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Abstract
Firms that rely on functioning mission-critical equipment for their businesses cannot afford significant
operational downtime due to system disruptions. To minimize the impact of disruptions, a proper incentive
mechanism has to be in place so that the suppliers provide prompt restoration and recovery services to the
customer. A widely adopted incentive mechanism is performance-based contracting (PBC), in which
suppliers receive compensation based on realized system uptime. A key obstacle is that disruptions occur
infrequently, making it very expensive for a supplier to commit the necessary resources for recovery because
they will be idle most of the time. In this paper, we show that designing a successful PBC creates nontrivial
challenges that are unique to this environment. Namely, because of the infrequent and random nature of
disruptions, a seemingly innocuous choice of performance measures used in contracts may create unexpected
incentives, resulting in counterintuitive optimal behavior. We compare the efficiencies of two widely used
contracts, one based on sample-average downtime and the other based on cumulative downtime, and identify
the supplier's ability to influence the frequency of disruptions as an important factor in determining which
contract performs better. We also show that implementing PBC may create high agency cost when equipment
is very reliable. This counterintuitive situation arises because the realized downtimes from which the customer
might intuit about the supplier's capacity investment are highly uncertain when there are not many samples of
downtimes, i.e., when disruptions occur rarely.

Keywords
service outsourcing, supply chain, after-sales support, maintenance–repairs, disaster recovery

Disciplines
Operations and Supply Chain Management

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/oid_papers/167

http://repository.upenn.edu/oid_papers/167?utm_source=repository.upenn.edu%2Foid_papers%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages


Contracting for Infrequent Restoration and Recovery of

Mission-Critical Systems

Sang-Hyun Kim

Yale School of Management, Yale University, New Haven, CT 06520

sang.kim@yale.edu

Morris A. Cohen � Serguei Netessine � Senthil Veeraraghavan

The Wharton School, University of Pennsylvania, Philadelphia, PA 19104

cohen@wharton.upenn.edu � netessine@wharton.upenn.edu � senthilv@wharton.upenn.edu

Abstract

Firms that rely on functioning mission-critical equipment for their businesses cannot a¤ord

signi�cant operational downtime due to system disruptions. To minimize the impact of disrup-

tions, a proper incentive mechanism has to be in place so that the suppliers provide prompt

restoration and recovery services to the customer. A widely adopted incentive mechanism is

performance-based contracting (PBC), in which suppliers receive compensation based on re-

alized system uptime. A key obstacle is that disruptions occur infrequently, making it very

expensive for a supplier to commit the necessary resources for recovery since they will be idle

most of the time. In this paper we show that designing a successful PBC creates nontrivial chal-

lenges that are unique to this environment. Namely, due to the infrequent and random nature

of disruptions, a seemingly innocuous choice of performance measures used in contracts may

create unexpected incentives, resulting in counterintuitive optimal behavior. We compare the

e¢ ciencies of two widely-used contracts, one based on sample-average downtime and the other

based on cumulative downtime, and identify the supplier�s ability to in�uence the frequency

of disruptions as an important factor in determining which contract performs better. We also

show that implementing PBC may create high agency cost when equipment is very reliable. This

counterintuitive situation arises since the realized downtimes from which the customer might

intuit about the supplier�s capacity investment is highly uncertain when there are not many

samples of downtimes, i.e., when disruptions occur rarely.
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1 Introduction

Whether they are caused by an earthquake, a hazardous oil spill, a simple power failure or a random

machine breakdown, unexpected disruptions of mission-critical operations can lead to dramatic

consequences. In some cases, such disruptions may cost �rms millions of dollars even if they

last only a few hours or even minutes (see She¢ 2007 for numerous examples). While �rms put

much e¤ort in preventing such events from happening, perfect prevention is often impossible or

economically infeasible to achieve, especially when the �rm is not in control of the source of the

disruption (as is the case, for example, of natural disasters). Therefore, contingency planning is

essential; however severe an initial disruption may be, its impact can be signi�cantly reduced if an

a¤ected system is quickly restored to its normal operating condition through carefully thought-out

recovery action plans and prior deployment of resources.

Not surprisingly, disaster recovery/restoration services constitute a signi�cant portion of many

industries (see Disaster Recovery Journal, www.drj.com, for numerous examples). For instance,

�rms such as Sungard, HP, and IBM, o¤er recovery and business continuity services for IT equip-

ment, where the market is estimated to be $4.2B in 2006 and growing at about 7% per year

(Frauenheim 2003). The list of events covered by the HP business recovery services is long and

includes �res, accidents, sabotage, chemical spills and power anomalies, to name just a few.1 As

another example, Clean Harbors Inc. manages environmental emergency responses or disaster re-

covery on land and water, from cleanup and removal of a single mercury bottle to a large-scale

multiphase containment and cleanup of a coastal oil spill. The company booked more than $1B in

revenues in 2008.2 Another example is large maintenance and repair services that exist in indus-

tries spanning semiconductor manufacturing, aerospace, defense, medical equipment, and others,

where equipment is complex and the consequences of breakdowns are severe. In the aerospace and

defense industry alone, the revenues generated from these services are in excess of $100B (Wall

Street Journal 2009).

While the above examples are drawn from very distinct industries, in this paper we focus on

at least three similarities that unite these examples. First, events leading to operational disrup-

1See http://www.hp.com/sbso/services/recoverall.html.
2Source: annual report.
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tions are random and infrequent. Indeed, earthquakes and oil spills occur very rarely, and even

a complex equipment such as an airplane engine does not fail or require maintenance very often.

Second, resources needed to restore the a¤ected system quickly cannot be procured on the spot

and therefore have to be deployed far in advance. In most cases described above, the restoration

process requires sophisticated machinery, spare parts, and extensive personnel training. Third, and

most importantly, restoration and recovery services are typically outsourced. For example, Clean

Harbors Inc. is subcontracted by the Environmental Protection Agency (EPA) to perform cleanup

of hazardous materials; Sungard, HP, and IBM lend their expertise when computing equipment

goes down; Boeing o¤ers maintenance and repairs of its aircraft to its airline customers.

When a supply chain is decentralized as in these examples, implementing a contingency plan

requires coordination among distinct organizations. The key question we want to answer is: how

can proper incentives be structured in such a situation? For example, Intel requires its suppliers to

respond within 15 minutes to a failure of its semiconductor manufacturing equipment (Harrington

2006). How can Intel make sure that a promise to restore its equipment quickly is ful�lled by the

supplier? After all, it is Intel, not the supplier, who bears the direct consequences of the failure

and has more urgency; on the other hand, it is challenging and costly for the supplier to dedicate

resources for fast diagnosis and repair at every customer location because the supplier has limited

capacity and because equipment failures occur infrequently.

In investigating incentives for restoration/recovery services, we focus on performance-based

contracting (PBC) which is gaining wide acceptance as an e¤ective instrument for providing such

incentives across commercial and government supply chains. Under PBC, compensation to a sup-

plier is based on realized service outcomes such as equipment uptime or response time which are

directly related to the value created by the customer through the operation of the system. For

example, many service level agreements that Internet service providers o¤er stipulate �nancial

remedies for a failure to deliver promised network uptime, which depends on how fast a problem

can be resolved after it is detected and how frequently such problems arise (Stanbury 2004). PBC

is even more pervasive at federal government agencies because of a major initiative led by the

White House that has been in e¤ect in recent years (see Government Accountability O¢ ce 2002

and O¢ ce of Management and Budget 2003). There, PBC is required to be used to the maxi-

mum extent possible for the procurement of services. Based on this requirement, EPA has issued
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guidance (EPA 2003) regarding outsourcing of cleanup activities that states: �by linking payment

to performance measures, PBCs o¤er potential advantages to the government. In the interests of

minimizing costs while expediting the reduction of risks to public health and the environment, EPA

is committed to working with the lead federal agencies in applying a performance basis in cleanup

activities.�As another example, the U.S. Department of Defense (DoD) has initiated a policy called

Performance-Based Logistics that mandates all of its outsourced logistics and services, including

restoration and recovery services, be performance-based (DoD 2003). The following excerpt from

a U.S. Army equipment service contract (Army Material Command 2006) illustrates how a typical

PBC contract is set up: �If a complete critical system remains inoperative and cannot perform the

scheduled workload due to a product malfunction (system downtime) through no fault or negligence

of the Government for a period of 24 contiguous hours, the Contractor shall grant a credit to the

Government for each half-hour of downtime.�

Although there is some evidence suggesting that PBC successfully incentivizes suppliers to meet

required performance goals (Geary 2006), there is a �ip side: there are signi�cant �nancial risks

that accompany such contracts. Since service outcomes are inherently random, �uctuations in the

suppliers�contractual income streams that depend on such outcomes are inevitable. Indeed, one of

the principal motivations for the customer to adopt PBC is to transfer the risk of output uncertainty

to the supplier in the form of contract payment uncertainty. To many suppliers, this uncertainty is

a source of great concern, as they a prefer predictable cash �ow. For example, it is possible under

PBC for a supplier to make a negative pro�t if an unforeseen problem such as spare parts shortage

contributes to a long delay in completing a required restoration service. Such aversion to revenue

risk makes implementing PBC ine¢ cient, because suppliers demand a risk premium as a condition

for entering into a PBC arrangement. In the airline industry, for instance, high risk premiums

demanded by maintenance service providers have become an important sticking point (Sobie 2007,

Oliver Wyman 2007).

In this paper, we use a principal-agent contracting framework to construct a stylized model

of an outsourcing environment in which operational disruptions occur infrequently and where the

customer cannot write the supplier�s capacity investment decision directly into the contract but

instead must incentivize the supplier using PBC. The customer in our model has the goal of

maximizing pro�t while limiting system downtime following a disruption event to a target level. The
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main theme we explore in this paper is the interaction between an external condition (infrequent

and random system disruptions) and the ensuing internal uncertainty (random service completion

times realized after disruptions), as well as their combined e¤ect on the e¢ ciency of PBC.

From our interactions with practitioners in the aerospace, defense, and high-tech manufac-

turing industries, we have found that the majority of the performance-based contracts used for

restoration/recovery services fall into two categories, depending on how performance is de�ned:

a contract based on cumulative downtimes (hereafter, CC) and a contract based on the sample-

average of downtime (hereafter, AC). Under the former, the supplier is penalized for the total

system downtime within a contract period, whereas under the latter the supplier is penalized for

the total downtime divided by the number of disruption occurrences. Both are designed to achieve

the same goal, namely, to incentivize the supplier to reserve a high level of service capacity so that

restoration can be completed quickly upon system failure.

We show that there are unique challenges in the environments described above. Because disrup-

tions are infrequent, any signal about the supplier�s capacity investment that the customer might

intuit from the supplier�s delivery of service (which is the basis of contract payments) is likely to

be highly uncertain. The following are the speci�c major insights from our analysis:

1. We show that contracts based on two seemingly similar performance measures described

above, CC and AC, create completely di¤erent incentive structures that may induce very

di¤erent responses from the supplier in terms of his capacity decision. For example, one

would expect that, for a given downtime penalty, the supplier will build more capacity when

the system is more prone to failure. This is indeed the case for CC, but under AC the

supplier�s optimal capacity investment is non-monotone in system failure rate.

2. When the supplier cannot a¤ect the frequency of disruptive events (e.g., when system failures

are due to natural disasters), we �nd that AC generally brings higher e¢ ciency than CC

does. In contrast, when the supplier can reduce frequency of disruptions (e.g., by investing

into equipment reliability), CC is often preferred because its e¤ectiveness in incentivizing the

supplier to improve reliability is greater than that of AC.

