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Abstract
We introduce a formalism of localization for online learning problems, which, similarly to statistical learning
theory, can be used to obtain fast rates. In particular, we introduce local sequential Rademacher complexities
and other local measures. Based on the idea of relaxations for deriving algorithms, we provide a template
method that takes advantage of localization. Furthermore, we build a general adaptive method that can take
advantage of the suboptimality of the observed sequence. We illustrate the utility of the introduced concepts
on several problems. Among them is a novel upper bound on regret in terms of classical Rademacher
complexity when the data are i.i.d.
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Localization and Adaptation in Online Learning

Alexander Rakhlin Ohad Shamir Karthik Sridharan
University of Pennsylvania Microsoft Research University of Pennsylvania

Abstract

We introduce a formalism of localization for
online learning problems, which, similarly to
statistical learning theory, can be used to ob-
tain fast rates. In particular, we introduce lo-
cal sequential Rademacher complexities and
other local measures. Based on the idea of re-
laxations for deriving algorithms, we provide
a template method that takes advantage of
localization. Furthermore, we build a general
adaptive method that can take advantage of
the suboptimality of the observed sequence.
We illustrate the utility of the introduced
concepts on several problems. Among them
is a novel upper bound on regret in terms
of classical Rademacher complexity when the
data are i.i.d.

1 Introduction

The online learning framework has been a popular al-
ternative to the well-studied setting of statistical learn-
ing theory. In the latter, the i.i.d. assumption on data
makes it possible to leverage the rich set of tools de-
veloped within statistics and probability theory. In
contrast, the online learning framework [4] deals with
adversarial sequences of data, or sequences with some
non-i.i.d. structure [12].

One unsatisfying aspect of the developments in the
online learning literature so far has been the lack of
a localized analysis. Local Rademacher averages have
been shown to play a key role in statistical learning
for obtaining fast rates. It is also well-known that
fast rates are possible in online learning, on a case-by-
case basis, such as for online optimization of strongly
convex functions. In this paper we show that a local-
ized analysis can be performed at an abstract level,

Appearing in Proceedings of the 16th International Con-
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and it goes hand-in-hand with the idea of relaxations,
introduced in [10]. Using such a localized analysis,
we arrive at local sequential Rademacher and other
local complexities. These complexities upper-bound
the value of the online learning game and can lead to
fast rates. What is equally important, we provide an
associated generic algorithm to achieve the localized
bounds. We further develop the ideas of localization,
presenting a general adaptive (data-dependent) proce-
dure that takes advantage of the actual moves of the
adversary that might have been suboptimal. We il-
lustrate the procedure on a few examples. Our study
of localized complexities and adaptive methods follows
from a general agenda of developing universal methods
that can adapt to the actual sequence of data played
by Nature, thus automatically interpolating between
benign and minimax optimal sequences.

This paper is organized as follows. In Section 2 we
explain the idea of relaxations, introduced in [10],
as well as the meta algorithm based on these relax-
ations, and present a few examples. Section 3 is de-
voted to a new formalism of localized complexities, and
we present a basic localized meta algorithm. In Sec-
tion 4, we combine the idea of localization and relax-
ations, thus showing how to obtain localized complex-
ities. We show, in particular, that for strongly convex
objectives, the regret is easily bounded through local-
ization. Next, in Section 5, we present an adaptive
method that constantly checks whether the sequence
being played by the adversary is in fact minimax op-
timal and adapts accordingly. We show how this algo-
rithm recovers known adaptive fast rate results. Fur-
thermore, we demonstrate how local data-dependent
norms arise naturally from our framework.

Notation: A set {x1, . . . , xt} is often denoted by
x1∶t. A t-fold product of X is denoted by X t. Expecta-
tion with respect to a random variable Z with distri-
bution p is denoted by EZ or EZ∼p. The set {1, . . . , T}
is denoted by [T ], and the set of all distributions on
some set A by ∆(A). The inner product between two
vectors is written as ⟨a, b⟩ or as aTb. The set of all
functions from X to Y is denoted by YX . Unless spec-
ified otherwise, ε denotes a vector (ε1, . . . , εT ) of i.i.d.
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Rademacher random variables. An X -valued tree x of
depth d is defined as a sequence (x1, . . . ,xd) of map-
pings xt ∶ {±1}t−1 ↦ X (see [11]). We often write xt(ε)
instead of xt(ε1∶t−1).

2 Relaxations and Meta-Algorithms

Let F be the set of learner’s moves and X the set
of possible outcomes (moves) chosen by Nature. The
online learning problem follows the following protocol:
on every round t = 1, . . . , T the learner and Nature
simultaneously choose ft ∈ F , xt ∈ X , and observe each
other’s actions. The learner aims to minimize regret

RegT (f1∶T , x1∶T ,F) ≜
T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt)

where ` ∶ F ×X → R is a known loss function which we
assume is bounded by 1. Adopting the game-theoretic
language, the online learning framework can be seen
as a multi-stage two-player game with a payoff at the
end of T rounds.

A relaxation Rel is a sequence of real-valued functions
RelT (F∣x1, . . . , xt) for each t ∈ [T ]. We shall use the
notation RelT (F) for RelT (F∣{}). A relaxation will
be called admissible if ∀x1, . . . , xT ∈ X ,

RelT (F∣x1, . . . , xt) (1)

≥ inf
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] +RelT (F∣x1, . . . , xt, x)}

for all t ∈ [T − 1], and

RelT (F∣x1, . . . , xT ) ≥ − inf
f∈F

T

∑
t=1

`(f, xt).

A strategy q that minimizes the expression in (1)
defines an optimal algorithm for the relaxation Rel.
This algorithm is given below under the name “Meta-
Algorithm”. However, minimization need not be ex-
act: any q that satisfies the admissibility condition (1)
is a valid method, and we will say that such an algo-
rithm is admissible with respect to the relaxation Rel.

