicitly include any financial constraints in our model, we anticipate that they would

either have minimal impact on our results (in the case of survival probability maximization) or they

would favor early investment even more than our current model (in the case of more complicated

objective functions).

We also did not model a variety of other factors that may influence capacity investment timing.
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For example, greater sales may be enabled by earlier entry (e.g., if late entry results in slower

time-to-market). Directionally, the impact of this effect is clear: it increases firm incentives

to invest early. While this would likely change the equilibrium thresholds given in Theorem 3,

the qualitative impact of the start-up’s survival maximizing objective function remains (as do

the consequences of acting as a first- or second-mover in the capacity game), implying that the

strategic investment game will have a similar structure and will yield similar results. Future work

may investigate the robustness of our results with regards to a number of similar complications,

including cost uncertainty, allowing firms to add capacity in multiple stages rather than only once,

and the incorporation of the initial market entry and capital structure decisions that lead to the

determination of α. In addition, it would be interesting to analyze the full creditor-firm equilibrium,

in which the financing costs of the start-up are endogenously determined and dependent on existing

debt, the amount of installed capacity, the start-up’s default risk, and internal equity.

We conclude that capacity competition involving start-ups subject to bankruptcy risk—in a va-

riety of forms—is fundamentally different in nature from the competition between established firms,

and our model offers a plausible explanation of some practically observed phenomena. Manageri-

ally, these results are important because they imply that the optimal strategic investment position

differs depending on the nature of the competitor. Thus, blindly following a mantra of seizing

the “first-mover advantage” can be a perilous strategy, as any such advantage (or disadvantage)

depends critically on the characteristics of the firms in the market.

While our key findings relate to equilibrium capacity investment timing and investment, our

results also relate to the literature on disruptive innovation, which has frequently observed that

start-ups tend to pioneer new markets while established firms postpone investment. A variety

of reasons for this phenomenon are offered: the established firms are said to be too close to and

too trusting of their existing customers, who themselves are ill-equipped to articulate their own

changing needs, therefore causing a failure to anticipate opportunities within the existing customer

base; the established firms fail to recognize and cultivate entirely new markets; internal incentives

at the established firms favor the development and implementation of incremental improvement

over radical change. All of these explanations imply that established firms fail in some crucial

way that newer firms do not. By controlling for these factors in our formulation, our results imply

that, while it is certainly possible that managerial failures and other reasons cited in the disruptive
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innovation literature can lead to established firms detrimentally ceding a leadership role to start-

ups in new markets, this need not be the case; the operational reality of capacity investment under

demand uncertainty, coupled with facing competition from start-ups prone to failure, offers a purely

rational explanation for these outcomes.

A Appendix: Proofs

Proof of Theorem 1. Early Investment: the profit function implied by (1) is concave and yields
a unique maximum at the Cournot monopoly point, K∗e = (µ − c1)/2. Expected profit is thus
E (π∗e) = (µ− c1)2/4.

Late Investment: the profit function implied by (2) is concave and yields a unique maximum at

the Cournot monopoly point, K∗e = (A−c2)/2. Expected profit is thus E (π∗e) = E
(

(A− c2)2 /4
)

=

(µ− c2)2/4 + σ2/4.
Proof of Theorem 2. Early Investment: maximizing the survival probability function in (5)

is equivalent to

ψ∗s = max
Ks≥0

Pr

(
A ≥ α

Ks
+Ks + c1

)
= max

Ks≥0

(
1− F

(
α

Ks
+Ks + c1

))
,

and, consequently, this is equivalent to minimizing α
Ks

+ Ks + c1. This expression is convex and
yields a unique minimizing capacity of K∗s =

√
α. The corresponding optimal survival probability

is thus ψ∗s = 1− F (2
√
α+ c1).

Late Investment: under late investment, the start-up maximizes profit after observing A. This
implies the late investment capacity level is identical to the established firm’s capacity level until
late investment, i.e., K∗s = (A− c2)/2. The survival probability is thus

ψ∗s = Pr

(
(A− c2)2

4
≥ α

)
= 1− F

(
2
√
α+ c2

)
,

yielding the result.
Proof of Lemma 1. Because there is no randomness if both firms invest late, the capacity

investment game is a Cournot duopoly with heterogeneous costs. Thus, the profit of each firm is
given by

πe (Ke) = (A−Ke −Ks − c2)Ke,

πs (Ks) = (A−Ke −Ks − c2)Ks.

Both profit functions are concave, yielding unique best replies

K∗e (Ks) =
A−Ks − c2

2
and K∗s (Ke) =

A−Ke − c2
2

.