3. When meeting a downtime target is the pressing goal for the customer (which happens when-

ever disruptions are su¢ ciently rare), we show that the e¢ ciency of PBC is worst when
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disruptions almost never occur, e.g., when equipment is most reliable. This situation arises

because information about the supplier�s performance is severely limited when there are few

opportunities to perform, i.e., when the system almost never fails. Therefore, high equipment

reliability does not always mean good news �when fast restoration is as important as high

reliability, infrequent failures may make it challenging to implement PBC successfully.

The rest of the paper is organized as follows. After a brief survey of related literature, we lay

out modeling assumptions in Section 3 and proceed to model analysis in Sections 4 through 6. In

Section 7 we discuss consequences of relaxing some of the assumptions in the base model, including

a scenario in which the supplier can determine frequency of disruptions as well as service capacity.

Finally, in Section 8, we summarize the major �ndings and discuss future directions for research.

2 Literature Review

Our model applies the principal-agent analysis framework to a service outsourcing environment.

The most closely related service operations literature concerned with modeling delays and waiting

times has traditionally focused on queuing problems, i.e., settings in which server utilization is

relatively high. There, economic decisions are made on how to manage congestion, either by adding

more servers or by changing the rate of service. Examples of articles that consider principal-agent

relationships with signi�cant queuing e¤ects include Gilbert and Weng (1998), Plambeck and Zenios

(2003), Ren and Zhou (2008), Hasija et al. (2008), and Lu et al. (2009). Some of these and related

papers model system behaviors in the heavy-tra¢ c regime, i.e., when server utilization approaches

one. In contrast, our model considers the opposite end of the spectrum, namely, where utilization is

close to zero; the service capacity in our model is generally idle except when responding to infrequent

disruptions, and hence queuing for service is not an issue. The �demand�in our problem context

means infrequent but high-impact disruptions that incur large opportunity costs. As a result, a

high level of service capacity must be maintained to reduce the impact of such disruptions.

Service parts inventory management is an area in which rare equipment failures drive managerial

decisions, just as in our model. Sherbrooke (1992), Muckstadt (2005), and Cohen et al. (1990) give

an overview of theory and applications of this stream of research. For the most part, this literature

does not consider contracting or incentives. Exceptions occur in Kim et al. (2007, 2009), who study
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contracting issues in after-sales product support outsourcing. The current paper is very distinct

from these works since, here, we highlight the challenges associated with PBC that arise due to the

infrequent nature of equipment failures and the role of performance metric speci�cations, a topic

that has not been explored before. Furthermore, in the current paper we focus on the provision of

restoration services rather than on inventory management.

Our model is based on the �moral hazard�principal-agent framework, relying on the assumption

that the parties contract on a commonly observable performance measure which is a noisy indicator

of the agent�s action, as is the case with PBC. However, there are two major features of our

model that are quite distinct from what can be found in the traditional contracting models such

as the ones presented in La¤ont and Tirole (1993), which provides a comprehensive overview of

procurement contracting theory. Namely, we model an environment in which performance outcomes

are intermittent and randomly realized. There are very few papers in economics that consider a

low-frequency environment. An exception is Abreu et al. (1991), in which the role of the review

period length in a repeated partnership game is investigated. Although our model a¢ rms some of

the insights that they have found, we derive a richer set of �ndings under the assumptions that

re�ect real-world service outsourcing practices. In particular, many of the results in this paper

are driven by the complex interaction between an endogenous uncertainty (random service times)

and an exogenous uncertainty (random system disruptions), an operational detail that creates

signi�cant and interesting dynamics. Our model also adds a layer of complexity to the classical

principal-agent model as it allows for a situation in which an agent�s performance outcome may

not materialize (i.e., if the system does not fail, there is no opportunity to service it). This creates

nontrivial contracting issues that, to the best of our knowledge, have not received attention in the

literature.

Finally, our paper is related to the literature on supply chain disruption management. We

refer to Kleindorfer and Saad (2005) and She¢ (2005) for a general review, and Tomlin (2006) for a

recent article in this area of research. While much of the literature focuses on preventing disruptions,

contingency planning in a decentralized supply chain is also recognized as an important aspect of

risk management. Our paper contributes to the latter stream. To summarize, we believe that

our paper is the �rst to address the issue of outsourcing restoration/recovery services to mitigate

low-probability, high-impact disruptions.
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3 Model Assumptions

In the remainder of the paper, we use the term �equipment failure�in place of �system disruption�

because the former frames the problem in a clearer context. A risk-neutral customer (�she�) derives

utility from continued usage of equipment, which is subject to random breakdowns. When a break-

down occurs, the equipment needs to be restored to working condition as quickly as possible. As

the customer lacks technical expertise, she delegates the control of all restoration activities (which

we call a service) including diagnostics, parts replacement, and repairs and testing, to a single sup-

plier (�he�), who is risk-averse. Such one-to-one relationships are commonly observed in practice,

especially when a government organization such as the U.S. Army outsources maintenance service

of customized equipment to a contractor. The customer and the supplier establish a contractual

relationship for the duration of one time period (e.g., a year) whose length is normalized to one.

In practice the length of the contracting period is typically tied to the annual budgeting process

and cannot be easily extended. In the beginning of the period the customer o¤ers a contract to

the supplier. In response, the supplier decides how much he should invest in service capacity. The

supplier�s investment is unobservable and non-contractible. Over the length of the contract period,

random equipment failures occur, triggering service activities by the supplier.3 At the end of the

period, the customer assesses the supplier�s performance based on service completion times, and

payments are made according to the agreed contract terms.

3.1 Equipment Failure Process and Capacity Decision

Equipment failures occur according to a Poisson process with a rate �; which is assumed to be

common knowledge. Let N be the random variable representing the number of equipment failures

within the period. In this paper we consider low � values, i.e., � near zero up to a single digit

(recall that this scale is in relative to the contract length which is normalized to one). Aerospace

and defense contractors and telecommunications companies routinely observe such low failure rates

for mission-critical equipment, while outages due to natural disasters are even rarer. In the main

part of the paper we assume that � is exogenously determined, as is the case when the failures

3Since we are concerned with restoration/recovery services, force majeure does not apply to the contracts consid-
ered in our model, as an unforseeable event (equipment failure) triggers the supplier�s action, not disrupts it.
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occur due to events like natural disasters. We relax this assumption later in Section 7.2.

Each incident of equipment failure triggers a service process performed by the supplier which

may include traveling to the customer�s site, diagnosing the failure, shipping the necessary parts

and/or repairing failed parts, installing replacement parts, and testing the equipment. Let Si be

the service completion time or, equivalently, the equipment downtime for the ith failure. We refer

to it throughout the paper as either the service time or the downtime. We assume that fSig are

i.i.d. with a rate 1=�, where � is the service capacity set by the supplier at the beginning of the

period. We assume that � remains unchanged throughout the period. Although situations arise

in which the capacity level can be dynamically altered, we focus on the cases in which it is too

costly or impractical to do so. Repair facility purchase, employee training, and process re-design

are examples of capacity decisions which require large up-front investments and cannot easily be

adjusted, because either the commitment cannot be reversed or the impact of the decision is only

realized after a long time. We use the superscript � to denote the supplier�s optimal response (i.e.,

capacity choice) to a contract. Since fSig are i.i.d., we drop the subscript i unless it is needed for

clarity. We use the convention that � is bounded below by �, which we interpret as the default level

of capacity that the supplier already possesses and hence can provide with zero investment. We

assume that 1=�� 1=�, i.e., the maximum expected service completion time is much shorter than

the mean time between equipment failures. For example, while a network server may go down once

or twice a year, repair standards as low as several hours are common (Cohen et al. 2006). This

assumption on the scale di¤erence not only re�ects reality but also simpli�es our analysis, since it

allows us to approximate � to be constant even though equipment failure interarrival times depend

on how fast services are completed. This assumption is consistent with what is found the service

parts management literature (see Muckstadt 2005).4

Additionally, we assume that the expected service time resulting from the default capacity level

� is unacceptably long to the customer. As a result, the customer wants the supplier to expand

capacity beyond �, which requires extra investment for the supplier. For simplicity, we assume that

this cost is linear in � with a unit cost c such that the total investment is equal to c(�� �). Other

4 In addition, the same assumption makes it unlikely to encounter a situation in which an initiated service is not
completed by the end of the period, since the probability that a failure occurs within a time interval of order 1=�
before the end of the period is negligible.
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papers on service operations frequently assume linear service capacity cost (for example, see Allon

and Federgruen 2007). While costly, increased capacity reduces expected service time.

We further assume that the variability of service time, de�ned as the coe¢ cient of variation

v(�) of S, possesses the following three properties: it does not increase when capacity increases

(v0(�) � 0), there is a non-increasing rate of variability reduction (v00(�) � 0), and jv0(�)j is bounded

from above. This assumption generalizes the typical construct found in the queuing literature in

which the service time distribution is often assumed to be exponential, which �xes the coe¢ cient

of variation to a constant. By imposing both dE[S j�]=d� < 0 and v0(�) � 0, we are able to clearly

distinguish between a �good�state (i.e., fast service time and low variability) when � is high and a

�bad�state (i.e., slow service time and high variability) when � is low, a distinction that is made in

most principal-agent models (this is analogous to imposing the monotone likelihood ratio property;

see Milgrom 1981). Without this assumption, it is no longer clear if increasing capacity is bene�cial

to the supplier and ultimately to the customer, needlessly complicating the main insights we obtain

in this paper. While we acknowledge that there may be situations where v(�) increases (such as

when capacity increase is associated with adopting new, untested technology), the opposite is more

commonly found in practice as a result of factors such as economies of scale and learning, which

make service times more predictable. In the following analysis, we will frequently revisit the special

case in which v(�) is constant since it allows for tractable analysis.

3.2 Contracting

We assume that the customer cannot directly observe the supplier�s capacity choice � and there-

fore cannot directly contract on it. This is a reasonable assumption since most suppliers exert a

multitude of discretionary e¤orts (such as decisions on spare parts inventory investment, repair

depot sta¢ ng, training, transportation methods, etc.) that are too di¢ cult or costly to monitor.

Because she cannot contract on �, the customer enforces her service requirement via a performance-

based contract such that the compensation T to the supplier is tied to an agreed-upon performance

measure (e.g., equipment downtime), generically denoted by X. In this paper, we analyze linear

contracts that have the payment form T = w � pX, in which w is the �xed payment independent

of the realized performance X, and p is the penalty rate for each unit of X. This contract form is

motivated by a convention observed in many industries where a �xed pool of money (w) is reserved
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for the supplier that only gets subtracted in proportion (constant penalty rate p) to the realization

of performance (X). While linear contracts are known to be suboptimal compared to nonlinear,

state-contingent contracts, they are easier to implement and hence widely adopted in practice. For

this reason, we focus only on linear contracts in this paper.

We consider two types of linear contracts that di¤er by the de�nition of performance measure

that enter into the contracts. The �rst is based on cumulative downtime
PN
i=1 Si and is referred to

as a CC (cumulative-performance contract). The second is based on average downtime (
PN
i=1 Si)=N

and is referred to as an AC (average-performance contract). A precise expression of the performance

measure X used in each contract will be introduced in Section 5. The majority of contract terms

that are encountered in practice fall into these two categories. Contracts such as the U.S. Army

example in the Introduction are of the CC type, but AC-type contracts are also observed in practice.

For example, a service level agreement by a voice/data service provider (whose name is not revealed

due to con�dentiality) de�nes the target IP service restoration time on which �nancial remedy is

based as �an average service restoration interval of 4.0 hours for each circuit measured on a per

circuit.�However, there is little understanding as to which type of contract should be used under

which circumstance. A main theme of this paper is to compare the consequences of implementing

these two contracts.

It should be noted that �average� in AC refers to the sample-average of fSig, as opposed to

the time-average, which in fact applies to CC. This last statement follows from the fact that we

have normalized the length of the contracting period to one: the time-average of total downtime is

equal to cumulative downtime since the former is obtained from dividing the latter by one. In this

sense, a comparison between CC and AC can also be viewed as a comparison between two di¤erent

methods of averaging the supplier�s performance. As we will �nd out in Section 5, this seemingly

innocuous choice for evaluating the supplier�s performance may lead to surprisingly di¤erent results.

