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Service Adoption and Pricing of Content Delivery Network (CDN)
Services

Abstract
Content delivery networks (CDNs) are a vital component of the Internet's content delivery value chain,
servicing nearly a third of the Internet's most popular content sites. However, in spite of their strategic
importance, little is known about the optimal pricing policies or adoption drivers of CDNs. We address these
questions using analytic models of CDN pricing and adoption under Markovian traffic and extend the results
to bursty traffic using numerical simulations.

When traffic is Markovian, we find that CDNs should provide volume discounts to content providers. In
addition, the optimal pricing policy entails lower emphasis on value-based pricing and greater emphasis on
cost-based pricing as the relative density of content providers with high outsourcing costs increases. However,
when traffic is bursty and content providers have varying levels of traffic burstiness, volume discounts may be
suboptimal and may even be replaced by volume taxes. Finally, when there is heterogeneity in burstiness
across content providers, a pricing policy that accounts for both the mean and variance in traffic such as
percentile-based pricing is more profitable than traditional volume-based pricing (metering bytes delivered in
a given time window). This finding is in contrast to the current practices of many CDN firms that use
traditional volume-based pricing.
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Service Adoption and Pricing of  
Content Delivery Network (CDN) Services 

 
Kartik Hosanagar*, John Chuang**, Ramayya Krishnan***, Michael D. Smith*** 

 
Abstract 

 
Content Delivery Networks (CDNs) are a vital component of the Internet’s content delivery 
value chain, servicing nearly a third of the Internet’s most popular content sites. However, in 
spite of their strategic importance little is known about the optimal pricing policies or adoption 
drivers of CDNs. We address these questions using analytic models of the market structure for 
Internet content delivery. 
 
We find that, consistent with industry practices, CDNs should provide volume discounts to con-
tent providers when traffic burstiness is similar across content providers. However, when differ-
ent content providers have varying traffic burstiness, as expected in reality, CDNs should pro-
vide relatively lower volume discounts, even leading to convex price functions in some cases. 
Surprisingly, we also find that content providers with bursty traffic provision less infrastructure 
compared to those with lower burstiness, that CDNs are able to charge more in the presence of 
bursty traffic, and that content providers with bursty traffic realize lower surplus. Similarly, we 
find that a pricing policy that accounts for both the mean and variance in traffic such as percen-
tile-based pricing does better than pure volume based pricing. Finally, we show that larger CDN 
networks can charge higher prices in equilibrium, strengthening any technology-based econo-
mies of scale.  
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1. Introduction 

A Content Delivery Network (CDN) is a network of servers that cache or store web con-

tent (i.e., web pages and embedded objects) and intelligently deliver it to users based on their 

geographic location. CDN servers are typically collocated with Internet Service Providers (ISPs) 

with which the CDN has alliances. When users request content, the request is redirected to the 

nearest CDN server, where nearness is based on expected latency, which is in turn determined 

by geographical proximity, server load, and network conditions. By delivering content from the 

edge of the Internet, CDNs speed content delivery, circumvent bottlenecks and provide protec-

tion from sudden traffic surges that can bring down servers, rendering web sites unreachable.  

CDNs are an important element of the digital supply chain for the delivery of information 

goods. The supply chain consists of Content Providers (CPs) that create the content; backbone 

and access networks that help transport the content, and CDNs that store and deliver the content 

to the end users. CDNs thus function as content storage and distribution centers performing simi-

lar functions to those performed by distributors/retailer warehouses in traditional supply chains. 

In 2000, CDN services were used by 31% of the 127 most popular Internet websites (Krishna-

murthy et al 2001). Akamai dominates the industry, with an 80% market share. Other prominent 

CDNs include Cable & Wireless, Speedera and Mirror Image. 

Due to increasing traffic on the Internet and a shift towards high bandwidth multimedia 

content, CPs must periodically resize and upgrade their server farms and bandwidth capacities. 

In addition, the high variability in document request patterns creates challenging capacity alloca-

tion problems for CPs. If they allocate capacity based on peak traffic, the capacity will sit idle 

most of the time. If they under-provision, then the performance and uptimes of their web sites 
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decrease, resulting in customer dissatisfaction and reduced revenue. For example, flash crowds1 

on Sep 11 overwhelmed media sites such as CNN and MSNBC, reducing site availability to 

close to 0%, and increasing response times to nearly 40 seconds when the sites finally were 

available2. Because of these trade-offs, CPs have had to choose intermediate capacity levels and 

accept occasional down times as a necessary evil. 

CDNs provide CPs with a viable alternative to scale content delivery. CDNs improve the 

scalability of content delivery in three primary ways. First, CDNs achieve economies of scale in 

infrastructure costs by aggregating traffic across multiple customer sites. Second, aggregation 

reduces the impact of variability in demand for content, reducing infrastructure needs per site 

and improving content availability. Third, since there are several nodes from which the content 

can be served, no single point will be a bottleneck. Replication of content across delivery loca-

tions improves the availability of content, especially during flash crowds or Denial of Service 

(DoS) attacks. 