The equilibrium capacities are found by solving for the intersection of the best replies, which yields
the unique equilibrium K∗e = K∗s = A−c2

3 . Equilibrium profit of each firm is

E (π∗e) = E (π∗s) = E
(
A− c2

3

)2
=
σ2 + (µ− c2)2

9
.
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Recall that the start-up survives if the total profit level is above α: in other words, if ((A− c2) /3)2 ≥
α. Thus, the ex-ante survival probability (i.e., the probability of survival before learning market
size, taking into account the competitive outcome of the capacity game that occurs after learning
market size) is given by (8), while the (ex-ante) equilibrium expected profit of the established firm
is given by (7).

Proof of Lemma 2. Recall that the best reply of the established firm is K∗e (Ks) = A−Ks−c2
2

when both firms invest late: this continues to hold when the start-up invests early and the estab-
lished firm invests late. The start-up’s profit is thus

πs(Ks) = (A−K∗e (Ks)−Ks − c1)Ks

=
1

2
(A−Ks − 2c1 + c2)Ks.

The survival probability is the probability that πs(Ks) ≥ α, i.e.,

ψs(Ks) = Pr

(
1

2
(A−Ks − 2c1 + c2)Ks ≥ α

)
= 1− F

(
2α

Ks
+Ks + 2c1 − c2

)
.

The maximizer of the survival probability is the minimizer of the argument of F in the above
equation, i.e., K∗s =

√
2α, yielding (10) when substituted into the expression for the start-up’s

survival probability. The established firm’s profit is

πe (Ke) =
1

4

(
A− c2 −

√
2α
)2
,

and ex-ante expected profit is thus given by the expected value of this expression, yielding (9).
Proof of Lemma 3. Survival for the start-up occurs if A ≥ α

Ks
+Ke +Ks + c1, so the survival

probability is thus

ψs(Ks,Ke) = 1− F
(
α

Ks
+Ke +Ks + c1

)
.

Minimizing the the argument of F in the above expression is equivalent to maximizing the proba-
bility of survival. Thus, the start-up’s optimal capacity investment is K∗s =

√
α, a dominant action

that is independent of the established firm’s capacity level. The established firm’s expected profit
is

E (πe(Ks,Ke)) = (µ−Ke −Ks − c1)Ke.

Substituting the equilibrium K∗s and maximizing this concave function of Ke yields the established
firm’s optimal capacity, K∗e = µ−

√
α−c1
2 . The associated expected profit is (11), and the equilibrium

survival probability of the start-up is hence (12).
Proof of Lemma 4. The best reply of the start-up investing late is the same as in Lemma 1,

i.e., K∗s (Ke) = A−Ke−c2
2 . Hence, the established firm’s expected profit from early investment is

E (πe(Ke)) =

(
µ−Ke −

µ−Ke − c2
2

− c1
)
Ke

Maximizing this expression yields an optimal capacity level of K∗e = µ−2c1+c2
2 for the established
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firm and hence

K∗s =
2A− µ+ 2c1 − 3c2

4

for the start-up. The equilibrium expected profit of the established firm is thus (13), and the
start-up’s equilibrium survival probability is (14).

Proof of Theorem 3. We will examine the viability of each subgame in Table 1 individually.
(i) (E,L). First, let us consider the equilibrium in which the start-up invests early and the

established firm follows: (E,L). This is an equilibrium if no firm has incentive to unilaterally
deviate: in other words, if the established firm enjoys greater expected profit than in (E,E), and if
the start-up enjoys a greater survival probability than in (L,L). From Lemmas 1 and 2, comparing
the arguments of the distribution function F in each of the equilibrium survival probabilities, we see
that if the established firm invests late, the start-up enjoys a (strictly) greater survival probability
by investing early if:

2
√

2α+ 2c1 − c2 < 3
√
α+ c2.

Rearranging this expression, we see it reduces to

2
√

2α < 3
√
α+ 2 (c2 − c1) .

If c1 < c2, the condition holds if α > 0. If, on the other hand, c1 > c2, the start-up may unilaterally
deviate from (E,L) for some α > 0. Examining this expression, we see that the inequality is most
likely to hold if α is large—hence, the start-up will deviate from (E,L) if costs decrease over time,
and α is suffi ciently small.

Next, consider the established firm, which, from Lemmas 2 and 3, will not deviate from (E,L)
if

σ2 +
(
µ− c2 −

√
2α
)2

4
>

(µ− c1 −
√
α)
2

4
.

This expression reduces to

σ2 >
(
µ− c1 −

√
α
)2 − (µ− c2 −√2α

)2
. (19)

In other words, the established firm will not unilaterally deviate from (E,L) if demand is variable
enough, where the threshold variability is a function of the problem parameters. This demonstrates
case (1) in the theorem.

(ii) (E,E). We next consider the equilibrium in which both firms build capacity early. From
Lemmas 2 and 3, the established firm will not deviate from this equilibrium precisely if (19) is
violated. From Lemmas 3 and 4, the start-up will not deviate if

2
√
α+

1

2
µ− c1 +

3

2
c2 > 2

√
α+

µ−
√
α+ c1
2

.