The risk-averse supplier is assumed to have a mean-variance utility function that depends on

stochastic compensation T that he receives from the customer:

u(�) = E[T j�; �]� �Var[T j�; �]� c(�� �): (1)

The parameter � is the coe¢ cient of risk aversion. A larger � corresponds to higher risk aversion
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and � = 0 represents risk neutrality. We employ the risk aversion assumption to capture the

supplier�s desire to avoid revenue risks posed by PBC. The ine¢ ciency arising from such aversion

to risk is expressed in the second term of (1) and is called the risk premium (see Gollier 2001, p.

20), denoted by  � �Var[T j�; �]. Our close work with supplier organizations in various industries

reveals that revenue risk is an issue that most concerns them about PBC. At the same time, they

express the need to quantify the risk premium for contract negotiation purposes. The assumption

of risk aversion re�ects such concerns. The mean-variance function captures the basic expected

revenue vs. revenue risk tradeo¤ for the supplier, and is widely adopted in the recent operations

management literature (for example, see Tomlin 2006, Van Mieghem 2007, and Kim et al. 2007).

On the other hand, we assume in the main part of the paper that the customer is risk neutral on

the grounds that she represents a larger enterprise, such as the DoD, that is less sensitive to cash

�ow risk. We relax this assumption in Section 7.3, where we investigate an alternative situation

where the customer is more averse to �nancial risk.

After being o¤ered contract terms, the supplier chooses capacity �� to maximize his utility

(1). Anticipating the supplier�s choice of capacity, the customer decides on contract terms that (a)

induce the supplier to voluntarily choose �� that satis�es the customer�s objective (de�ned in the

next subesection) and (b) ensure that the supplier participates in the contractual relationship. The

second requirement is expressed in the individual rationality (IR) constraint u(��) � u, where u

denotes the supplier�s reservation utility, i.e., the level of utility that he obtains if he opts out of the

contract. We normalize u to zero throughout this paper, because doing so changes no qualitative

insights. As is typical in most principal-agent models, the IR constraint will turn out to be binding

in all cases we analyze. As a consequence, the customer�s maximized expected pro�t will be equal

to the supply chain�s maximum pro�t, since the supplier is left with zero utility. Both pro�ts will

be denoted as �.

3.3 The Customer�s Objective

We assume that the customer earns r per unit time while equipment is functioning. As the total

revenue is proportional to the equipment uptime 1�
PN
i=1 Si, the customer�s expected pro�t is � =

r(1�E[
PN
i=1 Si j�; ��])�E[T j�; ��], where T denotes payment to the supplier. Note that expected

uptime 1�E[
PN
i=1 Si j�; ��] is equivalent to expected availability, the fraction of equipment uptime
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relative to the contract length, since the latter is normalized to one. Therefore, the customer

maximizes her pro�t by maximizing the expected availability.

However, availability maximization criterion alone does not capture the important concern of

the practitioners that uniquely exists in the environment that we consider, namely, when the failure

frequency � is small. To illustrate this point, suppose that equipment almost never fails within a

contracting horizon, i.e., � � 0. Such a scenario is quite plausible if equipment failure occurs due to

very rare events such as earthquakes. Then, the expected equipment availability is guaranteed to be

near 100% as restoration/recovery service is unlikely to be requested. As a result, it is optimal not

to motivate the supplier to increase capacity beyond the default level � since doing so only adds to

the cost (i.e., payment to the supplier) with little increase in revenue. But what if equipment does

fail? After all, there is always a positive probability, albeit small, that it will. In such a case the

customer will experience an unacceptably long outage, handicapped by the low service capacity.

Most service-providing organizations try to avoid this undesirable situation by focusing not

only on availability, which is an aggregate measure directly tied to their pro�tability, but also on

individual service experience. Namely, they set a standard on the delivery of each service instance.

The most common way is to set the standard is to impose a maximum on the expected service

time, such that:

E[Si j��] = 1=�� � sI : (STC)

The service time target sI is assumed to satisfy sI < 1=�, consistent with our earlier assumption

that the default capacity � is inadequate for the customer. (The subscript I denotes �individual�

service instance.) STC stands for service time constraint. Real-world examples of this constraint,

e.g., terms like �target turnaround time of 12 hours�, are commonly found in service contracts of

companies like Sungard, HP, and others. In general, the target sI may be a function of �. For

analytical tractability, however, we will focus on a special case where sI is independent of � in

the main part of the paper (we relax this assumption in Section 7.1).5 Letting �I � 1=sI , we can

rewrite STC as the lower bound constraint on capacity chosen by the supplier: �� � �I . Combined

5We believe that the assumption that the service time target sI is independent of � is, at least in a limited range
of �, reasonable in many practical settings. This is based on the obeservation that many service contracts stipulate
a rather arbitrary but a convenient value for the target, such as �24 hours�or �3 days�, regardless of the estimated
failure frequency.
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with the assumptions above, the target capacity �I satis�es �I > � � �. The service time target

sI , or equivalently the capacity target �I , re�ects the customer�s willingness to accept performance

risk (as opposed to �nancial risk, which we discussed in Section 3.2): the lower the sI , the more the

customer wishes to avoid downtime and receive a faster service. We note that imposing a service

time constraint is ubiquitous not only in the practice of restoration/recovery service outsourcing

but also in other service settings, such as call center operations (see, for example, Gans et al. 2003,

Gurvich et al. 2005, and Milner and Olsen 2006, where a constraint on �average speed of answer�,

or ASA, is de�ned similarly as STC).

In sum, motivated by real-world practices, we assume that the customer�s objective is to max-

imize the expected pro�t r(1 � E[
PN
i=1 Si j�; ��]) � E[T j�; ��] subject to STC.6 The constraint

may or may not bind depending on the parameter values. As will become clear below, the solution

behavior critically depends on whether STC binds at optimum.

4 First-Best

No e¢ ciency is lost if the customer can contract directly on the supplier�s capacity choice �. Under

such a complete observability assumption, a �xed payment contract T = w that guarantees the

supplier�s participation achieves the �rst-best. The solution is straightforward. If � > c�2I=r, STC

does not bind at optimum. Then the customer imposes �FB =
p
r�=c and o¤ers a �xed-payment

contract wFB = c(
p
r�=c� �). If, on the other hand,

� � c�2I=r; (2)

6An alternative modeling choice is to drop STC and de�ne the customer�s expected utility as

U = r(1� E[
PN

i=1 Si j�; �
�])� E[T j�; ��]�G(��);

where G(��) denotes the customer�s disutility caused by a long service time after a failure incident when the supplier
chooses ��. G(��) is signi�cantly large when �� is close to �, but it decreases and converges to zero as �� increases.
This extra term plays a role similar to STC, i.e., it ensures that the supplier chooses large enough capacity. (In fact,
they are equivalent if we set G(�) = �(�I � �), where � is the shadow price associated with STC.) As a practical
matter, however, managers at customer organizations have little idea on how to estimate the functional form of
G(��), whereas performance requriements such as STC are routinely found in service contracts. In this paper we
take a descriptive approach and employ the service time constraint, re�ecting how practitioners view their contracting
problem.
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the STC binds at optimum and the customer sets �FB = �I and w
FB = c(�I � �). In both cases,

the resulting expected pro�t for the customer is equal to �FB = r(1��=�FB)�c(�FB��), leaving

zero surplus for the supplier.

As is apparent from the expression in (2), STC binds at optimum whenever the equipment

failures are relatively rare (small �) compared to a �xed revenue-to-cost ratio r=c and a �xed

service time target sI = 1=�I . Therefore, the condition (2) formalizes our assertion in Section 3.3:

when the chance of encountering a failure is su¢ ciently small, the customer�s desire to ensure an

acceptable outcome of the service for that rare event takes precedence over maximizing pro�tability.

We believe that the instances that satisfy (2) are routinely observed in many real-world situations.7

Notice that the optimal capacity �FB is independent of � if (2) is satis�ed but increases in �

otherwise (the �rst being a direct consequence of our assumption that sI is constant; we study a

more general case in Section 7.1). This observation suggests that, depending on how frequently

equipment fails, the customer may want to o¤er a qualitatively di¤erent set of incentives to the

supplier when the former outsources the restoration/recovery services. We investigate this further

in the next section.

5 Supplier�s Capacity Decision

Having analyzed the �rst-best benchmark case, we now return to the general model with non-

contractible �. In this section, we characterize the supplier�s capacity decision after he is o¤ered

contract terms from the customer. We present derivations of optimal capacities for CC and AC

in separate subsections (Sections 5.1 and 5.2) as they require substantially distinct analyses. In

Section 6 we study the optimal contract design problem of the customer, who takes into account

the supplier�s capacity decision analyzed in this section.

7As an example to support this, let us assume that contract duration is 100 days and the customer enforces the
service time target of 12 hours, a 40% improvement over the default average of 20 hours. These values correspond
to �I = 200 and � = 120. Suppose, conservatively, that the revenue rate is so high that daily revenue 0:01r is
comparable to total capacity investment c(�I � �) = 80c, so let 0:01r = 80c. Then the condition (2) is satis�ed
whenever the equipment fails on average 5 times or less, a very likely scenario in practice.
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5.1 Optimal Capacity Under Cumulative-Performance Contract

We �rst consider CC, under which the supplier performance is evaluated based on the cumulative

downtime
PN
i=1 Si. Since the number of arrivals N is Poisson-distributed,

PN
i=1 Si is a compound

Poisson random variable. The supplier, who is given a contract T = w � p
PN
i=1 Si under CC,

determines his optimal capacity as follows.

Lemma 1 The supplier�s utility (1) is concave under CC. De�ne

�(�) � v(�)2 � �v(�)v0(�) � 0: (3)

The supplier chooses �� > � that satis�es the optimality condition p��2 + 2�p2 (1 + �(�))��3 =

c=�; provided that p is su¢ ciently large to admit an interior solution. Moreover, @��=@c < 0,

@��=@p > 0, @��=@� > 0, and @��=@� > 0.

The quantity �(�) in (3) is the normalized rate at which the supplier�s revenue risk is reduced

(i.e., changes in Var[T j�; �]) as a result of increasing � by one unit. Under the assumptions made

regarding the shape of v(�), it can be easily veri�ed that �0(�) � 0, which implies that it becomes

more di¢ cult to reduce the revenue risk as capacity grows larger (i.e., decreasing marginal scale).

We can explain the supplier�s optimal capacity choice �� in response to variations in parameters

c, p, and � as follows. The supplier�s incentive to invest in capacity is higher when (a) the unit

capacity cost is lower (@��=@c < 0), (b) the performance incentive is higher (@��=@p > 0), or

(c) the supplier is more risk-averse (@��=@� > 0). The �rst two results are intuitive. The third

result arises from the fact that increased capacity leads to reduced service time uncertainty, as

Var[S j�] = v(�)2(E[S j�])2 decreases in �. In other words, a risk-averse supplier can hedge against

revenue risk by increasing capacity �. This e¤ect becomes more pronounced the more risk-averse

the supplier is.

The key result from Lemma 1 is that �� is an increasing function of �, as shown in Figure

1(a). There are two reasons. First, given a �xed penalty rate p, more equipment failures imply a

greater expected total penalty for the supplier under CC, as the contract stipulates that he loses

money for each minute the equipment is down. To avoid such losses, the supplier increases capacity

�. Second, since the revenue risk increases with higher � (since Var[
PN
i=1 Si j�; �] is proportional
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Figure 1: Example showing how �� varies as a function of � under CC and AC. The coe¢ cient of
variation v(�) of S is constant in these examples.

to �), the risk-averse supplier seeks to avoid this uncertainty by increasing capacity even further,

because doing so reduces the uncertainty in his performance. Combined, these two e¤ects induce

the supplier to choose higher capacity with more equipment failures.