CDNs have traditionally offered services that enabled CPs to deliver part of their content 

(typically rich content) through CDNs and the remainder on their own. However, partial site de-

livery implied that CPs still needed to maintain significant infrastructure to deliver content (and 

thus were unable to fully realize infrastructure cost reduction). Further, this resulted in high costs 

for coordinating partial content delivery and for integrating business intelligence regarding end 

users. In the recent years, several CDNs have introduced services that enable CPs to deliver en-

tire websites from the edge servers. A well-known example of such a service is Akamai’s Edge-

suite. Conversations with CDN executives (Maggs 2002) reveal that they face challenges in de-

termining how they should price these services, what factors influence service adoption by con-
                                                 
1 Flash crowds refer to sudden surges in demand for content that often bring down web servers 
2 See http://news.com.com/2100-1023-272873.html. Retrieved March 2003. 
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tent providers, and how factors such as traffic patterns impact service adoption and pricing. We 

use analytic models and simulations to address these questions in this paper. We find that opti-

mal prices for these services provide volume discounts when content providers have similar traf-

fic burstiness profiles. However, these volume discounts may no longer be optimal if content 

providers exhibit varying degrees of traffic burstiness. The most likely purchasers of these ser-

vices are high volume web sites with low security requirements for their content. Larger CDN 

networks can charge higher prices in equilibrium thus enhancing any technology-based econo-

mies of scale. Finally, a pricing policy that accounts for both the mean and variance in traffic 

such as percentile-based pricing does better than pure volume based pricing 

2. Literature Review 

CDNs have been widely studied in the computer science literature. Nottingham (2000) 

discusses the development of a framework to formally define the role of surrogate origin servers 

such as CDNs. Dilley et al. (2002) provide an overview of Akamai’s network infrastructure and 

the technical challenges involved in operating a CDN. Saroiu et al. (2002) compare properties of 

CDN workloads with workloads from other content delivery architectures. Gadde et al. (2000) 

explore the effectiveness of CDNs in the presence of conventional web proxy caching. Chen et 

al. (2002) propose a protocol for dynamic placement of replicas in a CDN. 

A popular theme for research has focused on the redirection schemes used by CDNs. Cli-

ent requests are redirected to CDN servers using either URL rewriting or DNS-based redirection 

(Krishnamurthy et al. 2001). With URL rewriting, the origin server rewrites URL links with 

CDN server addresses so that any click-throughs are directed to the CDN server. With DNS redi-

rection, the CDN controls the nameserver of the CP and resolves the name to the IP address of a 

CDN server. The Time-To-Live (TTL) of these DNS mappings are typically kept small so that 
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the CDN can map any given URL to different servers based on network conditions. Krishna-

murthy et al. (2001) verify that CDNs reduce average download times but find that DNS redirec-

tion adds additional overheads. Johnson et al. (2000) also find that CDNs provide improvements 

in latency but find that they do not always choose the optimal server from which to serve the 

content. Kangasharju et al. (2000) find that it is best to retrieve different data objects of a single 

web page from the same CDN server. 

While the focus of this literature has generally been on the design of efficient CDN archi-

tectures, pricing and service adoption aspects of CDN services have generally been ignored, and 

Management Science research can make significant contributions in this regard. For example, 

Datta et al. (2003) motivate the importance of research on pricing of CDNs. Furthermore, man-

agers in CDN firms face challenges in accounting for various technological factors and Internet 

traffic patterns while determining their pricing strategies.  

While pricing of traditional Telecommunications services has been studied in the past, 

pricing of content delivery services is a relatively new and unexplored area. Mendelson and 

Whang (1990) have studied the pricing of priority computer services. Gupta et al. (1997) and 

Cocchi et al. (1993) have studied QoS pricing in the transmission domain (prioritized transmis-

sion of data packets based on QoS schemes such as Diffserv and Intserv). Hosanagar et al. 

(2002) have studied the optimal pricing of priority-based web proxy caching services. Our paper 

extends this stream of research on telecom pricing by studying service adoption and pricing of 

CDNs. 
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3. Model  

Consider a CP indexed by i delivering content to users. Let Xi be a random variable de-

noting the number of requests to CP i in any given period.3 In any period, the distribution of X is 

known a priori, but the realized value of X is unknown. The publisher can choose to serve this 

content directly by investing in infrastructure to process a mean of I requests per unit time. If it 

does so, its surplus from serving content is ),()()()( XILcICXVXU self ⋅−−= , where V() is the 

CP’s benefit from responding to X requests, C() is the cost for maintaining the infrastructure 

(servers, bandwidth, software, etc) which is concave in I because of economies of scale, L() is 

the number of lost requests which increases with X but decreases with I, and c is the cost of each 

lost request.  

V() includes all sources of revenue to the CP from its Internet operations (e.g., revenue 

from selling products on the Internet, indirect surplus from disseminating information). The CP 

faces a trade-off in determining the optimal infrastructure capacity I. The CP can choose a low 

capacity but will incur a high cost of lost requests, or it can reduce the number of lost requests by 

incurring high infrastructure costs. The net expected surplus from delivering content is 

)()()]([ ILcICVXUEU selfself ⋅−−==  (1) 

where )],([)( XILEIL =  and )]([ XVEV = . In this section, we assume that all agents (content 

providers and CDN) are risk neutral. The risk neutrality implies that the CPs (CDN) care only 

about the expected surplus (profit) and not about the variance. We discuss implications of this 

assumption in Section 4. The CP’s decision problem, given risk neutrality, is )({max IU selfI
}. We 

denote the optimal infrastructure level as I* and associated expected surplus as )( *IU self . 