Algorithm 1 Meta-Algorithm MetAlgo

Parameters: Admissible relaxation Rel
for t = 1 to T do
qt = arg minq∈∆(F) supx∈X {Ef∼q [`(f, x)]+

+RelT (F∣x1, . . . , xt−1, x)}
Play ft ∼ qt and receive xt from Nature

end for

Proposition 1 ([10]). Let Rel be an admissible re-
laxation. For any admissible algorithm with respect to

Rel, including the Meta-Algorithm, irrespective of the
strategy of the adversary,

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤RelT (F) , (2)

and therefore, E[RegT ] ≤RelT (F). If a ≤ `(f, x) ≤ b
for all f ∈ F , x ∈ X , the Hoeffding-Azuma inequality
yields, with probability at least 1 − δ,

RegT ≤RelT (F) + (b − a)
√
T /2 ⋅ log(2/δ) .

Further, if for all t ∈ [T ], the admissible strategies qt
are deterministic, RegT ≤RelT (F).

It was shown in [10] that the idea of relaxations unifies
the vast majority of known online learning methods,
including such unorthodox algorithms as Follow the
Perturbed Leader. Moreover, a principled way of ar-
riving at relaxations was shown: they naturally arise
as upper bounds on the conditional value of the game.
One of the tightest such upper bounds is achieved
through symmetrization. The conditional Sequential
Rademacher complexity

RT (F∣x1, . . . , xt) = (3)

sup
x

E
εt+1∶T

sup
f∈F

[2
T

∑

s=t+1
εs`(f,xs−t(εt+1∶s−1)) −

t

∑

s=1
`(f, xs)]

can be shown to be an admissible relaxation [10].
Here the supremum is over all X -valued binary trees
of depth T − t. One may view this complexity
as a partially symmetrized version of the sequential
Rademacher complexity RT (F), which is

RT (F ∣ {}) = sup
x

Eε1∶T sup
f∈F

[2
T

∑

s=1
εs`(f,xs(ε1∶s−1))] .

For computational purposes, further upper bounds
(relaxations) on the conditional Rademacher complex-
ity are sought in order to remove the supremum over
the trees x. Various techniques can be employed, in-
cluding random playout, or moment-type inequalities
as shown in the next example.

Suppose F is a finite class and ∣`(f, x)∣ ≤ 1. The fol-
lowing relaxation is an upper bound on conditional
sequential Rademacher complexity and it yields a
parameter-free version of Exponential Weights:

RelT (F∣x1, . . . , xt) (4)

= inf
λ>0

⎧⎪⎪⎨⎪⎪⎩

1

λ
log

⎛
⎝∑f∈F

exp(−λ
t

∑
i=1

`(f, xi))
⎞
⎠
+ 2λ(T − t)

⎫⎪⎪⎬⎪⎪⎭
This relaxation will be used later in the paper in the
context of localized complexities.

3 Localization

The localized analysis plays an important role in sta-
tistical learning theory. The basic idea is that better
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rates can be proved for empirical risk minimization
when one considers the empirical process in the vicin-
ity of the target hypothesis [9, 2]. Through this, local-
ization gives extra information by shrinking the size
of the set which needs to be analyzed. What does it
mean to localize in online learning? The answer is, in
fact, quite natural: As we obtain more data, we can
rule out parts of F as those that are unlikely to be
good solutions for the remainder of the learning game
or for the next block of rounds. This observation in-
deed gives rise to faster rates.

Let us develop a general framework of localization and
then illustrate it on examples. We emphasize that the
localization ideas will be developed at an abstract level
where no assumptions are placed on the loss function
` or the sets F and X .

Given any x1, . . . , xt ∈ X , for any k ≥ 1 define

Fk(x1, . . . , xt) = {f ∈ F ∶ ∃ xt+1, . . . , xt+k ∈ X s.t.

t+k
∑
i=1

`(f, xi) = inf
f∈F

t+k
∑
i=1

`(f, xi)}.

That is, given the instances x1, . . . , xt, the set
Fk(x1, . . . , xt) is the set of elements that could be the
minimizers of cumulative loss on t + k instances, the
first t of which are x1, . . . , xt and the remaining k ar-
bitrary. We shall refer to minimizers of cumulative loss
as empirical risk minimizers (or, ERM).

Henceforth, we shall use the notation k̃j ≜ ∑ji=1 ki.
Consider subdividing T into blocks of time k1, . . . , km ∈
[T ] such that k̃m = T . With this notation, k̃i is the
last time in the ith block. We then have regret upper
bounded as

T

∑

t=1
`(ft, xt) − inf

f∈F

T

∑

t=1
`(f, xt) (5)

≤

T

∑

t=1
`(ft, xt) −

m

∑

i=1
inf

f∈Fki(x
1∶k̃i−1

)

k̃i

∑

t=k̃i−1+1
`(f, xt)

=

m

∑

i=1

⎛

⎜
⎜

⎝

k̃i

∑

t=k̃i−1+1
`(f, xt) − inf

f∈Fki(x
1∶k̃i−1

)

k̃i

∑

t=k̃i−1+1
`(f, xt)

⎞

⎟
⎟

⎠

=

m

∑

i=1
Regki (fk̃i−1+1∶k̃i , xk̃i−1+1∶k̃i ,F

ki
(x1∶k̃i−1))

The short inductive proof of inequality (5) is given in
Appendix, Lemma 8.

Hence, one can decompose the online learning game
into blocks of m successive games. The crucial
point to notice is that at the ith block, we do not
compete with the best hypothesis in all of F but
rather only in Fki(x1, . . . , xk̃i−1). Further, if we only
consider learner’s strategies that pick from the set
Fki(x1, . . . , xk̃i−1) when playing in the corresponding

block i, we only weaken the learner, leading to the
upper bound on regret.