5.2 Optimal Capacity Under Average-Performance Contract

The average downtime is de�ned as bS � (
PN
i=1 Si)=N jN > 0. Note that this is equal to the

sample mean estimator for fSig. The condition N > 0 is necessary since average downtime is

unde�ned when N = 0. The performance measure under AC is, then, bS1(N > 0), which quanti�es

the performance as zero if N = 0 but (
PN
i=1 Si)=N otherwise (1(�) is an indicator variable). The

supplier�s capacity choice under AC with T = w � pbS1(N > 0) is speci�ed as follows.

Lemma 2 De�ne �(�) � 1
e��1

P1
n=1

�n

n!
1
n . The supplier�s utility is concave under AC. The

supplier chooses �� > � that satis�es the �rst-order condition p��2 + 2�p2[e�� +�(�)�(�)]��3 =

c=(1� e��), provided that p is su¢ ciently large to admit interior solutions. Moreover, @��=@c < 0,

@��=@p > 0, and @��=@� > 0. Also, @��=@� > 0 for � � 0 but @��=@� < 0 for su¢ ciently large �

for which e��=�(�) � 0.

Note that the ratio e��=�(�), which appears in the last part of the lemma, converges quickly

to zero as � increases (see Table 1 in Appendix A). Comparing with Lemma 1, we see that the

major di¤erence between CC and AC is on how the supplier reacts to changes in � with regard

to his capacity decision. Recall from Lemma 1 that @��=@� > 0 under CC. When AC is used,
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however, the supplier reacts in a completely di¤erent and unexpected manner: @��=@� exhibits

non-monotonicity. See Figure 1(b) for examples demonstrating this behavior. Consider �rst the

case where � is su¢ ciently large so that Pr(N = 0) � 0. Since the supplier is compensated based

on the average downtime (
PN
i=1 Si)=N , his expected contract payment under a �xed penalty rate

p is independent of how many failures occur, which is in sharp contrast to what we observed under

the CC case. At the same time, the supplier bene�ts from sampling variance reduction: the higher

�, the more failures are likely, and hence, the variance of the sample mean estimator (
PN
i=1 Si)=N

decreases as more samples of performance realizations are collected. As a result, the supplier

becomes less concerned about his revenue risk and is more willing to gamble by choosing lower

capacity (i.e., @��=@� < 0 when � is high). Notice that in this case the sign of @��=@� is opposite

of that under CC. From this discussion, we witness the �rst evidence that CC and AC can lead to

very di¤erent consequences depending on equipment characteristics, represented by the failure rate

�, even though both contracts are designed to achieve the same goal: to give the supplier incentives

to reserve a high level of capacity.

The insight just described regarding the sign of @��=@� no longer holds when � � 0.8 That is,

given that there is a high chance that equipment never fails, the supplier reacts in the opposite

way, i.e., he increases capacity in response to higher �. The reason is that there is little bene�t

of sampling variance reduction when � � 0. Instead, the supplier under AC mimics the behavior

under CC, as the two performance measures become indistinguishable near � = 0:
PN
i=1 Si andbS1(N > 0) both converge to S11(N = 1). We call this mimicking behavior around � = 0 under

AC a no-failure e¤ect. We emphasize that this is a unique property that manifests itself when

performance realizations are rare and random, a situation that has been overlooked in the principal-

agent literature.

8� � 0 denotes the limit in which the terms of order �2 and higher can be dropped in the �rst-order condition of
the supplier�s problem in Lemma 2: see the proof of Lemma 2 in Appendix D.
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6 Contracting E¢ ciencies

In this section, we study the customer�s contract design problem. For both CC and AC, the

customer chooses the pair of contract terms (w; p) that solves the optimization problem

max
w;p

r(1� E[
PN
i=1 Si j�; �

�])� E[T j�; ��] subject to E[S j��] � 1=�I and u(��) � 0; (4)

anticipating the optimal supplier response ��, as speci�ed in Lemmas 1 and 2. We denote the

solution of this program by a superscript j 2 fCC;ACg, representing each contract. As is well

known from the principal-agent literature, the �rst-best e¢ ciency cannot be achieved with PBC

when risk aversion is present. The ine¢ ciency relative to the �rst-best, i.e., �FB � �j , is created

by PBC�s role in transforming performance risk into the supplier�s �nancial risk. In the following

analysis, our main interest is in investigating how the optimal penalty rates (pCC and pAC) and

the contracting ine¢ ciencies (�FB ��CC and �FB ��AC) behave as a function of the important

environmental characteristic, namely, the equipment failure rate �.

Similar to what we observed in Section 4 for the benchmark case, the solution behaviors turn

out to be quite di¤erent across the case where STC does not bind at optimum (which happens if

� is su¢ ciently large) and the case when the constraint binds at optimum (which happens if � is

su¢ ciently small). A su¢ cient condition for the latter case is (2). For ease of exposition, we �rst

present an analysis of the non-binding case in Section 6.1 and then turn to the discussion of the

binding case in Section 6.2, where counterintuitive results are derived. Thus, we move forward in

the reliability spectrum, from a scenario in which failures are moderately infrequent to a scenario

in which failures are rare, characterized by the su¢ cient condition � � c�2I=r.

6.1 Case 1: Equipment Fails at Moderate Infrequency (� > c�2I=r)

We �rst note that the condition � > c�2I=r, which ensured that STC does not bind at optimum

in the benchmark case, no longer guarantees the same when capacity is not observable and hence

the customer cannot contract directly on it. Regardless, we observe numerically that non-binding

solution is obtained whenever � is su¢ ciently larger than c�2I=r. In such cases, unfortunately,

analytical speci�cation of the optimal contract terms is intractable, partly due to the implicit
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nature of the optimal capacity expressions appearing in Lemmas 1 and 2. In particular, concavity

of the optimization problem or sensitivity results with respect to � cannot be easily established.

However, numerical experiments consistently show that the solution behavior under CC is rather

straightforward: the optimal penalty rate pCC and the contracting ine¢ ciency �FB��CC are both

increasing functions of �. This result is in line with intuition. With more frequent failures the total

downtime is expected to be longer, so the pro�t-maximizing customer attempts to increase the

equipment uptime by incentivizing the supplier to reserve higher service capacity, which is achieved

by imposing a larger penalty rate pCC . In other words, the customer o¤ers a high-powered incentive

to compensate for the loss of total uptime with quick service times. The deviation of the pro�t from

the �rst-best, �FB � �CC , then increases with � since the larger penalty rate generates greater

�uctuations in the supplier�s income stream, forcing the supplier to request higher risk premium.

Under AC, however, the shapes of pAC and �FB ��AC as a function of � are more convoluted

and do not show a consistent pattern. In particular, numerical examples show that �FB � �AC

may exhibit non-monotonicity; whereas it increases in � under some parameter combinations, in

general, it may decrease after an initial increase. This observation suggests two key facts. First,

the above reasoning that the customer incentivizes the supplier to provide quick service times to

compensate for the loss of total uptime only provides an incomplete picture; there is another force

that counters this e¤ect. Second, this counteractive force is stronger under AC than under CC. We

identify this force in the next section, where we consider the case in which STC binds at optimum.

6.2 Case 2: Equipment Fails Rarely (� � c�2I=r)

When � is su¢ ciently small such that the condition (2) is satis�ed, i.e., � � c�2I=r, a complete

analytical description of the solution behavior can be obtained, as long as the following condition

is satis�ed:

�(�) + ��0(�) � 0 for � � �. (5)

Along with (2), the condition (5) is su¢ cient to ensure that STC binds at optimum. It is trivially

satis�ed when v(�) is constant, as is the case if the distribution of service time is exponential or

gamma with a constant shape parameter. The literature makes such an assumption frequently (for

example, see Ata and Shneorson 2006). Note that (5) is a su¢ cient condition that is not tight, in
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that STC will continue to bind in many instances in which the condition is violated.

When STC binds at optimum, analysis is simpli�ed since, in that case, the optimal induced

capacity should be equal to a constant, �I . (In Section 7.1, we check the robustness of the results

obtained in this subsection by allowing the capacity target �I to vary with �.) In the following

proposition we specify the equilibrium solutions under CC and AC.

Proposition 1 Suppose that the conditions (2) and (5) hold. Under CC, the customer o¤ers the

penalty rate pCC = 2c�2I
h
�
�
1 +

p
1 + 8�c�IV

CC(�)
�i�1

, where V CC(�) = [1 + �(�I)]=�. Under

AC, the customer o¤ers the penalty rate pAC = 2c�2I

h
(1� e��)

�
1 +

p
1 + 8�c�IV

AC(�)
�i�1

,

where V AC(�) = e��+�(�)�(�I)
1�e�� . As a response, the supplier chooses �CC = �AC = �I and is

left with zero utility. The resulting expected customer pro�t is �j = r(1 � �=�I) � c(�I � �) �

 j, where  CC = c�I
2

�
1+v(�I)

2

1+�(�I)

��
1� 2

�
1 +

p
1 + 8�c�IV

CC(�)
��1�

for j = CC and  AC =

c�I
2

�
e��+�(�)v(�I)

2

e��+�(�)�(�I)

��
1� 2

�
1 +

p
1 + 8�c�IV

AC(�)
��1�

for j = AC.

When STC binds, the contracting ine¢ ciency is completely captured by the risk premium  j ,

that is, �FB � �j =  j . This is because the optimal capacity �j = �I does not deviate from the

�rst-best level �FB = �I , thereby leaving the portion of �
j other than  j unchanged from the �rst-

best quantity. (In contrast, when the constraint does not bind, as in Case 1 above, risk premium is

a major, but not the only contributor to the ine¢ ciency because in that case the optimal capacity

deviates from the �rst-best level, i.e., �FB 6= �I . Hence, in that case, �
FB � �j 6=  j .) The

changes in pj and  j , j 2 fCC;ACg, with respect to parameters c, �I , and � are qualitatively the

same across the contracting scenarios. Under both contracts, we can show that: (i) @pj=@c > 0,

@pj=@�I � 0, @pj=@� < 0, and (ii) @ j=@c > 0, @ j=@�I � 0, @ j=@� > 0. In other words, the

customer has to o¤er higher incentive (pj) to induce the target capacity �I as (a) the unit capacity

cost goes up, (b) the service time constraint is tightened, and (c) the supplier becomes less risk-

averse. The last result stems from the fact that a less risk-averse supplier is more willing to take

a chance on a fortuitous performance outcome, i.e., realization of shorter service time. Similarly,

e¢ ciency loss in the supply chain, as measured by the risk premium  j , increases as (a) the unit

capacity cost goes up, (b) the service time constraint is tightened, and (c) the supplier becomes

more risk-averse. These results are in line with intuition. Next, we state how pj and  j change

with �.
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Proposition 2 Suppose that the conditions (2) and (5) hold. Then

(i) @pCC=@� < 0, whereas @pAC=@� < 0 for � � 0 but @pAC=@� > 0 for su¢ ciently large � for

which e��=�(�) � 0. Moreover, lim�!0 pCC = lim�!0 pAC =1.

(ii)  CC �  AC if V CC(�) � V AC(�). Moreover, @ CC=@� < 0 and @ AC=@� < 0, while

lim�!0  
CC = lim�!0  

AC = c�I
2

�
1+v(�I)

2

1+�(�I)

�
.

The solution behaviors near � = 0 are explained in detail in Appendix B. In the following, we

examine the rest of the results one by one.

Changes in optimal penalty rates as a function of �. We observe that, while pCC is

monotonically decreasing in �, pAC decreases initially but goes up as failures occur more frequently.