                                                 
3 In the subsequent model development we drop the  subscript i for simplicity. 
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The CP can choose to deliver content from its own servers or through a CDN. The CDN 

is assumed to be a monopoly. The CP’s surplus from delivering content through the CDN is 

given by )()()()( XPCXNXVXU OCDN −−⋅+= τ . V() is defined as above; ()τ  is the per-

request benefit from faster content delivery through a geographically distributed set of N CDN 

servers. We assume that τ  is concave in N, implying diminishing returns in improvements in 

response time from a larger network size. Co is cost of outsourcing content delivery (e.g., cost of 

sharing confidential data or cost of modifying content to facilitate delivery by CDN). This cost is 

assumed to vary across CPs. P() is the usage-based price the CP is charged by the CDN. Note 

that the CDN serves the CP’s entire site, as is the case in Akamai’s popular EdgeSuite product 

and that the CDN maintains sufficient capacity to nearly eliminate lost requests. Thus, the cost of 

the minimal infrastructure needed and the cost of few lost requests, C() and L() respectively, are 

both approximated to zero. Since a CP cannot precisely predict X in any period, it can compute 

the expected surplus )]([ XUEU CDNCDN = . The CP will choose the CDN if )( *IUU selfCDN ≥ . 

Based on these subscription decisions, one can evaluate the optimal price function P(X) for the 

CDN. 

We apply this model by first analyzing the CP’s optimal infrastructure decision when 

provisioning content directly, and then by analyzing the CDN’s optimal pricing decision. 

3.1. Optimal Infrastructure Sizing 

We begin this section with a brief discussion of the infrastructure resources required to 

service HTTP requests. In the HTTP protocol, exchange of data between a server and a client 

occurs after a TCP connection has been established. When a client attempts to establish a TCP 

connection, it begins by sending a SYN message to the server. The server acknowledges the 

SYN message by sending a SYN-ACK message to the client. In addition, the server creates a 
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socket for the incoming connection and places it in the SYN-RCVD queue. Subsequently, the 

client responds with an ACK message. Upon receiving the ACK message, the server moves the 

corresponding socket to the accept queue. The connection between the client and the server is 

then open. Whenever a web server process is ready to respond to a connection request, it exe-

cutes an accept() system call and receives a socket number from the accept queue in return. In 

other words, requests are queued and wait for their turn to be processed. The sum of the SYN-

RCVD and accept queues is also referred to as the backlog queue (requests waiting to be proc-

essed). The maximum value of the backlog queue is determined by the operating system kernel 

variable somaxconn. For further information on HTTP connection establishment, the reader is 

referred to Stevens (1990) and Banga and Druschel (1997). 

 Following previous literature (for example, Cao et al. 2003), we model a web server as an 

M/G/1/K Processor Sharing (PS) queuing system. That is, we assume that requests follow a Pois-

son process with mean arrival rateλ . The service time distribution is arbitrary. The queuing 

model treats the delivery system as a single server and the queue length as a finite exogenous 

parameter K, which is consistent with the observation that most commercial servers have similar 

somaxconn settings and most vendors recommend setting the queue size to somaxconn. Mul-

tithreading in the server is modeled by a processor sharing queuing discipline. Later in the paper, 

we will relax our assumptions to include multiple servers and a bursty, as opposed to Poisson, 

arrival process for requests. 

We model the CP’s infrastructure cost as: 2)( IbIaIC ⋅−⋅= , ( baI 2/≤ ), which cap-

tures the concavity between I and cost. In this formulation, a large value for a would indicate 

high infrastructure costs and a large value for b would indicate significant economies of scale. 

For an M/G/1/K*PS queuing system, the expected number of lost requests is given by 
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and the associated first-order necessary condition is given by: 
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While this polynomial lacks a closed form solution, we can use the conjugate pairs theorem from 

calculus (Currier 2000) to analyze the properties of I* (the optimal infrastructure level). The 

theorem states that for the maximization problem ),(max axF
x

, the derivative 
a
x
∂
∂ *

 and the cross 

partial Fxa have the same sign. The following results follow: 

i) If the cost of infrastructure increases, I* decreases. 

                                                 
4 The intuition is that if λ≤I , the mean arrival rate is greater than the mean service rate and the server keeps lag-
ging further and further behind. 
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UIa = -1. This implies that .0
*

<
∂
∂

a
I  As expected, if the infrastructure costs (cost of processing 

and bandwidth) decrease, the optimal level of investment in infrastructure increases. 

ii) If there are significant economies in scale in content delivery, I* increases. 

UIb = 2I > 0. Thus .0
*

>
∂
∂

b
I  That is, if server or bandwidth sellers provide high volume dis-

counts, infrastructure levels of CPs will increase. 

iii) If a content provider’s cost of losing requests is high, I* is correspondingly higher. 
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λ . Since c > 0, it follows immediately that 

0>IcU . From the conjugate pairs theorem, .0
*

>
∂
∂

c
I  In other words, if the cost (c) of losing a 

request increases, the optimal infrastructure level also increases. 

iv) If the arrival rate of requests λ  increases, I* increases. 