We may take a minimax point of view [1, 11, 10]. The
value VT (F) of the game is defined as the best regret
the learner can achieve if she and Nature play opti-
mally. As a consequence of the above decomposition
(5), we have that

VT (F) ≤
m

∑
i=1

Vki (Fki(x1, . . . , xk̃i−1)) (6)

for any sequence x1, . . . , xT .

It is this localization based on history that could lead
to possibly faster rates. While the “blocking” idea
often appears in the literature (for instance, in the
form of a doubling trick, as described below), the pro-
cess is usually “restarted” from scratch by considering
all of F . Notice further that one need not choose all
k1, . . . , km in advance. The player can choose ki based
on history x1, . . . , xk̃i−1 and then use some learning al-
gorithm to play the game within block ki using the
localized class Fki(x1, . . . , xk̃i−1). Such adaptive pro-
cedures will be considered in Section 5, but presently
we assume that the block sizes k1, . . . , km are fixed.

While the successive localizations using subsets
Fki(x1, . . . , xk̃i−1) can provide an algorithm with pos-
sibly better performance, specifying and analyzing the
localized subset Fki(x1, . . . , xk̃i−1) exactly might not
be possible. In such a case, one can instead use

Fr(x1, . . . , xk̃i−1) = {f ∈ F ∶ P (f ∣ x1, . . . , xk̃i−1) ≤ r}

where P is some “property” of f given data. This defi-
nition echoes the definition of the set of r-minimizers of
empirical or expected risk in statistical learning. Fur-
ther, for a given k define

r(k;x1, . . . , xt) =
inf{r ∶ Fk(x1, . . . , xt) ⊆ Fr(x1, . . . , xt)}

the smallest “radius” such that Fr includes the set of
potential minimizers over the next k time steps. Of
course, if the property P does not enforce localization,
the bounds are not going to exhibit any improvement,
so P needs to be chosen carefully for a particular prob-
lem of interest. Putting together all the ideas discussed
so far, we have the following algorithm:

In the following lemma, we assume that the algorithm
MetAlgo enjoys a regret bound of Relk (F ′) for any
number of rounds k and any subset F ′ ⊆ F .

Lemma 2. For any choice of k1, . . . , km with ∑mi=1 ki =
T , the regret of the Localized Meta-Algorithm is
bounded as

RegT (x1, . . . , xT ) ≤
m

∑
i=1

Relki (Fr(ki;x1,...,xk̃i−1
))
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Algorithm 2 Localized Meta-Algorithm

Input: MetAlgo algorithm
Init. t = 0 and blocks k1, . . . , km s.t. ∑mi=1 ki = T
for i = 1 to m do

Play ki rounds using MetAlgo (Fr(ki;x1,...,xt))
and set t = t + ki

end for

Of course, the above lemma still requires us to
get a handle on regret over the localized subsets
Fr(ki;x1,...,xt). This is shown in the next section.

4 Local Sequential Complexities

We now combine the idea of relaxations and local-
ization. As a start, we notice that if sequential
Rademacher complexity is used as the relaxation in the
Localized Meta-Algorithm, we get a bound in terms of
local sequential Rademacher complexities. The follow-
ing corollary is a direct consequence of Lemma 2.

Corollary 3 (Local Sequential Rademacher Complex-
ity). For any property P and any k1, . . . , km ∈ N such
that ∑mi=1 ki = T , we have that :

VT (F) ≤ sup
x1,...,xT

m

∑
i=1

Rki (Fr(ki;x1,...,xk̃i−1
))

Clearly, sequential Rademacher complexities in the
above bound can be replaced with other sequential
complexity measures of the localized classes that are
upper bounds on the sequential Rademacher complex-
ities. For instance, one can replace each Rademacher
complexity Rki by covering number based bounds of
the local classes, such as the analogues of the Dudley
Entropy Integral bounds developed in the sequential
setting in [11]. One can also use, for instance, fat-
shattering dimension based complexity measures for
these local classes.

Example : Doubling trick

The doubling trick can be seen as a particular block-
ing strategy with ki = 2i−1 so that

RegT (x1, . . . , xT ) ≤
⌈log2 T ⌉+1

∑
i=1

Rel2i−1 (F)

Now if Rel is such that for any t, Relt (F) ≤ tp for

some p then the regret is upper bounded by Tp−2−p

1−2−p
.

The main advantage of the doubling trick is of course
that we do not need to know T in advance.

Example : Strongly Convex Loss

To illustrate the idea of localization, consider on-
line convex optimization with 1-Lipschitz λ-strongly
convex functions xt ∶ F ↦ R (that is, `(f, x) = x(f)).
Define

RelT (F∣x1, . . . , xt)

= − inf
f∈F

t

∑
i=1

xi(f) + (T − t) inf
f∈F

sup
f ′∈F

∥f − f ′∥

An easy Lemma 9 in the Appendix shows that this
relaxation is admissible. Notice that this relaxation
grows linearly with block size and is by itself quite
bad. However, with blocking and localization, the re-
laxation gives an optimal bound for strongly convex
objectives. To see this note that for k = 1, any mini-
mizer of ∑t+1

i=1 xi(f) has to be close to the minimizer f̂t
of ∑ti=1 xi(f), due to strong convexity of the functions.
In other words, the property

P (f ∣x1, . . . , xt) = ∥f − f̂t∥

with rt = 1/(λt) entails

F1(x1, . . . , xt) ⊆{f ∈ F ∶ ∥f − f̂t∥ ≤ 1/(λt)}
= Frt(x1, . . . , xt).

The relaxation for the block of size k = 1 is

Rel1 (Frt(x1∶t)) ≤ inf
f∈Frt(x1∶t)

sup
f ′∈Frt(x1∶t)

∥f − f ′∥,

the radius of the smallest ball containing the localized
set Frt(x1, . . . , xt), and we immediately get

RegT (x1, . . . , xT ) ≤
T

∑
t=1

1/(λt) ≤ (1 + log(T ))/λ .

We remark that this proof is different in spirit from the
usual proofs for strongly convex functions (e.g. [7]),
and demonstrates the power of localization.