Such behaviors re�ect the supplier�s di¤ering responses to changes in � under the two contracts, as

discussed in Section 5. Under CC, as we found out, the supplier tends to choose higher capacity

when more equipment failures are likely; the customer can then utilize this voluntary action to

reach the target capacity �I without providing a strong contractual incentive, i.e., without o¤ering

a high penalty rate p. However, the same logic does not hold when AC is used, precisely because the

supplier�s capacity choice �� in response to � exhibits non-monotonicity, as explained in Section 5.2.

Therefore, @pAC=@� is non-monotonic as was @��=@� but in the opposite direction, since, again,

the customer�s goal is to induce the target capacity �I . This counterintuitive solution behavior is

a direct consequence of the no-failure e¤ect.

Relative magnitudes of risk premiums. We �nd that  CC and  AC are not equal in

general. In fact, we can gain greater insight into when one contract leads to a more e¢ cient

outcome than the other by considering a special case in which the coe¢ cient of variation v(�) of

the service time S is constant (denoted simply as v). In this special case,  CC and  AC di¤er only

by V CC(�) = (1 + v2)=� and V AC(�) = (e�� + �(�)v2)=(1 � e��), which are in fact the squares

of the coe¢ cients of variation contained in the performance measures
PN
i=1 Si and bS1(N > 1),

respectively. Comparing the two quantities, we can state the following result.

Corollary 1 Assume that the conditions (2) and (5) hold and that v(�) does not vary in �. Let

v � v(�) and de�ne !(�) �
q

(1�e��)=��e��
�(�)�(1�e��)=� . Then  

CC �  AC i¤ v � !(�).
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Figure 2: Regions on the (�; v) plane where one contract dominates the other, when v = v(�) is a
constant.

According to Corollary 1, the customer (and hence the supply chain) can achieve better e¢ ciency

with AC than with CC if and only if v, the variability of service time, is less than or equal to !(�).

Numerical plotting shows that !(�) is a convex function that has a unique minimizer at � = 0:79

with !(�) = 1:4 at that point (see Figure 2). Therefore, AC always performs better than CC

whenever v < 1:4, regardless of �. Considering that the coe¢ cient of variation of 1.4 is a very large

number for most well-known distributions, we conclude that AC is preferable unless the service

time S exhibits extremely large variability. Numerical experiments lead to a similar conclusion

even if we allow v(�) to decrease, as doing so in fact has a larger impact on reducing  AC than

 CC .

What drives AC to be more e¢ cient than CC in most reasonable cases? In brief, the perfor-

mance measure used under CC typically contains more variability than does the measure under

AC, since the latter, the sample-average measure, e¤ectively removes the uncertainty stemming

from stochastic failures through the division by N . However, N is a random number, so the divi-

sion actually introduces a noise which is negligible if the service time S contains modest level of

variability but becomes magni�ed otherwise. This ampli�cation of the extra noise, which CC is

free from, pushes AC to become more ine¢ cient than CC if the variability v(�) is su¢ ciently large.

For detailed explanation, refer to Appendix C.

Changes in risk premiums as a function of �. It is shown in part (ii) that risk premiums

 CC and  AC , and hence the e¢ ciency loss in the supply chain, decrease in �. See the solid lines

in Figure 3(b) and Figure 4 for illustrations (in the �gures, the condition � � c�2I=r corresponds

to � � 2). The two drivers of this result are intricately related. First, the optimal capacity level
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�I attained under the condition (2) is free of �. Then, in the absence of any confounding factors

originating from �, reductions in  CC and  AC are solely due to reductions in the performance

measure variabilities
p
V CC(�) and

p
V AC(�), which are decreasing functions of �. This is a direct

consequence of risk pooling : the more i.i.d. service time samples are collected, the less variable the

supplier�s performance is. As a consequence, the supplier faces less revenue risk, and, hence, smaller

risk premium. (Note that this identi�es �another force� that we mentioned in the discussion of

non-monotone behavior of �FB ��AC in Case 1; risk pooling plays a greater role under AC than

under CC, contributing to the non-monotonicity. See Figure 4).

This observation leads us to the following conclusion: under the condition that the service

time constraint binds at optimum, which is guaranteed to happen for small � that satis�es (2),

contracting e¢ ciency is worst when the equipment almost never fails. The intuition is as follows.

If equipment fails rarely, the customer�s primary concern is not further increasing uptime-driven

pro�tability (which is already close to maximum) but making sure that a downtime, if it is realized,

is not exceedingly long. Hence, it is optimal for the customer to induce the supplier to reserve the

minimum, constant target level of capacity. With the mean service time �xed at the inverse of the

target capacity level, then, the only remaining consequence of reducing � is that the risk pooling

e¤ect is diminished, since with fewer failures, the supplier has fewer opportunities to perform and

present signals about his capacity decision. As a result, the variability of performance realization

becomes larger with smaller failure frequency, thereby creating a larger contracting ine¢ ciency.

Therefore, when failures occur due to imperfect equipment reliability, �rms face the following

dilemma: while �rms value high reliability, it may become very ine¢ cient to contract with a

supplier to deliver fast restoration/recovery services for reliable equipment.

Summarizing, we �nd that frequency of equipment failures is an important factor in determining

how e¢ ciently PBC can be implemented. In particular, one may encounter a situation in which

higher equipment reliability leads to less e¢ cient contracting. This happens when failures are so

rare that the customer�s concern for ensuring a minimum service time requirement outweighs her

pro�tability (i.e., the service time constraint binds at optimum).
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(a) Equilibrium capacity under CC (b) Contracting inefficiency under CC

Figure 3: Equilibrium capacity �CC and contracting ine¢ ciency �FB ��CC as a function of �. In
these examples, r=c = 5000, v = 0:5, and the target capacity �I(�) of the constraint �

� � �I(�) is
assumed to be linear function with �I(�) = 100 + �1�. In both (a) and (b), the solid horizontal
line, the dashed line, and the dotted line correspond to �1 = 0, �1 = 5, and �1 = 10, respectively.
The values of � where the kinks are located in (a) represent the points at which the constraint
starts to bind at optimum as � decreases.

7 Discussion of Assumptions and Extensions

Thus far, we have presented the analysis based on the set of assumptions we made in Section 3.

We have kept the assumptions as simple as possible in order to clearly identify the drivers of the

results we have found. In reality, there are situations that require altering our assumptions. In this

section we brie�y discuss the impact of relaxing some of them.

7.1 Non-Constant Service Time Target

We have assumed throughout the analysis that the service time target sI in STC, or equivalently,

the capacity target �I in the constraint �
� � �I , is a constant. Although many service contracts

appear to suggest that this assumption is reasonable (see Footnote 5), in general, the target may

vary with equipment failure frequency �. If it does, we expect �I to increase with �, as the

pro�tability-conscious customer would prefer quicker service time to compensate for the loss of

equipment uptime due to more failures. In this subsection we relax the constant target assumption

and see if, in particular, the counterintuitive �nding that contracting e¢ ciency decreases with

equipment reliability for small � continues to hold. To this end, we conduct numerical experiments

assuming that the capacity target linearly increases with �, such that �I(�) = �0+�1�. The results
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Figure 4: Contracting ine¢ ciency �FB ��AC under AC as a function of �, for v = 0:5 and v = 1.
All other parameter values for the three lines (solid, dashed, dotted) are the same as those of Figure
3.

are summarized in Figures 3 and 4 (compare the dashed and the dotted lines with the solid line).

We see there that our �nding does not change qualitatively; although the e¤ect is more muted

compared to the constant target assumption, it is clear that contracting ine¢ ciency continues to

decrease in � as long as � is su¢ ciently small so that STC binds at optimum. In addition, as

observed in Section 6.1, when the constraint does not bind, the ine¢ ciency increases in � under

CC but it may increase or decrease under AC. Hence, our analysis in Section 6 is robust to the

constant service time target assumption.

Although we chose the simple linear form �I(�) = �0 + �1� as an example, we note that it

actually has practical interpretation. Many managers in service-providing organizations �nd it

di¢ cult, if not impossible, to guess the opportunity cost of equipment downtime r. (For example,

what is the monetary value of losing the war because an aircraft was down due to a defective part?)

Hence, it is di¢ cult to represent these organizations as pro�t-maximizers since r is unknown. As an

alternative, it is common in the literature (see, for example, Sherbrooke 1968) to assume that their

objective is to minimize expected cost subject to a constraint on expected equipment availability. In

fact, specifying a target availability is a wide-spread practice; terms like �target availability of 95%�

or �target availability of 99%�are easily spotted in many service contracts. As specifying a target

availability is equivalent to specifying a target on the total downtime during the contract length,

the availability constraint can be expressed as E[
PN
i=1 Si j�; ��] = �=�� � 1=�T , or equivalently,

�� � �T�, where �T is a constant. Comparing this expression with the service time constraint
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�� � �I(�) = �0 + �1�, we see that the capacity targets in the two constraints become equivalent

if �1 = �T and if � is su¢ ciently large so that �0 � �1�. Therefore, the linear form of �I(�) can

be considered as an approximation of the two service targets that the cost-minimizing customer

requires: it represents the minimum service time target when � is small, whereas it represents an

availability target when � is large.

7.2 Endogenous Failure Rate

In the base model, we treated the failure rate � as an exogenous variable. Although assuming � to

be beyond the supplier�s control is reasonable in many situations (such as when equipment failures

occur after natural disasters or in the Clean Harbors example mentioned in the Introduction), there

are also situations in which the supplier is able to lower the frequency of failures, for example, by

improving equipment reliability. It turns out that endogenizing the failure rate along with capacity

presents many analytical challenges (see Kim et al. 2009). However, with a simple model extension,

we �nd interesting results that re�ne the insights that we obtained previously.

Let us assume that the supplier has two failure rate choices at the outset: low (L) or high

(H), with �L < �H . Discrete failure rates may arise, for example, when the supplier elects to

retro�t equipment or software, which results in a jump in reliability. Choosing the low failure rate

�L (choosing higher reliability) requires an additional investment amount K � 0. Therefore, the

supplier�s utility can be rede�ned as Ut(�) � ut(�) �K1(t = L), t 2 fL;Hg, where 1(�) denotes

the indicator variable and ut(�) is the utility function from (1) with � replaced by �t. Presented

with contract terms (w; p), the supplier does the following: compute the optimal capacity levels ��L

and ��H that maximize UL(�) and UH(�), respectively, compare UL(��L) and UH(�
�
H), and choose

�H if and only if UL(��L) � UH(�
�
H). When does the supplier choose �L, the higher reliability?

The following lemma answers this question for the special case where v(�) is constant.

Lemma 3 Let p = maxfp
L
; p
H
g, where p

L
and p

H
are the minimum penalty rates under �L and

�H , respectively, beyond which the supplier is induced to choose his capacity above the default level

�. Suppose that v(�) is constant and consider p � p.

(i) Under CC or under AC with �t � 0, there exists at most one py � p such that the supplier

chooses �H if p � py and �L otherwise.
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(ii) Under AC with �t su¢ ciently large for which e��t=�(�t) � 0, the supplier always chooses

�H .

In Lemmas 1 and 2 we observed that the supplier�s optimal capacity choice exhibits markedly

di¤erent behaviors across CC and AC as � varies. This di¤erence is re�ected in his failure rate

choice, as illustrated in parts (i) and (ii) of Lemma 3. Consider CC �rst. Under this contract, the

supplier has an incentive to lower the failure rate (choose higher reliability). This is because less

frequent failures subtract the number of downtime realizations, hence reducing the total downtime

and the resulting penalty. The only hindrance in choosing �L is the investment cost K. If it is too

large, reduction of failure rate is too costly to implement. Part (i) of the lemma states this tradeo¤

and shows that the supplier tends to lower the failure rate if the penalty rate p is high enough to

justify the investment. The same result holds for AC when �L and �H are very small, since AC

and CC converge to each other in the low-� limit.