Proof: This statement follows from conjugate pairs theorem if 0>λIU  is true. Computing the 

cross partial with respect to I, λ  and simplifying,  

{ }.
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λλλλλ
λ I

IIIIKIKcU
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0)(2))(( KK1K1K >−−+− ++ λλλλ IIIIK . This can be restated as  
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0>λIU  iff 0)2()2( 12 >−+++− ++ KpKpKKp KK  (A) 

where λ/Ip = . For λ>>I , it follows that 1p >> . Thus  

KpK >+ )2(  (B) 

Also, for large K (queue size), we know the following is true: 
K

p 21+> . This can be restated as: 

12 )2( ++ +> KK pKKp  (C) 

Adding (B) and (C) yields KpKpKKp KK ++>++ ++ 12 )2()2( . Combining this result with (A), 

it follows that 0>λIU . That is, .0
*

>
∂
∂
λ
I  QED. 

Supplemental numerical tests using parameter values conforming to typical bandwidth 

and hosting costs were conducted to determine the relationship between λ  and I*. For the infra-

structure cost function, 2)( IbIaIC ⋅−⋅= , we assume that a=3.56 and b=0.000043. These pa-

rameter values roughly correspond to current infrastructure costs. For example, under these pa-

rameter values the cost of serving 233 requests/min is $804 per month. If we assume that the av-

erage size of the response to a request is 50 Kbytes, this implies that the cost of serving data at 

1.55 Mbps is $804 per month. This is reasonable given the cost of a T1 connection (approxi-

mately $400 per month) and maintaining a workstation. Likewise, the cost of serving 6,975 re-

quests per minute is $22,042, which is approximately the cost of a T3 connection and the associ-

ated cost of maintaining a server. Finally, the cost of serving 23,255 requests per minute is 

$57,208 per month, roughly equivalent to the cost of an OC3 connection. These costs are also 

comparable to managed hosting costs at the time of this study.  

We assume that the cost of a lost request, c, is $10. This is based on an assumption that 

10% of visitors purchase products/services, the average purchase is $100, and a customer leaves 
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a website if a request does not go through. Finally, we assume that the queue size, K, (for re-

quests waiting to be processed) is 8 requests. Our settings for c and K are biased towards incur-

ring high cost of lost requests in order to eliminate boundary solutions where *I  is set to the 

lower bound λ . This is because we are interested in the nature of the relationship for interior so-

lutions. Figure 1 shows the optimal infrastructure level (in requests/min) for different arrival 

rates ranging from 5,000 to 20,000 requests per minute. The relationship is approximately linear. 

 To test for robustness, we repeated the numerical analysis for a variety of other settings 

for buffer size K and cost of lost requests c, and found that the relationship is approximately lin-

ear in all cases. For example, Figure 2 shows the relationship for the case where 

}20;4;000043.0;46.3{ ==== cKba . Note that the special case where λ=*I  (boundary solu-

tion) is also linear  

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000 20000 25000

Request Arrival Rate

O
pt

im
al

 In
fr

as
tru

ct
ur

e 
Le

ve
l

I*

Figure 1: Optimal Infrastructure Level  
versus Arrival Rate (Case 1) 

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

Request Arrival Rate

O
pt

im
al

 In
fr

as
tru

ct
ur

e 
Le

ve
l

I*

Figure 2. Optimal Infrastructure Level  
versus Arrival Rate (Case 2) 

3.1.1 Multiple Servers 

In this subsection, we relax the assumption of a single server system and numerically 

evaluate the characteristics of a multiple server system. For illustration purposes, we test a three 

server system. The queue size is assumed to be 5, the cost of a lost request is assumed to be $10, 

and the remaining settings are as before, i.e., }10;5;000043.0;46.3{ ==== cKba . The optimal 

infrastructure level for different arrival rates is plotted in Figure 3. The relationship continues to 
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be linear. As is intuitive, the optimal infrastructure level for each server (I*) can now be lower 

than the mean arrival rate,λ , as three servers are sharing the load.  
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Figure 3. Optimal Infrastructure Level Vs. Arrival Rate (with Three Servers) 

3.2. CDN Pricing Problem 

As stated earlier, the CP’s surplus from choosing a CDN is given by  

)()()()( XPCXNXVXU OCDN −−⋅+= τ  (4) 

The CP does not know exactly how many requests (X) will be made for its content in any pe-

riod, but can compute the expected surplus given by 

)]([)()]([ XPECNVXUEU OCDNCDN −−⋅+== λτ  (5) 

Given any price function P(X), the CP can compute its expected surplus. The CP chooses the 

CDN if )( *IUU selfCDN ≥ . Substituting equations (1) and (5) into this condition, a CP with arrival 

rate λ  subscribes to the CDN if  

)]([)()()( ** XPEILcICNCO −⋅++⋅≤ λτ  (6) 
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Since the outsourcing cost oC  varies across CPs, we denote H() as the cumulative distribution 

function of oC  and h() as the associated probability density function. The probability that a CP 

with mean arrival rate λ  subscribes to a CDN is then given by 

H τ(N) ⋅ λ + C(I*) + c ⋅ L(I*) − E[P(X )]( ). If )(λg  denotes the number of CPs with mean arrival 

rate λ , then the expected number of these CPs subscribing to the CDN is given by 

g(λ)H τ(N) ⋅ λ + C(I*) + c ⋅ L(I*) − E[P(X )]( ). Any subscribing CP pays P(X) for a realized level 

of requests X. Since X is not known a priori, the CDN does not know its realized profit in any 

period associated with a price function P(X). Under the standard assumption of zero marginal 

costs, the CDN’s expected profit is given by  
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Risk neutrality: A risk neutral CDN chooses the price function P(X) in order to maximize its ex-

pected profit (π ). Note that the implication of the CPs’ risk neutrality is that they make their 

subscription decision based on E[P(X)] (as in equation 6). Similarly, the risk neutrality of the 

CDN implies that it computes its expected profit by evaluating E[P(X)] for each subscribing CP. 