Example : IID Adversary

In this example we consider the case when the ad-
versary outputs a sequence x1, . . . , xT drawn iid from
some fixed distribution D unknown to the learner.
Recall the definition of the worst case classical (iid)
Rademacher complexity:

Rn(F) = sup
D

E
x1,...,xn∼D,ε

[sup
f∈F

∣ 1

n

n

∑
i=1

εi`(f, xi)∣] ,

where the supremum is over all distributions over X .
We now show that the idea of localization allows us to
consider smaller subsets of F as the game progresses.
This leads to a final regret bound given by the classical
i.i.d. Rademacher complexity.
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Lemma 4. Without loss of generality assume T = 2m.
Fix a blocking strategy with ki = 2i, i ∈ [m]. Consider
the empirical restriction property

P (f ∣ x1, . . . , xt) =
1

t

t

∑
i=1

`(f, xi) − inf
f∈F

1

t

t

∑
i=1

`(f, xi)

and a radius r = 12Rt(F)+
√

16 log m
δ

t
. Under this local-

ization, as long as loss is bounded by 1, with probability
at least 1− δ, the regret of the algorithm which chooses
any element from the localized subset Fr(x1∶k̃i−1) is at
most

44TRT (F) + 21

√
T log

log(T )
δ

.

To the best of our knowledge, the bound on regret in
terms of i.i.d. Rademacher complexity in the case that
Nature plays an i.i.d. sequence is novel, and it natu-
rally arises from the idea of localization. We remark
that regret for worst-case sequences (in the supervised
scenario with absolute loss) has been shown in [11] to
be characterized precisely by sequential (rather than
iid) Rademacher complexity, which can be different
from the iid complexity. Given the above lemma, we
see that it is precisely the idea of localization that
bridges the gap between i.i.d. sequences and worst-
case sequences, as we are able to discard parts of F ,
thanks to concentration of measure.

5 Adaptive Procedures

There is a strong interest in developing methods that
enjoy worst-case regret guarantees but also take advan-
tage of the suboptimality of the sequence being played
by Nature. An algorithm that is able to do so with-
out knowing in advance that the sequence will have a
certain property will be called adaptive. Imagine, for
instance, running an experts algorithm, and one of the
experts has gained such a lead that she is clearly the
winner (that is, the empirical risk minimizer) at the
end of the game. In this case, since we are to be com-
pared with the leader at the end, we need not focus on
anyone else, and regret for the remainder of the game
is zero.

There has been previous work on exploiting particular
ways in which sequences can be suboptimal. Examples
include the Adaptive Gradient Descent of [3], Adaptive
Hedge of [13], and the variance-based bounds of [5, 8]
among others. We now give a generic method which
incorporates the idea of localization in order to adap-
tively (and constantly) check whether the sequence be-
ing played is of optimal or suboptimal nature. Notice
that, as before, we present the algorithm at the ab-
stract level of the online game with some decision sets
F , X , and some loss `.

The adaptive procedure below uses a subrou-
tine Block({x1, . . . , xt}, τ) which, given the history
{x1, . . . , xt}, returns a subdivision of the next τ rounds
into sub-blocks. The choice of the blocking strategy
has to be made for the particular problem at hand,
but, as we show in examples, one can often use very
simple blocking strategies.

Let us describe the adaptive procedure. First, for sim-
plicity of exposition, we start with the doubling-size
blocks. Here is what happens within each of these
blocks. During each round the learner decides whether
to stay in the same sub-block or to start a new one, as
given by the blocking procedure Block. If started, the
new sub-block uses the localized subset given the his-
tory of adversary’s moves up until last round. Choos-
ing to start a new sub-block corresponds to the realiza-
tion of the learner that the sequence being presented
so far is in fact suboptimal. The learner then incorpo-
rates this suboptimality into the localized procedure.

Algorithm 3 Adaptive Localized Meta-Algorithm

Parameters : Relaxation Rel and block size calcu-
lator Block.
Initialize t = 1 and nbl = 1, and suppose T = 2c − 1
for some c ≥ 2.
for i = 1 to c do
% calc guaranteed value of relaxation

G =Rel2i (Fr(2i;x1, . . . , xt−1))
m = 1,curr = 1 and K1 = 2i

while curr ≤ 2i and t ≤ T do
% calc blocking for remainder of 2i

(κ1, . . . , κm′) = Block (x1∶t,2i − curr)
% check if better to block

if G > supxt+1∶2i+1−1∑
m′

j=1 Relκj (Fr(κj ;x1∶t+κ̃j−1
))

then
% accept new blocking

k∗nbl = κ1, K = (κ2, . . . , κm′), m =m′ − 1
else
% continue with current blocking

k∗nbl =K1, K = (K2, . . . ,Km), m =m − 1
end if
Play k∗nbl rounds using

MetAlgo(Fr(k∗nbl;x1,...,xt))
t = t + k∗nbl, curr = curr + k∗nbl, nbl = nbl + 1
Set

G = sup
xt+1∶2i+1−1

m

∑
j=1

RelKj (Fr(Kj ;x1,...,x
t+∑

j−1
i=1

Ki
))

end while
end for

Lemma 5. Given some admissible relaxation Rel, the
regret of the adaptive localized meta-algorithm (Algo-
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rithm 3) is bounded as

RegT ≤
nbl

∑
i=1

Relk∗i (Fr(k∗i ;x1,...,xk̃∗
i−1

))

where nbl is the number of blocks actually played and
k∗i ’s are adaptive block lengths defined within the al-
gorithm. Further, irrespective of the blocking strategy
Block used, if the relaxation Rel is such that for any
t, Relt (F) ≤ tp for some p ∈ (0,1], then the worst case
regret is always bounded as

RegT ≤ (T p − 2−p)/(1 − 2−p) .