By contrast, when �L and �H are su¢ ciently large (such that the condition in part (ii) of the

lemma is satis�ed), AC may provide an opposite incentive that leads the supplier to prefer more

frequent failures, i.e., lower reliability. This happens because sampling variance reduction is in

full e¤ect; with more failures (more samples of service times) the supplier�s performance outcome

under AC is less variable due to averaging, increasing his utility. In addition, choosing �L incurs

an extra cost K which can be avoided if �H is chosen. Hence, there is no reason to choose �L

in this scenario. Therefore, the supplier may or may not be incentivized to lower the failure rate

depending on which of CC and AC is used and whether the failures are very rare or not.

Lower failure rate is bene�cial to the customer since her revenue is proportional to equipment

uptime, which increases as failures occur less often. The insights from Lemma 3 suggest that there

may be circumstances where CC is a better contract to use, in contrast to our earlier observation

that AC is generally preferred when failures are driven by an exogenous process. The di¤erence is

due to the fact that CC gives the supplier greater incentives to lower the failure rate than AC does.

Figure 5 illustrates this point. Recall from the discussion below Corollary 1 that AC is superior to

CC whenever v < 1:4 and when the supplier had no control over the failure rate. If the supplier

can in�uence the failure rate, the examples in Figure 5 show that the opposite can be true even

with v = 1; while AC is still more e¢ cient than CC for very small �L and �H , the situation is
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values �L=�H = 0:9 and �L=�H = 0:5. v = 1 is assumed in both examples.

reversed for intermediate values of �L and �H with su¢ ciently high revenue-to-cost ratio r=c. In

addition, CC becomes more dominant as the supplier is able to reduce the failure rate by a wider

margin (as the ratio �L=�H decreases). Therefore, the intuitive conclusion from the previous section

that the bene�t of risk pooling points to AC as the preferred contract ceases to be true when the

supplier controls not only the service capacity but also the frequency of equipment failures. This

is an important reminder that there is no �one-size-�ts-all�when it comes to choosing the right

performance metric in the PBC environment. In particular, whether the supplier can in�uence the

frequency of disruptions should be an important factor in the decision.

7.3 Risk-Averse Customer

We have assumed that the supplier is averse to �nancial risk but the customer is not, on the grounds

that the supplier, as a smaller entity, is more susceptible to �uctuations in cash �ow. This is a

reasonable assumption in the majority of bilateral relationships in which the customers are typically

larger and more diversi�ed (such as semiconductor manufacturers or government agencies) than the

supplier of customized services who often rely heavily on a single customer, as is the case for many

defense contractors. This assumption is also consistent with our modeling construct where the

customer has a superior market power as the �principal�who determines the terms of contracts.

However, there may be cases where the situation is reversed. To gain insights on how the results

that we obtained thus far change in such a case, let us assume that the customer is risk-averse

with the coe¢ cient of risk aversion �c and the supplier is risk-neutral. The additional term that
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appears in the customer�s utility function,  c = �c(r
2Var[

PN
i=1 Si j�; �] + p2Var[X j�; �]), where

X =
PN
i=1 Si for CC and X = bS1(N > 0) for AC, represents the degree to which she is reluctant

to participate in the trade because of the �nancial risk posed by PBC. This quantity represents

the contracting ine¢ ciency. There are a few notable changes in the results under this setup. First,

the condition (2), which led STC to bind under both CC and AC previously, no longer guarantees

to do the same under AC. However, the constraint continues to bind for su¢ ciently small �. For

simplicity�s sake, let us consider only such cases. It is found that the optimal penalty rates pCC and

pAC are both decreasing in �, in contrast to our earlier �nding that pAC exhibits non-monotonicity

(see (i) of Proposition 2). This reminds us that such a distinct feature was a consequence of a

risk-averse supplier�s opportunistic behavior in choosing capacity (see Section 5.2); since the party

who makes capacity decision, the supplier, is now risk-neutral, this feature is no longer present.

How contracting ine¢ ciency (represented by  c) changes as a function of �, the other central

focus of this paper, turns out to be similar to what we observed earlier. Under the same conditions

speci�ed in Proposition 2, we can analytically show that, as before,  CCc decreases in � (proof is

omitted). A similar pattern is observed for  ACc numerically, as long as STC is binding. This

is quite remarkable considering that there is an additional source of risk that tends to increase

with � which did not matter to a risk-neutral customer: the revenue that depends on uncertain

equipment uptime (the �rst term in the expression of  c above). To a risk-averse customer, this

revenue becomes more volatile as failures occur more frequently, and the increase of this risk works

counter to the bene�t of reduced risk through pooling, the e¤ect that we observed previously. The

fact that  CCc and  ACc continue to decrease with � indicates that the latter dominates even in

this case. Therefore, we conclude that our earlier counterintuitive result is quite robust; no matter

who is risk-averse � the supplier, the customer, or both �high equipment reliability begets low

contracting e¢ ciency.

8 Conclusion

In this paper we study issues arising from performance-based contracting for restoration and re-

covery services, which are essential when minimizing the impact of disruptions for mission-critical

operations. Despite a large volume of literature on service contracting, surprisingly little attention
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has been directed to outsourced services in an environment characterized by low-frequency, high-

impact events such as equipment failures. With increasing use of PBC for service outsourcing in

both the commercial and the government sectors, analyzing the merits and pitfalls of PBC in such

an environment provides important managerial guidelines to practitioners who face unique issues

that arise in those arenas. In addition, we contribute to the ongoing discussion regarding the best

performance metrics to be used in PBCs. In his testimony to the Committee on Homeland Security,

the Chief Procurement O¢ cer of the Department of Homeland Security stated that �Commercial

organizations told the Panel that implementing the [PBC] can be di¢ cult, particularly in identify-

ing the appropriate performance standards to measure�(Department of Homeland Security 2008).

Our work aims to help �rms in this regard.

We �nd that one prominent source of ine¢ ciency when contracting in this environment is the

low rate of system disruptions. Since disruptions of mission-critical systems are relatively rare,

the customer has few opportunities to observe signals about a supplier�s choice of service capacity

through repeated realizations of the supplier�s performance, namely, service completion times. In

an extreme scenario, a disruption may not occur at all within a contracting period, revealing no

signals about the supplier�s capacity choice. With limited information about the supplier�s decision,

it becomes costly to provide a high-powered incentive via PBC. This implies that, counter to our

intuition, implementing PBC may be least e¢ cient when the equipment is most reliable. This

happens, in particular, when equipment failures are so rare that the customer�s primary concern is

ensuring a minimum downtime target when a failure actually occurs. Under such a circumstance,

�rms face a dilemma if they value both fast restorations and high reliability: while it is crucial that

the customer resolve any disruptive event as quickly as possible, it may become very ine¢ cient to

contract with a supplier to achieve that objective when the equipment does not fail often.

This analysis provides a theoretical support to the argument that PBC should be implemented

with discretion. Currently, there is a major policy shift in the government sector which advocates

a complete switch to PBC for all service acquisitions (O¢ ce of Management and Budget 2003).

Our study reveals, however, that there may be situations (such as when disruptions are rare) in

which PBC creates potentially very high agency costs. In such cases, it might be prudent to

consider in-sourcing or expending signi�cant e¤ort to continuously monitor a supplier�s capacity

investments.
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We also highlighted other nontrivial issues that arise in the settings characterized by infrequent

disruptions by analyzing two widely used contracts that function identically but which actually

yield quite di¤erent incentive e¤ects. One contract is based on cumulative system downtime, and

the other is based on sample-average of downtime. Although both motivate the supplier to invest in

service capacity, they also create very di¤erent incentive structures to a risk-averse supplier, which

in turn a¤ect the way optimal contracts are designed. For example, the optimal penalty rate may

change non-monotonically in the equipment failure rate if sample-average downtime is used as the

basis of the supplier performance evaluation. To the best of our knowledge, this unexpected feature

has not been studied in the contracting literature. We also compare the relative e¢ ciencies of the

two contracts, and �nd that the contract based on sample-average downtime is superior in most

practical situations if disruptions are driven by an exogenous process such as natural disasters. If

the supplier also controls the frequency of disruptions, however, the contract based on cumulative

downtime may be preferred instead.

The model we propose in this paper is not without shortcomings, as we have made a number of

simplifying assumptions that permit tractable analysis and highlight important features. For exam-

ple, some of the e¤ects driven by risk aversion may be reduced if the supplier serves a large number

of customers, thanks to risk pooling. Although additional details would sharpen the managerial

insights, we believe that our model captures the most important aspects of our problem setting,

namely, using PBC for rarely requested restoration and recovery services, and they serve as useful

guidelines to practitioners. As for the future directions of our research, we envision many ways in

which our model can be extended. One promising idea is to fully account for the multi-indentured

structure of equipment and investigate the e¤ects of having heterogenous failure processes for dif-

ferent components. Another fruitful direction would be to extend this model to a repeated setting.

In the government sector, for example, PBC is sometimes augmented with contract renewals, which

provide an added incentive to the supplier to invest in capacity as past performance determines

whether the contract is renewed. We believe that our model paves the way for analyzing this prac-

tice as well. Finally, considering how product design impacts after-sales service performance would

allow us to view the issues analyzed in this paper from a product lifecycle planning perspective.
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A Tables and Figures

� 1 2 3 4 5 6 7 8 9 10
�(�) 0.767 0.577 0.433 0.330 0.258 0.208 0.172 0.147 0.128 0.113

e��=�(�) 0.480 0.235 0.115 0.056 0.026 0.012 0.005 0.002 0.001 4�10�4

Table 1: Numerical values of �(�) and e��=�(�) for � = 1; :::; 10.

B Solution Behavior in the �! 0 Limit

In the � ! 0 limit, STC binds at optimum because the condition (2) is trivially satis�ed. Both

pCC and pAC approach in�nity in this limit, as stated in part (i) of Proposition 2; when equipment

failures are extremely unlikely the supplier has little incentive to invest in capacity because the

chance of his being penalized for poor service time realization is very small. To convince the

supplier otherwise and to induce the target capacity �I , the customer must threaten him with a

very high penalty rate. However, risk premiums under the two contracts converge to the same �nite

number c�I2

�
1+v(�I)

2

1+�(�I)

�
in the �! 0 limit. In fact, this counterintuitive result is more general than

what our model allows for, i.e., it continues to hold even if the failure process is not Poisson, as

proved in the following proposition.
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Proposition B.1 Let fYig be arbitrary but i.i.d. random variables representing the failure in-

terarrival time and F (� j�) be their cdf when the arrival rate is �. Suppose that F (� j�) satis�es

lim�!0 F (� j�) = 0. Let  jY , j 2 fCC;ACg be the risk premium under either CC or AC. Then

lim�!0  
CC
Y = lim�!0  

AC
Y = c�I

2

�
1+v(�I)

2

1+�(�I)

�
.

The intuition behind Proposition B.1 is as follows. In the vicinity of � = 0, that is, when it

is highly unlikely that an equipment failure occurs within the contracting period, the customer

faces the following situation. Since the chance is high that the supplier�s service is not required,

even a fairly large penalty rate will not convince the supplier to invest in capacity. Therefore, the

customer has to provide a very high contractual incentive (large p) in order to ensure that the

supplier reserves the target capacity �I , as we showed above for Poisson failures. At the same time,

however, uncertainty in the supplier�s performance Var[X j�; �I ], where X =
PN
i=1 Si for CC and

X = bS1(N > 0) for AC, approaches zero since the supplier does not get a chance to reveal his

ability to perform if there is no equipment failure. Since the risk premium combines these two

e¤ect, i.e.,  = �p2Var[X j�; �I ], a tension exists between p that goes to in�nity and Var[X j�; �I ]

that goes to zero. Remarkably, Proposition B.1 states that a middle ground is chosen between these

two opposing forces in the �! 0 limit, and that this asymptote depends neither on the supplier�s

risk aversion coe¢ cient � or the equipment failure process.