Thus, the CDN can achieve the same subscription levels and expected profits by charging each 

CP a fixed amount equal to its expected price E[P(X)]. This is illustrated in Figure 4. Consider 

the optimal price function, denoted by P*(X) and a CP with mean arrival rate 1λ . In each period, 

the CP receives a stochastic number of requests, X, and pays P(X) in that period. Over a long pe-

riod of time, the CP expects to receive a mean of 1λ  requests per period and expects to pay 

E[P(X)]. In fact, if the CDN offers an alternative pricing scheme, wherein it charged the CP a 
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fixed amount E[P(X)] per period, the CP would still make the same subscription decision. Simi-

larly, the CDN could charge all CPs with arrival rate 2λ  the corresponding expected price of 

E[P(X)] per period as shown in the Figure (note E[P(X)] is different for CPs with mean 1λ  and  

2λ ). Thus, for any optimal price function P*(X), there exists a corresponding “mean-usage-

based” price function λP , obtained by following the trajectory of E[P(X)] for different values of 

λ , that achieves the same results. We can use this observation to simplify the problem to that of 

determining the optimal λP  and then determining a corresponding P(X). 

 

Figure 4. Pure usage based price and mean price 

Now consider CPs with mean arrival rate 1λ . The CDN charges all such CPs a fixed 

price 1λP . The CDN’s expected profit from these CPs is given by  

( )( )11
**

11 )()()()( λλλτλπ PPILcICNHg −⋅++⋅=  (8) 

The optimal price 1λP  obtained directly by applying the necessary first order condition is given 

by the solution to the following equality: 
( )
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The optimal “mean-usage-based” price function, λP , is thus given by 
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 (9) 

A special case with uniform distributions: To illustrate a few properties of the optimal price func-

tion, we make the following two assumptions:  

(1) The outsourcing cost, oC , is uniformly distributed in [0,1]. That is, H(x) =x and h(x) = 1.  

(2) The optimal infrastructure level I* for a CP with mean arrival rateλ is given by λoiI =* , 

where oi  is a constant. Assumption 2 is consistent with the numerical results in Section 3.1, Fig-

ures 1 and 2. Assumption 1 is for convenience and will be relaxed below to test its impact on our 

results. Under these assumptions, the optimal price function obtained by simplifying equation (9) 

is as follows: 
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Note that the price does not depend on )(λg , the distribution of mean arrival rate across 

CPs. This is because the CDN can observe the mean arrival rate and customize the price for each 

unique value of λ , and thus does not care about the distribution of CP mean arrival rates. A us-

age-based price function, P*(X) for which the E[P(X)] trajectory is given by equation (10) is:  

2
2

1
2

21
)1(

)(
2
1)( XibX

i
icbiaiNXP o

M
o

o
oo

⋅
−













−

−
+++= +τ  (11) 

To verify that equation (11) represents an optimal usage-based price function, assume that there 

is a different price function, PA(X) that performs better than P(X), i.e., yields a higher expected 

profit than P(X). In that case, the corresponding “mean-usage-based” price function represented 
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by E[PA(X)] should also provide higher expected profit than E[P(X)]. However, this cannot be 

true since equation (10) represents the optimal “mean-usage-based” price. This proof by contra-

diction shows that equation (11) represents an optimal usage-based price function. 

The following observations can also be made regarding the optimal pricing policy: 

a) Volume discounts: It is straightforward to show that 0)(
>

∂
∂

X
XP  and 0)(

2

2

<
∂

∂
X

XP  for the rele-

vant range of X. Thus, the optimal pricing policy entails volume discounts to CPs. This is consis-

tent with Akamai’s pricing statement: 

“…Customers commit to pay for a minimum usage level over a fixed contract term and pay addi-

tional fees when usage exceeds this commitment. Monthly prices currently begin at $1,995 per 

megabit per second, with discounts available for volume usage.” 

Equation (11) indicates that the volume discounts essentially follow from the economies of scale 

in content delivery costs (b>0). In other words, if bandwidth sellers reduce their volume dis-

counts, so can the CDN. 

b) Market power: Since 0>
∂
∂
N
P , larger CDNs are able to charge higher prices in equilibrium.  

c) Returns to scale: Since 0
2

>
∂∂

∂
XN
P , a larger CDN can extract a higher increase in price than a 

smaller CDN for the same increase in volume of traffic. That is, given that the amount of traffic 

handled by CPs is on the rise, a larger CDN is able to leverage this trend more effectively. 

d) Subscription decision: A CP with mean arrival rate λ  subscribes to the CDN if 
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++≤ + . This is obtained by substituting the optimal price 

function into the subscription condition in equation (6). As seen in Figure 5, CPs likely to sub-
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scribe to a CDN are those with high volume of traffic and low content delivery outsourcing cost 

(for example, content with minimal data confidentiality requirements).  