We now demonstrate that the adaptive algorithm in
fact takes advantage of sub-optimality in several situ-
ations that have been previously studied in the liter-
ature. On the conceptual level, adaptive localization
allows us to view several fast rate results under the
same umbrella.

Example: Adaptive Gradient Descent Con-
sider the online convex optimization scenario. Follow-
ing the setup of [3], suppose the learner encounters a
sequence of convex functions xt with the strong con-
vexity parameter σt, potentially zero, with respect to a
(2,C)-smooth norm ∥⋅∥. The goal is to adapt to the ac-
tual sequence of functions presented by the adversary.
Let us invoke the Adaptive Localized Meta-Algorithm
with a simple blocking strategy

Block ({x1, . . . , xt}, k) = { (k) if
√
k > σ̃t

(1,1, . . . ,1) otherwise

where σ̃t = ∑ts=1 σs. This blocking strategy either says
“use all of the next k rounds as one block”, or “make
each of the next k time step into separate blocks”. Let
f̂t be the empirical minimizer at the start of the block
(that is after t rounds), and let yt = ∇xt(ft). Then we
can use the localization

Fr(k;x1,...,xt) = {f ∈ F ∶ ∥f − f̂t∥ ≤ 2 min{1, k/σ̃t}}
and relaxation

Relk (Fr(k;x1,...,xt)∣y1, . . . , yi) = − ⟨f̂t, ỹi⟩

+min{2, 2k
σ̃t

}

√

∥ỹi−1∥
2
+ ⟨∇

1
2
∥ỹi−1∥

2 , yi⟩ +C(k − i + 1)

where ỹi−1 = ∑i−1
j=1 yj . For the above relaxation we can

show that the corresponding update at round t + i is
given by

ft+i = f̂t −max{1,
k

σ̃t
}

−∇ 1
2
∥ỹi−1∥2

√
∥ỹi−1∥2 +C(k − i + 1)

where k is the length of the current block. The next
lemma shows that the proposed adaptive gradient de-
scent recovers the results of [3]. The method is a mix-
ture of Follow the Leader -style algorithm and a Gra-
dient Descent -style algorithm.

Lemma 6. The relaxation specified above is admis-
sible. Suppose the adversary plays 1-Lipchitz convex
functions x1, . . . , xT such that for any t ∈ [T ], ∑ti=1 xi
is σ̃t-strongly convex, and further suppose that for
some B ≤ 1, we have that σ̃t = Btα. Then, for the
blocking strategy specified above,

1. If α ≤ 1/2 then RegT ≤ O (
√
T )

2. If 1 > α > 1/2 then RegT ≤ O(T 1−α

B
)

3. If α = 1 then RegT ≤ O ( logT
B

)

Example: Adaptive Experts We now turn to the
setting of Adaptive Hedge or Exponential Weights al-
gorithm similar to the one studied in [13]. Consider
the following situation: for all time steps after some τ ,
there is an element (or, expert) f that is the best by a
margin k over the next-best choice in F in terms of the
(unnormalized) cumulative loss, and it remains to be
the winner until the end. Let us use the localization

Fr(k;x1∶t) = {f ∈ F ∶
t

∑
i=1

`(f, xi) −min
f∈F

t

∑
i=1

`(f, xi) ≤ k} ,

the set of functions closer than the margin to the ERM.
Let

F̂t = {f ∈ F ∶
t

∑
i=1

`(f, xi) = min
f∈F

t

∑
i=1

`(f, xi)}

be the set of empirical minimizers at time t. We use
the blocking strategy

Block({x1, . . . , xt}, k) = (j, k − j) (7)

where

j = ⌊min
f∉F̂t

t

∑
i=1

`(f, xi) −min
f∈F̂t

t

∑
i=1

`(f, xi)⌋

which says that the size of the next block is given
by the gap between empirical minimizer(s) and non-
minimizers. The idea behind the proof and the block-
ing strategy is simple. If it happens at the start a
new block that there is a large gap between the cur-
rent leader and the next expert, then for the number
of rounds approximately equal to this gap we can play
a new block and not suffer any extra regret.

Consider the relaxation (4) used for the Exponential
Weights algorithm.

Lemma 7. Suppose that there exists a single best ex-
pert

f̂T = arg min
f∈F

T

∑
t=1

`(f, xt),
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and that for some k ≥ 1 there exists τ ∈ [T ] such that

for all t > τ and all f ≠ f̂T the partial cumulative loss

t

∑
i=1

`(f, xi) −
t

∑
i=1

`(f̂T , xi) ≥ k .

Then for any loss function mapping to the interval
[0,1], the regret of Algorithm 3 with the Exponential
Weights relaxation, the blocking strategy (7) and the
localization mentioned above is bounded as

RegT ≤ 4 min{τ,
√
τ log(∣F∣)}

While we demonstrated a very simple example, the
algorithm is adaptive more generally. Lemma 7 con-
siders the assumption that a single expert becomes a
clear winner after τ rounds, with margin of k. Even
when there is no clear winner throughout the game, we
can still achieve low regret. For instance, this happens
if only a few elements of F have low cumulative loss
throughout the game and the rest of F suffers heavy
loss. Then the algorithm adapts to the suboptimality
and gives regret bound with the dominating term de-
pending logarithmically only on the cardinality of the
“good” choices in the set F . Similar ideas appear in
[6], and will be investigated in more generality in the
full version of the paper.

Example: Adapting to the Data Norm Recall
that the set Fk(x1, . . . , xt) is the subset of functions in
F that are possible empirical risk minimizers when we
consider x1, . . . , xt+k for some xt+1, . . . , xt+k that can
occur in the future. Now, given history x1, . . . , xt and
a possible future sequence xt+1, . . . , xt+k, if f̂t+k is an
ERM for x1, . . . , xt+k and f̂t is an ERM for x1, . . . , xt
then

t

∑
i=1

`(f̂t+k, xi) −
t

∑
i=1

`(f̂t, xi)

=
t+k
∑
i=1

`(f̂t+k, xi) −
t+k
∑
i=1

`(f̂t, xi)

+
t+k
∑
i=t+1

`(f̂t, xi) −
t+k
∑
i=t+1

`(f̂t+k, xi)

≤ 0 + sup
xt+1,...,xt+k

{
t+k
∑
i=t+1

`(f̂t, xi) −
t+k
∑
i=t+1

`(f̂t+k, xi)} .