To put this last result into a perspective, we compare it to the analysis in Abreu et al. (1991).

One of the implications of the analysis in Abreu et al. (1991) is that it becomes in�nitely expensive

in the �! 0 limit to implement an incentive-compatible �xed-price contract in a repeated setting,

which is known to allow for achieving the �rst-best solution if the discount rate is close to one.9

Although a side-by-side comparison between our model and that of Abreu et al. (1991) is not

possible because our model assumes a single interaction between the customer and the supplier, we

�nd evidence from Proposition B.1 that PBC o¤ers a unique advantage of containing cost even in

extreme situations, as an upper bound on  exists. Given that repeated interactions can only im-

prove the e¢ ciency of a contract, as is well known in the contracting literature, this advantage over

9Rather than showing that supply chain cost approaches in�nity, Abreu et al. (1991) show that an incentive-
compatible �xed-price contract that satis�es a budget constraint does not exist if the agent�s action is evaluated too
frequently. Note that frequent action evaluation (i.e., short period length) in their model is equivalent to infrequent
product failures in our model, in that they assume that the signal frequency is �xed, whereas we assume that it is
the period length that is �xed.
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a �xed-price contract would become even more pronounced in a setting with repeated interactions.

Thus, this result advocates the use of a performance-based contract over a �xed-price contract (i.e.,

the contract that is independent of the performance outcome) in high-reliability environments, if

outsourcing is required.

C Comparing E¢ ciencies of CC and AC When v(�) Is Constant

What drives AC to be more e¢ cient when the service time S does not vary too much? Why is

CC more e¢ cient in some cases? The key to answering these questions lies in examining in detail

V CC(�) and V AC(�), which determine relative magnitudes of risk premiums (see Proposition 1 for

expressions of the two quantities). These two quantities are in fact squares of the coe¢ cients of

variations (CV) of the two performance measures
PN
i=1 Si and bS1(N > 0) (as opposed to v, which

is the CV of S). It is instructive to write them in the following way:

V CC(�) =
1

�
+
1

�
v2 and V AC(�) =

e��

1� e�� +
�(�)

1� e�� v
2: (6)

As we can see from these expressions, each V j(�) is separated into terms that are either independent

or dependent of v2. The identities of the independent (�rst) terms are revealed by rewriting them

as
1

�
=

�

�2
=
Var[N ]
(E[N ])2

and
e��

1� e�� =
e��(1� e��)
(1� e��)2 =

Var[1(N > 0)]

(E[1(N > 0)])2
:

In other words, they are the squares of the CVs that originate from uncertainty in the number of

equipment failures N . However, they manifest themselves in di¤erent forms for the two contracts:

while it is the CV of N that enters into V CC(�), it is the CV of 1(N > 0) that enters into V AC(�).

The latter comes from the no-failure e¤ect of AC. Var[N ] is present in CC because uncertainty in

N is one of the two components of the total variance in cumulative downtime (see (8) in Appendix

D), whereas under AC, Var[N ] is eliminated through division of
PN
i=1 Si by N , leaving the no-

failure e¤ect as the only residual of uncertainty from N . As intuition suggests, the variability of

CC turns out to be greater than that of AC when only the �rst terms of V CC(�) and V AC(�) in

(6) are compared: it can be shown that 1=�� e��=(1� e��) > 0.

This, however, does not tell the entire story because we have not taken into account the in-
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teractions of N with S that are present in the second terms of V CC(�) and V AC(�) in (6). The

interactions occur because variabilities in performance measures are also impacted by how many

samples are collected, i.e., by N . It turns out that there is more variability in AC with regard to

these interactions because division of
PN
i=1 Si by a random variable N introduces more noise than

when it is not divided by N , as is the case under CC. We con�rm this insight by showing that

the di¤erence of the second terms in V CC(�) and V AC(�) is negative: 1=���(�)=(1� e��) < 0,

which follows from the property (iv) of �(�) in Lemma D.1.

Combined, the sign of V CC(�) � V AC(�) is ambiguous. However, we can infer from (6) and

the preceding arguments that V CC(�) > V AC(�) if v is su¢ ciently small but V CC(�) < V AC(�)

otherwise. This result answers the questions that we posed above, as the risk premium  j , and

hence the supply chain e¢ ciency, is completely determined by V j(�) in the constant v(�) case: AC

is more e¢ cient when v is relatively small but the reverse is true if v is large. See Figure 3 that

divides the (�; v) space in terms of relative e¢ ciency of the two contracts. A similar argument can

be made for the case where v(�) is allowed to vary, although it is more complicated than what we

have presented here. The basic insight, however, remains the same.

D Proofs and Auxiliary Results

Proof of Lemma 1. The mean and the variance of a compound Poisson variable is evaluated as

(see Ross 1996, pp. 82-89)

E[
PN
i=1 Si j�; �] = E[N j�]E[S j�] = �=�; (7)

Var[
PN
i=1 Si j�; �] = Var[N j�](E[S j�])2 + E[N j�]Var[S j�] = �

�
1 + v(�)2

�
=�2: (8)

The supplier utility under CC (with T = w�p
PN
i=1 Si) is u(�) = w�p�=���p2�

�
1 + v(�)2

�
=�2�

c(�� �). Di¤erentiating,

u0(�) = p�=�2 + 2�p2� (1 + �(�)) =�3 � c:

Observe that

�0(�) = v(�)v0(�)� �[v0(�)]2 � �v(�)v00(�) � 0:
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Hence, u00(�) < 0, i.e., the supplier�s utility maximization problem with CC is concave. The

sensitivity analysis results can be found from implicit di¤erentiations, which we omit. The same

results for u(�) can be shown analogously.

Proof of Proposition 1. We show the solution of the CC case only. The solution of the AC case

is obtained similarly. The customer�s contract design problem is reduced to the cost minimization

problem

min
p

	(p) � r�=�� + c(�� � �) + �p2�
�
1 + v(��)2

�
=(��)2 subject to �� � �I

as the IR constraint u(��) � 0 binds at optimum, by an appropriate selection of w. We can invert

�� found from the �rst-order condition in Lemma 1 with respect to p, using the monotonicity

relation @��=@p > 0. Thus the optimal penalty rate that induces the supplier to choose � is

p(�) =
�1 +

p
1 + 8�c� (1 + �(�)) =�

4� (1 + �(�)) =�
=

2c�2

�
�
1 +

p
1 + 8�c� (1 + �(�)) =�

� :
For notational convenience, let us suppress the argument � in p(�), �(�), and v(�). Observe that

@

@�

�
1 + v2

(1 + �)2

�
=

2vv0 (1 + �)� 2(1 + v2)�0

(1 + �)3
=
2vv0

�
1 + v2 � �vv0

�
� 2(1 + v2)(vv0 � �(v0)2 � �vv00)
(1 + �)3

=
2�(v0)2 + 2�v(1 + v2)v00

(1 + �)3
� 0:

Combining this result with (5), we �nd that the risk premium  = �p2�
�
1 + v2

�
=�2 (from the

expression of 	(p) above) is increasing in � for � � �:

16�

�
 0(�) = 16�2

d

d�

�
(p=�)2

�
1 + v2

��
=

d

d�

��
�1 +

p
1 + 8�c� (1 + �) =�

�2 1 + v2

(1 + �)2

�
=

8�c

�

�
1 + � + ��0

� 
1� 1p

1 + 8�c� (1 + �) =�

!
1 + v2

(1 + �)2

+
�
�1 +

p
1 + 8�c� (1 + �) =�

�2 d

d�

�
1 + v2

(1 + �)2

�
� 0 :

In addition, r�=� + c(� � �) increases in � � �I when (2) is satis�ed. Thus, the customer cost

	 = r�=�+ c(���)+ increases in � in the feasible region. Since our goal is to �nd the minimum
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of 	, which is increasing in �, in the feasible region [�I ;1) on the �-domain, the cost minimizer

is found at the left-most boundary, i.e., � = �I . Hence, the service time constraint binds at the

optimal solution. The equilibrium solutions pCC and  CC are found by substituting � = �I in p(�)

and  (�).

In the following auxiliary lemma, we evaluate the mean and the variance of the performance

measure bS1(N > 0) that are used to prove Lemma 2.

Lemma D.1

E[bS1(N > 0) j�; �] = Pr(N > 0)E[S j�] = (1� e��)=� and (9)

Var[bS1(N > 0) j�; �] = Pr(N > 0)
�
Pr(N = 0)(E[S j�])2 +�(�)Var[S j�]

�
= (1� e��)[e�� +�(�)v(�)2]=�2; (10)

where �(�) � 1
e��1

P1
n=1

�n

n!
1
n has the following properties: (i) �

0(�) < 0, (ii) lim�!0�(�) = 1,

(iii) lim�!1�(�) = 0, (iv) �(�) > (1� e��)=�, and (v) d
d�

�
e��=�(�)

�
< 0:

Proof of Lemma D.1. For notational convenience, let us suppress the conditional arguments

(�; �). First, we prove the following intermediate results.

Lemma D.2

E[bS] = E[S] = 1=�; (11)

Var[bS] = �(�)Var[S] = �(�)v(�)2=�2; (12)

Proof. Let M(t) � E[et
bS ] be the moment generating function for bS. Then

M(t) = E[et(
PN
i=1 Si)=N jN > 0] =

1

Pr(N > 0)

1X
n=1

E[et(
PN
i=1 Si)=N jN = n] Pr(N = n)

=
1

1� e��
1X
n=1

E
h
et(
Pn
i=1 Si)=n

i �ne��
n!

=
1

1� e��
1X
n=1

�
E[etSi=n]

�n �ne��
n!

;
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where the last equality follows from independence of fSig. Di¤erentiating,

M 0(t) =
1

1� e��
1X
n=1

n
�
E[etSi=n]

�n�1
E

�
Si
n
etSi=n

�
�ne��

n!
;

M 00(t) =
1

1� e��
1X
n=1

n(n� 1)
�
E[etSi=n]

�n�2�
E

�
Si
n
etSi=n

��2 �ne��
n!

+
1

1� e��
1X
n=1

n
�
E[etSi=n]

�n�1
E

�
S2i
n2
etSi=n

�
�ne��

n!

The �rst and second moments are

E[bS] = M 0(0) =
E[S]

1� e��
1X
n=1

�ne��

n!
= E[S];

E[bS2] = M 00(0) =
(E[S])2

e� � 1

1X
n=1

�
1� 1

n

�
�n

n!
+
E[S2]

e� � 1

1X
n=1

�n

n!

1

n
= (E[S])2 +

Var[S]
e� � 1

1X
n=1

�n

n!

1

n
;

which together yield Var[bS] = E[bS2]� (E[bS])2 = � 1
e��1

P1
n=1

�n

n!
1
n

�
Var[S]:

Next, we prove (9) and (10). Let I � 1(N > 0). Note that, using (11) and (12), E[bSI j I = 0] =
0, E[bSI j I = 1] = E[bS] = E[S], Var[bSI j I = 0] = 0, and Var[bSI j I = 1] =Var[bS] = �(�)Var[S].

The mean is

E[bSI] = E[E[bSI j I]] = Pr(I = 1)E[S]:
To compute the variance, �rst observe that

Var[E[bSI j I]] = E[E[bSI j I]2]� (E[E[bSI j I]])2 = E[E[bSI j I]2]� (E[bSI])2
= Pr(I = 1)(E[bSI j I = 1])2 + Pr(I = 0)(E[bSI j I = 0])2 � (Pr(I = 1)E[S])2
= Pr(I = 1)(E[S])2 � (Pr(I = 1))2(E[S])2 = Pr(I = 0)Pr(I = 1)(E[S])2;

where we have used the results obtained above. Therefore,

Var[bSI] = Var[E[bSI j I]] + E[Var[bSI j I]]
= Pr(I = 0)Pr(I = 1)(E[S])2 + Pr(I = 1)�(�)Var[S]

= Pr(I = 1)
�
Pr(I = 0)(E[S])2 +�(�)Var[S]

�
:
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Finally, we show the properties of �(�). The following facts are useful:

�0(�) = � e�

(e� � 1)2
1X
n=1

�
�n

n!