 
Figure 5: CP subscription decision 

e) Impact of technology choice: We solve the same model as above but introduce a skew in the 

distribution of outsourcing cost across CPs by setting oooo CChCCH 2)(;)( 2 == . Relative to the 

uniform distribution, this distribution assumes that there are more CPs with high outsourcing cost 

(see Figure 6). The new solution is given by 2
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This price is lower than in equation (11), suggesting that the price decreases as the relative num-

ber of CPs with high outsourcing costs increases.  

Outsourcing cost, Co, may include cost of sharing confidential information with a third 

party, or the transactions cost of interfacing with a third party or modifying content in order to 

enable delivery by the third party. For example, in the context of modifying content to facilitate 

delivery by CDN, switching to Akamai would require a CP to make its content ESI (Edge Side 

Includes – a technology developed by Akamai to enable edge delivery) compatible. As men-

tioned in Section 2, the CDN may choose either URL rewriting or DNS redirection as the tech-

nology for directing requests to CDN servers. Krishnamurthy et al (2001) found that DNS redi-

rection adds additional overhead and URL rewriting is thus more efficient in terms of users’ real-
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ized response times. However, URL rewriting would entail higher outsourcing costs for CPs be-

cause of the significant cost incurred in modifying their entire content. This can result in lower 

prices. Thus, the CDN will need to trade-off efficiency-based benefits of any technology with the 

outsourcing costs imposed on the CPs. 

 
Figure 6: Negative skew in distribution of outsourcing cost 

f) Impact of bandwidth cost: As bandwidth, memory and processor costs decline, the price that 

the CDN can charge will also decrease. 

3.3. Modeling Bursty Traffic 

The model presented in Sections 3.1 and 3.2 assume that requests for content at a web 

server follow a Poisson arrival process. However, some web traffic engineering studies suggest 

that web traffic exhibits bursts that cannot be captured by a Poisson arrival process (Crovella and 

Bestavros 1996). Furthermore, a feature of a Poisson process is that the burstiness reduces with 

increasing mean arrival rates. For example, one measure of burstiness — standard devia-

tion/mean = λ/1  — clearly decreases as arrival rate increases. In real-world traffic, burstiness 

tends to remain the same at high arrival rates too. 

In order to model traffic burstiness, we assume request arrivals follow a Markov Modu-

lated Poisson Process (MMPP).  MMPP is commonly used to model bursty traffic to communi-

cations systems such as web servers (Scott et al. 2003, Anderson et al. 2003). MMPP is a doubly 

stochastic Poisson process in which the arrival rate is given by an m-state Markov process. At 
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any given instant, the system can be in any one of the m Markovian states. When the Markov 

chain is in state i, arrivals follow a Poisson process with arrival rate iλ . Bursts can be captured 

by modeling a system transition to a state with very high arrival rate. The system is specified by 

the following matrices:  

1) ),...,,( 21 mdiag λλλ=Λ , where iλ  denotes the mean arrival rate in state i.  

2) 
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, where R is the mm× transition rate matrix of the phase process 

underlying the MMPP. In the matrix, jkσ  denotes the probability of a transition from state j to 

state k. In addition, we define the following matrices in order to compute the loss probability: 

3) q= ),...,,( 21 mqqq : m-dimensional vector containing the limiting state probabilities of the phase 

process. 

4) :)0(π  m-dimensional vector whose jth element is the probability, at the imbedded epochs, of 

having 0 users in the system and being in state j. )0(π  can be numerically computed as demon-

strated in Baiocchi and Blefari-Melazzi (1993). 

5) e: m-dimensional unit vector whose elements are all equal to 1. 

λ , the mean number of requests in a unit time period is given by 

eqqqq mm Λ=+++= λλλλ ...2211 . 

The loss probability for an MMPP system can be computed as follows (Baiocchi and Ble-

fari-Melazzi 1993): 
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. At small values of I, there is a significant reduction in 

number of lost requests from increasing I. However, for large values of I, the gains are much 

smaller (i.e., decreasing marginal returns). 

3.3.1 Optimal Infrastructure Sizing 
In this section, we consider a 2-state MMPP. The arrival matrix and the transition matrix 

are given by 
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λ e . Poisson 

traffic is a special case of MMPP with 21 λλ = . On the other hand, a burst in traffic is modeled 

by assuming a very large value of 2λ  along with a non-zero probability of transitioning to state 

2. We set 12 10λλ =  and )1.0,9.0( 21 == qq  as the MMPP parameters. In other words, the mean 

arrival rate during bursts is ten times the regular mean arrival rate and the system bursts 10% of 

the time. Different values of λ  are simulated by varying 1λ . Further, when the mean arrival rate 
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λ  is increased, we also change 12σ  in order to maintain constant burstiness (constant value for 

λ
Ψ ). This addresses the issue of decreasing burstiness with increasing arrival rates associated 

with Poisson traffic modeling. The loss probability and the optimal infrastructure level can be 

numerically computed for any given set of MMPP parameters.  

 Figure 7 presents the optimal infrastructure level with Poisson traffic and MMPP traffic 

for given mean arrival rates. Counter intuitively, we find that the CP’s optimal infrastructure 

level with bursty traffic is lower than that with Poisson traffic (note that for a given mean arrival 

rate, MMPP has much higher variance than the Poisson traffic). Furthermore, the difference be-

tween the Poisson optimal infrastructure level and the MMPP infrastructure level increases as 

mean arrival rate increases. This also seems counterintuitive because as arrival rates increase, 

Poisson traffic is far less bursty than the MMPP traffic.  