This inequality reduces to
1

3

√
α > c1 − c2.

This demonstrates case (2) in the theorem.
(iii) (L,L). We lastly consider the equilibrium with both firms building capacity late. In this

case, part (i) of the proof demonstrated that the start-up prefers (L,L) to (E,L) if

2
√

2α > 3
√
α+ 2 (c2 − c1) .
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Similarly, from Lemmas 1 and 4, the established firm will not deviate from this equilibrium if

(µ+ c2 − 2c1)
2

8
<
σ2 + (µ− c2)2

9

This inequality reduces to
9

8
(µ+ c2 − 2c1)

2 − (µ− c2)2 < σ2.

This proves case (3) of the theorem.
(iv) (L,E). The start-up has incentive to deviate from (E,E) to (L,E) if 13

√
α < c1 − c2, and

the established firm has incentive to deviate from (L,L) to (L,E) if

9

8
(µ+ c2 − 2c1)

2 − (µ− c2)2 > σ2,

proving case (4) of the theorem.
Proof of Theorem 4. We must first analyze several additional aspects of the capacity

subgames in order to analyze the investment timing game. First, consider the game in which both
firms invest early. This is a Cournot duopoly, hence the equilibrium profits of the (symmetric)
established firms are both

E (π∗e) =
(µ− c1)2

9
.

Next, consider the game in which the firms invest sequentially. This is identical to the previously
analyzed game in which the established firm invests early and the start-up invests late (because, in
that case, the start-up maximized profit due to the elimination of uncertainty). Hence, the profit
of the leader is

E (π∗e) =
(µ+ c2 − 2c1)

2

8

while the profit of the follower is

E (π∗e) =
4σ2 + (µ+ 2c1 − 3c2)

2

16
.

Finally, the game in which both firms invest late yields identical profits to both firms equal to

E (π∗e) =
σ2 + (µ− c2)2

9
.

Thus, the investment timing game in normal form has payoffs

Firm 2 Early Firm 2 Late

Firm 1 Early
(
(µ−c1)2

9 , (µ−c1)
2

9

) (
(µ+c2−2c1)2

8 , 4σ
2+(µ+2c1−3c2)2

16

)
Firm 1 Late

(
4σ2+(µ+2c1−3c2)2

16 , (µ+c2−2c1)
2

8

) (
σ2+(µ−c2)2

9 , σ
2+(µ−c2)2

9

)
First, assume that firm 2 invests early. Firm 1 prefers late investment if

4σ2 + (µ+ 2c1 − 3c2)
2

16
>

(µ− c1)2

9
. (20)

Clearly, as σ2 increases, this inequality is more likely to hold. Similarly, if firm 2 invests late, firm
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1 prefers late investment if
σ2 + (µ− c2)2

9
>

(µ+ c2 − 2c1)
2

8
. (21)

Again, as σ2 increases, this inequality is more likely to hold, thus for large enough σ2 (i.e., σ2

above some threshold), late investment is the dominant strategy of both firms and (L,L) is the
only possible equilibrium, proving the theorem.

Proof of Lemma 5. Omitted—similar to Lemmas 1—4.
Proof of Theorem 5. Similar to the proof in the base model, we will examine each possible

equilibrium individually.
(i) (E,L). This is an equilibrium if no firm has incentive to unilaterally deviate: from Lemma

5, the start-up will not deviate if

1− F
(

2
√

2α+ 2cs − ce
)
> 1− F

(
3
√
α+ 2cs − ce

)
,

which always holds. The equilibrium is supportable if the established firm has no incentive to
deviate, i.e., if

σ2 +
(
µ− ce −

√
2α
)2

4
>

1

4

(
µ− ce −

√
α
)2
,

which holds if σ2 > (µ− ce −
√
α)
2 −

(
µ− ce −

√
2α
)2
—thus, with constant, heterogeneous costs,

(E,L) is an equilibrium if σ2 is suffi ciently large.
(ii) (E,E). This sequence is only an equilibrium if the established firm has no incentive to

deviate, which the analysis of (E,L) showed occurs for low σ2. It must also be the case that the
start-up has no incentive to deviate, which holds if

1− F
(

2
√
α+

1

2
µ− ce +

3

2
cs

)
> 1− F

(
µ+ 3

√
α+ 2cs − ce

2

)
which is equivalent to

√
α > ce − cs.

(iii) (L,E). The start-up has incentive to remain in this equilibrium if
√
α < ce − cs. The

established firm has incentive to remain in this equilibrium if

σ2

9
+

(
µ+ cs − 2ce

3

)2
<

(µ+ cs − 2ce)
2

8
.

This reduces to
σ <

µ+ cs − 2ce

2
√

2
.

(iv) (L,L). This sequence is only an equilibrium if the start-up has no incentive to deviate,
which the analysis of (E,L) showed is never true. Hence, (L,L) cannot be an equilibrium.
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