Hence, we see that it suffices to consider localizations

Fr(k;x1,...,xt) = {f ∈ F ∶
t

∑
i=1

`(f, xi) −
t

∑
i=1

`(f̂t, xi)

≤ sup
xt+1,...,xt+k

{
t+k
∑
i=t+1

`(f̂t, xi) −
t+k
∑
i=t+1

`(f, xi)}}

If we consider online convex Lipschitz learning prob-
lems where F = {f ∶ ∥f∥ ≤ 1} and loss is convex in f

and is such that ∥∇`(f, x)∥∗ ≤ 1 in the dual norm ∥⋅∥∗,
using the above argument we can use localization

Fr(k;x1∶t) = {f ∈ F ∶

t

∑

i=1
`(f, xi) − `(f̂t, xi) ≤ k ∥f − f̂t∥} (8)

Further, using Taylor approximation we can pass to
the localization

Fr(k;x1,...,xt) = {f ∈ F ∶ 1
2
∥f − f̂t∥

2

x1,...,xt
≤ k ∥f − f̂t∥}

(9)

where ∥f∥2
x1,...,xT

= f⊺Htf , andHt is the Hessian of the

function g(f) = ∑ti=1 `(f, xi). Notice that the earlier
example where we adapt to strong convexity of the
loss is a special case of the above localization where we
lower bound the data-dependent norm (Hessian-based
norm) by the `2 norm times the smallest eigenvalue.
If for instance we are faced with η-exp-concave losses,
such as the squared loss, the data-dependent norm can
be lower bounded by

∥f∥2
x1,...,xT

≥ ηf⊺ (
t

∑
i=1

∇i)(
t

∑
i=1

∇i)
⊺
f

and so we can use localization based on outer products
of sum of gradients. We then do not “pay” for those
directions in which the adversary has not played, thus
adapting to the effective dimension of the sequence of
plays.

Now notice that the set Fr(k;x1,...,xt) consists of f ∈ F
for which 1

2
∥f − f̂t∥

2

x1,...,xT
≤ k ∥f − f̂t∥. However f ∈ F

simply implies that that 1
2
∥f − f̂t∥

2 ≤ ∥f − f̂t∥ and so
we can conclude that :

Fr(k;x1∶t)

⊆ {f ∶ 1

2
(∥f − f̂t∥

2

x1∶t
+ ∥f − f̂t∥

2) ≤ (k + 1) ∥f − f̂t∥}

Therefore, one can use the above localized sets. For
the Euclidean case the above becomes :

Fr(k;x1∶t) ⊆ {f ∶ 1

2
∥f − f̂t∥

2

Ht+I ≤ (k + 1) ∥f − f̂t∥}

and one can use the above set to localize to the effective
dimensionality of data so far. The associated blocking
strategy for the adaptation we propose is

Block ({x1, . . . , xt}, k)

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(k) if
√
k > inff∈F

∥f−f̂t∥
2

Ht+I

∥f−f̂t∥
2

(1,1, . . . ,1) otherwise

Notice that this blocking strategy automatically enjoys
the same bound as in Lemma 6 for the setting in the
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Lemma because 1
2
∥⋅∥2

Ht
≥ σ̃t

2
∥⋅∥2

2. However in general
the bound could be much better as we do not just
restrict based on minimal eigenvalue but rather the
entire eigen-spectrum plays a role in the bound. For
instance in the case the adversary plays exp-concave
functions (Eg. square loss), this adaptive algorithm
should enjoy much better bounds that depend on the
eigen-spectrum of the data.

For the problem of general online convex optimization
problems one can use localizations given in Equations
(8) or (9). The localization in Equation (8) is appli-
cable even in the linear setting, and if it so happens
that the adversary mainly plays in a one dimensional
sub-space, then the algorithm automatically adapts to
the adversary and yields faster rates for regret. As
already mentioned, the example of adaptive gradient
descent is a special case of localization in Equation
(9). Of course, one needs to provide also an appro-
priate blocking strategy. A possible general blocking
strategy could be

Block({x1, . . . , xt}, k) = (j, k − j)
where

j = argmin
j∈{0,...,k}

{Relj (Fr(x1,...,xt))

+ sup
xt+1,...,xt+j

Relk−j (Fr(x1,...,xt+k))} .

6 Summary

In this paper we introduced a framework for studying
localization and adaptation in the context of online
learning. With the help of the generic relaxation mech-
anism from [10], we showed that the ideas of localiza-
tion and adaptation can lead to new adaptive online
learning algorithms that not only recover known fast
rate results but also yield new and improved analyses.
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A PROOFS

Proof of Lemma 4. For any t ∈ [T ] by symmetriza-
tion lemma we have that with probability 1 − δ over
the sample,

sup
f∈F

∣1
t

t

∑
i=1

`(f, xt) −E [`(f, x)]∣ ≤ 2Rt(F) +
√

log 1
δ

t

Using this we conclude that with probability at least
1 − δ,

inf
f∈F
∑
t+k
i=1 `(f, xi)
t + k

≤ inf
f∈F

E [`(f, x)] + 2Rt+k(F) +

√

log 1
δ

t + k

≤ inf
f∈F

1

t

t

∑

i=1
`(f, xi) + 4Rt(F) +

√

4 log 1
δ

t

and that with probability at least 1 − δ,

sup
f∈F

(

t

∑

i=1
`(f, xi) −

t

t + k
) ≤ 4tRt(F) +

√

4t log
1

δ

Hence, for any k and any t with probability 1 − δ,

F
k
(x1∶t) ⊆

⎧
⎪⎪
⎨
⎪⎪
⎩

f ∶
t

∑

i=1
`(f, xi) − inf

f∈F

t

∑

i=1
`(f, xi) ≤ 8tRt(F) + 4

√

t log
1

δ

⎫
⎪⎪
⎬
⎪⎪
⎭

This establishes the choice of the localized subsets:
for each j ∈ [m],

Fr(x1∶k̃j−1) ∶=
⎧
⎪⎪
⎨
⎪⎪
⎩

f ∈F ∶

k̃j−1

∑

i=1
`(f, xi) − inf

f∈F

k̃j−1

∑

i=1
`(f, xi)