To help explain the result, consider a specific point on the graph. For the case where the 

mean arrival rate is given by 1,000, the corresponding values of ),( 21 λλ  are given by (526.31, 

5,263.15). That is, the CP faces a mean arrival rate of 526.31 requests per period approximately 

90% of the time and faces 5,263.15 requests per period 10% of the time. The computed optimal 

infrastructure level of 941 requests per minute is sufficient to handle the state associated with 

low arrivals but is insufficient to handle bursts. However, small increases in infrastructure levels 

do not have much impact in reducing the number of lost requests, but only increase the infra-

structure cost. This is because most of the lost requests are associated with state 2, which cannot 

be reduced unless service rate increases substantially. In order to see a marked reduction in lost 

requests, the infrastructure level has to be raised above 5,263 so that state 2 does not completely 

overwhelm the service center. However, this also raises the cost substantially. Thus, the high 

disparity between arrival rates in the two states (which follows the definition of a burst) implies 
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that the CP has to accept downtime during the high bursts. Because of this, the optimal infra-

structure level is driven by 1λ  and not λ . Since 1λ  < λ , the optimal infrastructure level is also 

lower than that with Poisson traffic. Even with MMPP traffic, the optimal infrastructure level 

continues to be nearly linear with the mean arrival rate. As expected, the CP loses a large number 

of requests with highly bursty traffic and the CP’s surplus with MMPP traffic is lower than with 

Poisson traffic (conditional on optimal infrastructure sizing in both situations). In Figure 8, we 

plot the “net cost” (the sum of infrastructure cost and cost of lost requests) to a CP. The net cost 

is higher with MMPP traffic despite lower infrastructure level because of the significantly higher 

loss of requests. 

Our model assumes that the CP’s utility depends on the expected number of lost requests 

and that this cost is linear in the number of lost requests. However, if the CP’s cost is convex in 

the number of lost requests or if the CP’s utility depends on E[maximum number of lost re-

quests], then the infrastructure level with MMPP will be higher than indicated in Figure 7. How-

ever, high bursts will continue to negatively impact the CP’s surplus in either case. 

We also found that the optimal infrastructure gradually increases as we increase the limit-

ing state probability of being in state 2 (from 0.1 converging to 1) while decreasing the probabil-

ity of being in state 1. The mean arrival rate was kept at 1,000 requests per minute. The infra-

structure level approaches the optimal infrastructure with Poisson traffic and exceeds it as the 

probability of being in state 2 increases. For example, the optimal infrastructure level with 

}1000,9.1098,89.109,9.0,1.0{ 2121 ===== λλλqq  was 1,502 requests per minute. Note 

however that the case where the MMPP system is in a high arrival state with high probability and 

in a low arrival state with low probability is the reverse of bursty traffic patterns and does not 

model reality. 
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Figure 7: Optimal Infrastructure Level for Poisson and MMPP traffic (constant burstiness) 
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Figure 8: Net cost incurred by a CP 

3.3.2 CDN’s Optimal Pricing Policy 
Using the arguments presented in deriving equation (9), we can derive an analytical ex-

pression for the optimal price function if all CPs have MMPP traffic with the same burstiness but 

different means (i.e., they effectively have infrastructure given by λ0
* iI = , where io is the same 

constant for all CPs). However, when CPs have different burstiness levels (hence the infrastruc-

ture scaling constant io varies across CPs), it is difficult to analytically derive the optimal price 
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function. We numerically computed the optimal usage-based price function with a population of 

1000 CPs for three cases: 1) All 1000 CPs have Poisson distributed traffic. 2) All 1000 CPs have 

MMPP traffic with parameters as specified in Section 3.3.1. 3) Mixed traffic: 500 CPs have Pois-

son traffic and 500 CPs have MMPP traffic.  

The mean arrival rates for the CPs are drawn from a Uniform distribution in [1000, 8000]. All 

other parameters such as cost of lost requests, infrastructure cost, etc. are the same as those used 

in Figues 2, 7 and 8. To simplify computation, we restricted attention to quadratic price functions 

specified by 2
10)( XpXpXP ⋅±⋅= , and performed a grid search for optimal values of p0 and 

p1. The optimal price functions for the three cases are specified in Table 1 and plotted in Fig. 9. 

 Poisson (analytic 
computation) 

Poisson (numeric 
computation) 

MMPP Mixed 

P(X) 205X-4.65e -3.39X
 

2056.62.3 XeX −−  2054.36.8 XeX −−  2056.74.4 XeX −+

Table 1: Optimal Price Functions for the Three Cases 
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Figure 9: Optimal Price functions for the Three Cases 

It can immediately be seen that the CDN is able to charge higher prices when traffic 

burstiness increases. That is, Price(MMPP) > Price(Mixed) > Price(Poisson). This is because 
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the CDN’s value proposition to CPs in terms of avoiding lost requests is enhanced by bursty traf-

fic. However, the CDN will also incur a higher fixed cost of infrastructure because of bursty traf-

fic, which does not factor in our price or profit computation. Interestingly, the extent of volume 

discounts provided to CPs is much lower with mixed traffic than with traffic with one fixed level 

of burstiness (Poisson or MMPP). In fact, the price function is convex with mixed traffic, corre-

sponding to a volume tax rather than a volume discount.  