1

n

�
+

1

e� � 1

1X
n=1

�
�n�1

n!

�

= � e�

(e� � 1)2
1X
n=1

�
�n

n!

1

n

�
+

1

e� � 1
1

�

1X
n=1

�
�n

n!

�
= � e�

(e� � 1)2
1X
n=1

�
�n

n!

1

n

�
+
1

�

= � �(�)

1� e�� +
1

�
; (13)

1X
n=1

�n

n!

1

n
= �+

1X
n=2

�n

n!

1

n

> �+

1X
n=2

�n

(n+ 1)!
= �+

1

�

1X
n=3

�n

n!

= �+
1

�

�
e� � 1� �� �2

2

�
=
1

�

�
e� � 1� �+ �2

2

�
; (14)

and

e�� � 1� �+ �2=2; (15)

which can be shown as follows. Let �(�) � 1 � � + �2=2 � e��. Then �0(�) = �1 + � + e�� and

�00(�) = 1� e��. Since �0(0) = 0 and �00(�) � 0, we have �0(�) � 0. But this implies �(�) � 0 since

�0(0) = 0.

(i) Di¤erentiating �(�), we obtain

�0(�) = � e�

(e� � 1)2
1X
n=1

�
�n

n!

1

n

�
+
1

�

< �e
2� � e� � �e� + �2e�=2

�(e� � 1)2 +
1

�
= �e

2� � e� � �e� + �2e�=2� e2� + 2e� � 1
�(e� � 1)2

= �e
� � �e� + �2e�=2� 1

�(e� � 1)2 = �e
�(1� �+ �2=2� e��)

�(e� � 1)2 � 0;

where the �rst and second inequalities follow from (14) and (15), respectively.

(ii) By l�Hopital�s rule,

lim
�!0

�(�) = lim
�!0

P1
n=1

�n

n!
1
n

e� � 1 = lim
�!0

P1
n=1

�n�1

n!

e�
= lim
�!0

1 +
P1
n=2

�n�1

n!

e�
= 1:
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(iii) Applying l�Hopital�s rule n times,

lim
�!1

�(�) =
1X
n=1

1

n!

1

n

�
lim
�!1

�n

e� � 1

�
=

1X
n=1

1

n!

1

n

�
lim
�!1

n!

e�

�
=

1X
n=1

1

n

�
lim
�!1

1

e�

�
= 0:

(iv) The lower bound of �(�) follows from (13) and part (i).

(v) Since
�(�)

e��
=

1

1� e��
1X
n=1

�n

n!

1

n
;

we see that

@

@�

�
�(�)

e��

�
=

1

(1� e��)2

 
(1� e��)

1X
n=1

�n�1

n!
� e��

1X
n=1

�n

n!

1

n

!

� 1

(1� e��)2

 
(1� e��)

1X
n=1

�n�1

n!
� e��

1X
n=1

�n

n!

!

=
1

(1� e��)

 1X
n=1

�n�1

n!
� 1
!
=

�
e� � 1

�
=�� 1

1� e�� > 0;

where the last inequality comes from e� � 1 > � for � > 0.

Proof of Lemma 2. The proofs for all results in the lemma are analogous to those of Lemma 1,

except for the last result concerning the sign of @��=@�. Suppose that � is close to zero such that

terms of order �2 and above can be dropped. Then the �rst-order condition is approximated as

c =
p

�2
(1� e��) + 2�p

2

�3

�
e�� +�(�)�(�)

�
(1� e��) � p

�2
�+

2�p2

�3
(1 + �(�))�;

where we have used (ii) of Lemma D.1. This result identical to the �rst-order condition in Lemma

1 for CC. Hence, @��=@� > 0 for small �. On the other hand, if � is su¢ ciently large so that

e��=�(�) � 0 (see (v) of Lemma D.1 and Table 1), 1 � e�� � 1 and the �rst-order condition

becomes

c =
p

�2
(1� e��) + 2�p

2

�3

�
e�� +�(�)�(�)

�
(1� e��) � p

�2
+
2�p2

�3
�(�)�(�):
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Since �0(�) < 0 by (i) of Lemma D.1, it is clear from this expression that @��=@� < 0.

Proof of Proposition 2.

(i) Rewriting pCC and pAC derived in Proposition 1,

pCC = 2c�2I

�
�+

q
�2 + 8�c�I (1 + �(�I))�

��1
and (16)

pAC = 2c�2I

�
(1� e��) +

q
(1� e��)2 + 8�c�I (e�� +�(�)�(�I)) (1� e��)

��1
: (17)

@pCC=@� < 0 is clear from (16). Since performance measures under CC and AC converge near

� = 0 (see the discussion below Lemma 2), pAC ! pCC as � ! 0, so lim�!0 @pAC=@� < 0.

On the other hand, if � is su¢ ciently large so that e��=�(�) � 0 (see Table 1), (17) can

be approximated as pAC � 2c�2I

�
1 +

p
1 + 8�c�I�(�)�(�I)

��1
, from which we �nd that

@pAC=@� > 0 since �0(�) < 0 by (i) of Lemma D.1. To show lim�!0 pCC = lim�!0 p
AC =

1, notice that term-by-term comparison of the denominators of (16) and (17) reveals that

pCC < pAC , since 1� e�� < �, e�� < 1, and �(�) < 1: Retaining only the terms up to O(�),

we see that pAC ! pCC in the �! 0 limit. Moreover, lim�!0 pCC =1 is clear from (16).

(ii) @ CC=@� < 0 is clear from the expression of  CC in Proposition 1. To show @ AC=@� < 0,

let '(�) � e��+�(�)v(�I)
2

e��+�(�)�(�I)
be the multiplicative factor that appears in  AC (see the same

proposition). De�ne � � ��Iv(�I)v0(�I) � 0. Note that

'0(�) =
d

d�

�
1 +

�

e��=�(�) + v(�I)
2

��1
< 0;

by the property (v) of Lemma D.1. Using this and �0(�) < 0, @ AC=@� < 0 follows. Notice

that lim�!0 '(�) = 'c, where 'c �
�
1 + v(�I)

2
�
= (1 + �(�I)) is the multiplicative factor

that appears in  CC . Together with '0(�) < 0, this implies '(�) < 'c. With the latter,

the stated condition V CC(�) � V AC(�), or (1 + �(�I)) =� �
�
e�� +�(�)�(�I)

�
=(1 � e��),

implies  CC �  AC , as can be veri�ed from their respective expressions. The �! 0 limit is

immediate from the same expressions.

10



Proof of Lemma 3. For notational convenience, let u� � u(��), u�t � u(��t ), and U
�
t � Ut(�

�
t ).

(i) Under CC or under AC with �t � 0, the �rst-order condition for �t corresponding to �t is

(or is approximated as, in the case of AC, since AC mimics CC if �t � 0)

p

�2t
+
2�p2

�3t

�
1 + v2

�
=

c

�t
;

from Lemma 1. For each t 2 fL;Hg, the supplier�s utility at ��t that solves this optimality

condition is U�t = w�p�t=��t ��p2
�
1 + v2

�
�t=(�

�
t )
2�c(��t ��)�K1(t = L). Their di¤erence

is U�H � U�L = ��(p) +K, where

�(p) � p

�
�H
��H

� �L
��L

�
+ �p2

�
1 + v2

�� �H
(��H)

2
� �L
(��L)

2

�
+ c(��H � ��L):

Hence, U�H � U�L, i.e., the supplier chooses �H , if and only if K � �(p). Note that, from the

�rst-order condition above for a generic �,

�

��
= c

�
p

��
+
2�p2

(��)2
�
1 + v2

���1
and

�

(��)2
= c

�
p+

2�p2

��
�
1 + v2

���1
;

both of which are increasing in �� for �xed p. On the other hand, ��L < ��H since @�
�=@� > 0

for �xed p, according to Lemma 1. Therefore, we have �L=��L < �H=�
�
H and �L=(��L)

2 <

�H=(�
�
H)

2 and conclude that �(p) > 0. Using these results and applying the envelope theorem,

we have d
dp (U

�
H � U�L) = @

@p (U
�
H � U�L) = � @

@p�(p) = �
�
�H
��H
� �L

��L

�
�2�p

�
1 + v2

� �
�H
(��H)

2 � �L
(��L)

2

�
<

0. Because of this monotonicity, U�H � U�L crosses zero at most once, i.e., p
y that satis�es

�(py) = K is unique if it exists. Suppose that K < �(p). Then U�H � U�L starts from a

negative value at p = p and becomes more negative as p increases. Hence, the supplier always

chooses �L in this case (the statement in (i) of the lemma is true by setting py = p). On the

other hand, if K � �(p), there may be a value (which we have shown to be unique) py � p

for which u�H � u�L crosses zero from positive to negative. In this case, the supplier chooses

�H if p � py and �L if p > py.

(ii) Fix p and �. Under AC with � su¢ ciently large for which e��=�(�) � 0, the supplier�s

utility at ��, which satis�es the �rst-order condition in Lemma 2, is approximated as u� �

11



w � p=�� � �p2�(�)v2=(��)2 � c(�� � �). By the envelope theorem, du�=d� = @u�=@� �

��p2�0(�)v2=(��)2 > 0, implying that u�H � u�L increases as the distance between �L and

�H becomes larger. Since U�t = u�t � K1(t = L) and u�H � u�L ! 0 as �H � �L ! 0,

U�H � U�L ! K � 0 as �H � �L ! 0 while U�H � U�L increases as �H � �L becomes larger.

In other words, U�H � U�L > K � 0 for any �L < �H regardless of p. Therefore, the supplier

always chooses �H .

Proof of Proposition B.1. The CC and AC converge to one another when � � 0 since their

performance measures become indistinguishable, as
PN
i=1 Si � S11(N = 1) and bS1(N > 1) �

S11(N = 1). Let us consider AC with � � 0, for which Ta � w � pS11(N = 1). Since the period

length is normalized to one, 1(N = 1) = 1(Y1 < 1). Thus, T � w � pS11(Y1 < 1). By the law of

total variance (proof is similar to that of Lemma D.1), it can be shown that

E[T j�; �] � w � pF (1 j�)E[S j�],

Var[T j�; �] � p2F (1 j�)
�
[1� F (1 j�)](E[S j�])2 +Var[S j�]

�
� p2F (1 j�)

�
(E[S j�])2 +Var[S j�]

�
;

where the last approximation is valid since [F (1 j�)]2 is negligible when � � 0. Compare these

expressions to their Poisson counterparts for � around zero (where the terms of order only up to

O(�) in (9) and (10) are retained):

E[T j�; �] = w � p(1� e��)E[S j�] � w � p�E[S j�],

Var[T j�; �] = p2(1� e��)
�
e��(E[S j�])2 +�(�)Var[S j�]

�
� p2�

�
(E[S j�])2 +Var[S j�]

�
:

We see that they have the same forms, the only di¤erence being that F (1 j�) is substituted by �.

Hence, the analysis of AC with Y is equivalent to that with the Poisson failures. Therefore, when

� � 0,

 ACY � c�I
2

�
1 + v(�I)

2

1 + �(�I)

�0@1� 2 1 +s1 + 8�c�I 1 + �(�I)F (1 j�)

!�11A ;

which is obtained from  AC in Proposition 1 with 1 � e�� � � replaced by F (1 j�) and e�� ! 1
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and �(�) ! 1. lim�!0  ACY = c�I
2

�
1+v(�I)

2

1+�(�I)

�
follows after letting � ! 0, since lim�!0 F (� j�) = 0

by assumption.
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