≤ 8k̃j−1Rk̃j−1(F) + 4

√

k̃j−1 log
m

δ

⎫
⎪⎪
⎬
⎪⎪
⎭

Now in fact we argue that for the iid case once we
localize as above it does not matter which elements of
the localized set the meta-algorithm uses. That is the
algorithm can simply pick any fixed fk̃j+1 ∈ Fk(x1∶k̃j)
for every round in the block. That is ft = fk̃j+1

some arbitrary element of Fk(x1∶k̃j) for every t ∈
[k̃j +1, . . . , k̃j+1]. Hence we have that with probability
at least 1 − δ,

T

∑

t=1
`(ft, xt) =

m−1
∑

j=0

k̃j+1

∑

i=k̃j+1
`(fk̃j+1, xi)

≤

m−1
∑

j=0
kj+1E [`(fk̃j+1, x)] +

m

∑

j=1

√

4kj log
m

δ

Now, using the fact that fk̃j+1 are almost ERM, the

above expression is upper bounded by

⎛

⎝

m−1
∑

j=0
kj+1

⎞

⎠

inf
f∈F

E [`(f, x)] + 12
m−1
∑

j=0
kj+1Rk̃j (F)

+

m

∑

j=1

√

4kj log
m

δ
+

m

∑

j=1
kj

¿

Á
ÁÀ

16 log m
δ

k̃j

≤ T inf
f∈F

E [`(f, x)] + 12
m−1
∑

j=0
kj+1Rk̃j (F) + 6

m

∑

j=1

√

kj log
m

δ

≤ inf
f∈F

T

∑

t=1
`(f, xt) + 12

m−1
∑

j=0
kj+1Rk̃j (F) + 2T RT (F)

+ 6
m

∑

j=1

√

kj log
m

δ

where we used k0 = 0 and the convention, R0(F) =
1. Now note that RT (F) is always of order 1/

√
T or

larger (by Kintchine’s inequality). Hence using kj = 2j

we conclude that w.p. at least 1 − δ,

T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt)

≤ 44TRT (F) + 21

√
T log

log(T )
δ

Proof of Lemma 6. We start each block at f̂t. For
the first block, f̂t = 0 and for later blocks, f̂t is the
empirical risk minimizer w.r.t. instances x1, . . . , xt.
We therefore get a mixture of Follow the Leader (FTL)
and Gradient Descent (GD) algorithms. If block size
is 1, we get FTL only, and when the block size is T
we get GD only. In general, however, the resulting
method is an interesting mixture of the two. We now
start the proof by establishing the admissibility of the
relaxation specified. To show admissibility, let us first
check the initial condition:

Relk (Fr(k;x1,...,xt)∣y1, . . . , yk)

= − ⟨f̂t, ỹk⟩ + 2 min{1,
k

σ̃t
}×

×

¿
ÁÁÁÀ

XXXXXXXXXXX

k−1

∑
j=1

yj

XXXXXXXXXXX

2

+ ⟨∇ 1
2

XXXXXXXXXXX

k−1

∑
j=1

yj

XXXXXXXXXXX

2

, yk⟩ +C

≥ − ⟨f̂t, ỹk⟩ + 2 min{1,
k

σ̃t
}
√

∥ỹk∥2

≥ − ⟨f̂t, ỹk⟩ + sup
f ∶∥f−f̂t∥≤2 min{1, kσ̃t

}
⟨f − f̂t,−ỹk⟩

≥ − inf
f ∶∥f−f̂t∥≤2 min{1, kσ̃t

}

k

∑
j=1

⟨f, yj⟩
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Next we check the recursive inequality. To this end
note that :

⟨fi, yi⟩ +Relk (Fr(k;x1,...,xt)∣y1, . . . , yi)

= ⟨fi, yi⟩ − ⟨f̂t, ỹi⟩ + +2 min{1, k
σ̃t

}×

×
√

∥ỹi−1∥2 + ⟨∇ 1
2
∥ỹi−1∥2

, yi⟩ +C(k − i + 1)

= − ⟨f̂t, ỹi−1⟩ + ⟨fi − f̂t, yi⟩ + 2 min{1,
k

σ̃t
}×

×
√

∥ỹi−1∥2 + ⟨∇ 1
2
∥ỹi−1∥2

, yi⟩ +C(k − i + 1)

Hence note that :

inf
fi∶∥fi∥

sup
yi

{⟨fi, yi⟩ +Relk (Fr(k;x1,...,xt)∣y1, . . . , yi)}

= − ⟨f̂t, ỹi−1⟩ + inf
fi∶∥fi∥

sup
yi

⎧⎪⎪⎨⎪⎪⎩
⟨fi − f̂t, yi⟩ + 2 min{1,

k

σ̃t
}×

×
√

∥ỹi−1∥2 + ⟨∇ 1
2
∥ỹi−1∥2

, yi⟩ +C(k − i + 1)
⎫⎪⎪⎬⎪⎪⎭

Writing gi = fi− f̂t, admissibility step and update form
in terms of gi is now identical to the admissibility and
updates from [10], Proposition 4. Hence we concluded
that the relaxation satisfies the recursive inequality
and that the update in the block is given by

ft+i = f̂t −max{1,
k

σ̃t
}

−∇ 1
2
∥ỹi−1∥2

√
∥ỹi−1∥2 +C(k − i + 1)

Now that we have shown the admissibility of the re-
laxation and the form of update obtained by the re-
laxation we turn to the bounds on the regret specified
in the lemma. We shall provide these bounds using
Lemma 5. We will split the analysis to two cases, one
when α > 1/2 and other when α ≤ 1/2.