 To illustrate the reasoning behind this, consider the pricing scheme with volume dis-

counts shown in Figure 10. CP ‘1’ has a mean arrival rate given by λ . CP ‘2’ has the same arri-

val rate, but a higher variance. Without loss of generality, assume that ‘1’ has a deterministic ar-

rival process. Every period, ‘1’ receives λ requests (point A in figure) and hence pays an ex-

pected price 1P  to the CDN. CP ‘2’ on the other hand has some variability. With some high 

probability, ‘2’ receives requests shown by point B and the remainder of the time, the CP re-

ceives a high number of requests shown by point C. CP ‘2’ has the same mean λ  as CP ‘1’ but 

has higher variance. The expected price, 2P  paid by CP ‘2’ is shown in the Figure and is clearly 

lower than 1P . This is an artifact of the concave price function. However, this is not desirable as 

the CP with higher variance derives greater surplus from the CDN and hence the CDN should 

ideally charge CP ‘2’ a higher expected price. For this reason, the CDN may choose a convex 

price function even though the concavity in infrastructure costs exerts a force on the price func-

tion that tends to make it concave. Note also that such convexity arises only when the traffic 

burstiness profile is mixed and it does not arise when all CPs with the same mean arrival rate 

also have the same variance (pure Poisson or MMPP with same burstiness across CPs). 

If the CDN chooses a convex price function, CPs with high mean arrival rates are penal-

ized. Consider a CP with a fixed deterministic arrival rate of λ2 . Compared to a CP with fixed 
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arrivals of λ , the CP pays a high tax for using the CDN. In contrast, this CP gets volume dis-

counts for infrastructure costs and may thus be tempted to deliver content on its own. Thus, a 

convex price function dissuades CPs with high volume and low variability traffic from subscrib-

ing to the CDN. Thus, whether the optimal price function is concave, convex, or linear in the 

mixed traffic case depends on the distribution of traffic burstiness across CPs and the amount of 

volume discounts in CP’s own infrastructure costs. 

 
Figure 10: Expected prices for a concave price function 

 The analysis above indirectly suggests the inefficiency of a pure usage-based pricing pol-

icy when the traffic profile is mixed. Such a policy does not permit a CDN to provide volume 

discounts to CPs and simultaneously charge a higher price to CPs with greater traffic burstiness. 

We thus consider an alternative policy, which entails pricing based on a certain high percentile of 

usage. Specicially, charging a price based on the 95th percentile of usage. In such a policy, a 

CDN monitors the request rate, X, over a period of time (say a month) and computes the 95th 

percentile of the request rate. The price to the CP is then based on the 95th percentile rather than 

the observed usage rates. We computed numerically the optimal price charged at the 95th percen-
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tile of usage when the traffic profile is mixed as 20646.1)( ZeZZP −−= , where Z is the 95th 

percentile of request rate, X. As shown in Figure 11, when the traffic profile is mixed, the CDN’s 

profit with a percentile-based pricing strategy is higher than with a usage-based pricing policy. 

At the same time, there is no noticeable difference in profit from usage-based and percentile-

based pricing policies for pure Poisson and MMPP traffic. This is not surprising because once 

the mean request rate is fixed, the variance is also determined in both these cases5 and hence a 

mean based pricing policy can be converted to a percentile based policy or vice versa. With 

mixed traffic, a usage based pricing scheme cannot simultaneously account for both the mean 

and variance in the request rate. 
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Figure 11: CDN Profit with Different Pricing Policies and Traffic Profiles 

4. Conclusions 

Content Delivery Networks have become an important component of the Internet content 

delivery value chain. These services bring content closer to consumers, and by aggregating vari-

                                                 
5 For Poisson, the variance is equal to the mean and for our chosen MMPP process, the variance is equal to the 
square of the burstiness (a constant) times the mean. 
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able traffic across a variety of sources, they minimize a content provider’s risk of facing bursty 

traffic when using a stand-alone content delivery system. Because of the importance of timely 

and reliable delivery of content, nearly one-third of the most popular content sites on the Internet 

use CDN services. 

However, despite their strategic importance for the delivery of content, there has been lit-

tle academic work that has examined the pricing and adoption of these services. In particular, it 

is important for CDN managers and industry participants to understand the optimal pricing 

strategies for CDN services under different traffic patterns, the adoption drivers of CDN ser-

vices, and the drivers of profitability within CDN services. 

We develop analytic models to answer these questions. Our model shows that CDN pric-

ing functions should provide volume discounts to content providers when all content providers 

have similar levels of traffic burstiness. It also shows that the most likely subscribers to CDN 

services are those content providers with high traffic volumes and low security requirements. 

Larger CDN networks can charge higher prices in equilibrium, which should strengthen any 

technology-based economies of scale. Traffic patterns play a major role in determining the infra-

structure sizing decisions of content publishers as well as the optimal pricing strategies for 

CDNs. Surprisingly, we find that the optimal infrastructure level for highly bursty traffic is lower 

than for Poisson traffic. This is because small increases in infrastructure level do not suffice in 

handling peak traffic. Furthermore, volume discounts should be reduced, if not replaced by vol-

ume taxes, when the population consists of content providers with varying levels of traffic 

burstiness. Further, the pure usage based pricing policy that is used by a number of CDNs is 

suboptimal in such cases as well. A percentile-based pricing policy allows for volume discounts 
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for content providers with high mean traffic and also additional charges for content providers 

with highly bursty traffic, which cannot be achieved by usage-based pricing policies. 
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