Case α > 1
2
:

The case when α > 1
2

is rather simple. This is because,
at the beginning of each doubling block, the blocking
strategy within that block is decided by checking if√

2t ≤ B(t)α for the α > 1/2. However notice that
since α > 1/2 this inequality is never true (except for
the initial constant number of rounds). Hence basi-
cally when α > 1/2 we simply end up running gradi-
ent descent algorithm with doubling trick and initial
vector within each doubling block given by the ERM
so far. However since doubling trick guarantees a re-
gret bound of O(

√
T ) we can conclude the result for

α > 1/2.

Case α ≤ 1
2
:

Now we consider the case when α < 1/2. Say we
are at start of some block t = 2m. The initial block

length then is 2t by the doubling trick initialization.
Now within this block, the adaptive algorithm contin-
ues with this current block until the point when the
square-root of the remaining number of rounds in the
block say k becomes smaller than σ̃t+(2t−k). That is
until

√
k ≤ B(3t − k)α (10)

The regret on this block can be bounded using Lemma
5 (notice that here we use the lemma for the algo-
rithm within a sub-block initialized by the doubling
trick rather than on the entire T rounds). The regret
on this block is bounded as :

Rel2t−k (Fr(x1,...,xt)) +
2t

∑
i=2t−k+1

Rel1 (Fr(x1,...,xi))

≤
√

2t − k +
2t

∑
j=2t−k+1

1

Bjα

≤
√

2t +
2t

∑
j=2t−k+1

1

Bjα

≤
√

2t + 1

B
((2t + 1)1−α − (2t − k + 1)1−α)

≤
√

2t + k
1−α

B

≤
√

2t + B
2(1−α)(3t)2α(1−α)

B
(using Eq. (10))

≤
√

2t +B2(1−α)−1
√

3t

≤
√

12 t

Hence overall regret is bounded as

RegT ≤
⌈log2 T ⌉+1

∑
i=1

√
12 × 2i−1 ≤ O(

√
T )

This concludes the proof.

Proof of Lemma 7. Notice that by the doubling
trick for the first at most 2τ rounds we simply play
the experts algorithm, thus suffering a maximum re-
gret that is the minimum of τ and 4

√
τ log ∣F∣. Af-

ter these initial number of rounds, consider any round
t at which we start a new block with the blocking
strategy described above. The first sub-block given
by the blocking strategy is of length at most k, thanks
to our assumption about the gap between the leader
and the second-best action. Clearly the minimizer of
the cumulative loss up to t rounds already played,
argmin
f∈F

∑ti=1 `(f, xi), is going to be the leader at least

for the next k rounds. Hence for this block we suffer
no regret. Now when we use the same blocking strat-
egy repeatedly, due to the same reasoning, we end up
playing the same leader for the rest of the game only
in chunks of size k, and thus suffer no regret for the
rest of the game.



     526

Lemma 8. The regret upper bound

T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt)

≤
T

∑
t=1

`(ft, xt) −
m

∑
i=1

inf
f∈Fki(x1,...,xk̃i−1

)

k̃i

∑
t=k̃i−1+1

`(f, xt) .

is valid.

Proof of Lemma 8. To prove this inequality, it is
enough to show that it holds for subdividing T into
two blocks k1 and k2. Rearranging, we would like to
show that

inf
f∈F

k1

∑
t=1

`(f, xt) + inf
f∈Fk2(x1,...,xk1)

T

∑
t=k1+1

`(f, xt)

≤ inf
f∈F

T

∑
t=1

`(f, xt)

for k1 + k2 = T . Observe, that the comparator term
becomes only smaller if we pass to two instead of one
infima, but we must check that no function f that
minimizes the loss over both blocks (that is, the right
hand side) is removed from being a potential minimizer
over the second block. This is exactly the definition
of Fk2(x1, . . . , xk1), and so the inequality is verified.
We can now recurse and break up the first block in
a similar manner, thus proving the statement of the
lemma.

Lemma 9. The relaxation

RelT (F∣x1∶t) = − inf
f∈F

t

∑

i=1
xi(f) + (T − t) inf

f∈F
sup
f ′∈F

∥f − f ′∥

is admissible.

Proof of Lemma 9. First,

RelT (F∣x1, . . . , xT ) = − inf
f∈F

T

∑
t=1

xt(f).

As for admissibility,

inf
ft∈F

sup
x

{x(ft) +RelT (F∣x1, . . . , xt−1, x)}

= inf
ft∈F

sup
x

{x(ft) − inf
f∈F

{
t−1

∑
i=1

xi(f) + x(f)}}

+ (T − t) inf
f∈F

sup
f ′∈F

∥f − f ′∥

The last quantity is upper bounded by

≤ inf
ft∈F

sup
x

{x(ft) − inf
f∈F

t−1

∑
i=1

xi(f) − inf
f∈F

x(f)}

+ (T − t) inf
f∈F

sup
f ′∈F

∥f − f ′∥

≤ inf
ft∈F

sup
x

{sup
f∈F

⟨∇x, ft − f⟩ − inf
f∈F

t−1

∑
i=1

xi(f)}

+ (T − t) inf
f∈F

sup
f ′∈F

∥f − f ′∥

which, in turn, is upper bounded by

≤ inf
ft∈F

{sup
f∈F

∥ft − f∥ − inf
f∈F

t−1

∑
i=1

xi(f)}

+ (T − t) inf
f∈F

sup
f ′∈F

∥f − f ′∥

=RelT (F∣x1, . . . , xt−1)
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