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Abstract — The competitive complexity ratio is the

worst case ratio of the regret of a data-driven model

to that obtained by a model which benefits from side

information. The side information bounds the sizes of

unknown parameters. The ratio requires the use of a

variation on parametric complexity, which we call the

unconditional parametric complexity. We show that

the optimal competitive complexity ratio is bounded

and contrast this result with comparable results in

statistics.

I. Introduction

Stochastic complexity measures the ability of a family

of models to represent an observed data sequence Y =

(Y1, . . . , Yn). Stochastic complexity is the length of the min-

imax code for Y obtained by a member of the family. The

resulting code for Y may be divided into two parts. One part

encodes the data. For parametric models, say Mθ, the data

is encoded using the maximum likelihood model Mθ̂, where θ̂

is the MLE of the parameters. The other part of the code,

whose length is known as the parametric complexity, is the

focus of our interest. This portion of the code represents the

model itself. Because models with many parameters typically

have large complexity, this part of the code guards against

over-fitting when stochastic complexity is used for model se-

lection.

Parametric complexity is a property of the model class Mθ

and is invariant of Y . It thus serves as a uniform measure

of the complexity of Mθ, one that does not depend upon nu-

ances of the observed sequence. Because of this uniform as-

sessment of model complexity, stochastic complexity permits a

refined version of model selection using the minimum descrip-

tion length (MDL) criterion. MDL selects among competing

1This work was supported by NSF Grant DMS-9704809

models based on the length of a uniquely decodable prefix

code for the observed data, picking the model that obtains the

shortest code. Since stochastic complexity gives the length of

the best code for each model class (in a minimax sense), it

defines the basis for comparing different models using MDL.

In many common settings, however, the parametric com-

plexity is infinite. For example, the parametric complexity is

unbounded in the normal location problem unless one restricts

the size of the unknown mean. The competitive complexity

ratio avoids this problem by considering codes which bene-

fit from such restrictions. The restrictions themselves are an

integral component of the competitive analysis.

In the next section, we briefly review the definition of

stochastic complexity. We then consider the Gaussian loca-

tion problem and introduce the competitive complexity ratio.

We show that the best complexity ratio is bounded in the nor-

mal location problem. The bound is a solution of a numerical

integration in general, but simplifies nicely in a simplified con-

text. We then extend these results to multivariate problems

and close with a short discussion.

II. Stochastic Complexity

Early versions of Rissanen’s MDL model selection crite-

rion [6] assess the ability of a model to represent data us-

ing the length of a two-part code. Let Y denote n obser-

vations with probability distribution Pθp(y) which is indexed

by some p dimensional parameter vector θp ∈ Θp ⊂ Rp. As

shown by Rissanen, it is most efficient in this type of coding to

round the maximum likelihood estimator θ̂p = θ̂p(Y ) to order

O(1/
√

n), corresponding to an integer grid position z̃p within

Θp. (Throughout, we will use ‘∼’ to denote rounded values

or properties of rounded values.) In the orthogonal case, the

resulting vector z̃p encodes each element of θ̂p as a whole num-

ber of standard errors from the origin. The idealized length



of the two-part code obtained by the p dimensional model is

then

L(Y, p) = "(p) + "s(z̃p) + log
1

Pθ̂p
(Y )

+ δ , (1)

where "(p) is the length of a prefix code for the dimension

p, "s(z̃p) denotes the length of a ‘spiraling’ prefix code for the

rounded vector of z scores [6], and δ denotes a small remainder

due to rounding θ̂p to standard error scale. This form of the

MDL criterion selects the model class that obtains the shortest

code for the data, choosing the dimension p which minimizes

L(Y, p). All logs here and in what follows are to base 2 un-

less otherwise distinguished. The idealized code length is real

valued and avoids the issue of quantization (see [1]).

Since MDL selects the model class obtaining the shortest

code, the coding method must be efficient. Two-part codes

such as the one just described, however, are not Kraft tight.

The implicit codebook reserves symbols which will not be

used. Once the receiver of the code decodes the dimension

p and recovers z̃p from the first part of the code, the set of

possible values for the data Y becomes restricted to those val-

ues for which θ̂p rounds to z̃p. The resulting dependence im-

plies that the data can be coded using fewer than log 1/Pθ̂p
(Y )

bits. Rissanen [7], for example, illustrates the calculations in

the Bernoulli case. Although the effects are typically small

and perhaps not important in data compression, such differ-

ences are important in model selection since the choice among

models is often decided by just a few bits.

Stochastic complexity replaces these two-part codes with

a tight, one-part code that no longer specifies a parameter

value. Stochastic complexity encodes the data using the so-

called normalized maximum likelihood (NML) distribution

[11]. This distribution is formed by finding the integrating

constant (whose log is known as the parametric complexity),

Cn,p =

∫
Y

Pθ̂p(Y )(Y )dY , (2)

that makes g(Y ) = Pθ̂p(Y )(Y )/C(p, n) a density. The range of

integration in (2) is over all possible Y , and we assume for the

moment that this integral is finite. In regular problems, the

parametric complexity (2) has a particularly nice asymptotic

form [8]

log Cn,p =
p
2

log
n
2π

+ log

∫
Θp

|I(θp)|1/2dθp + o(1), (3)

where I(θp) is the asymptotic Fisher information matrix

Iij(θp) = lim
n→∞

− 1
n

∂2 log Pθp(Y )

∂θp,i∂θp,j
.

The leading summand of (3) motivates the common associa-

tion of MDL with the Bayesian information criterion BIC since

it suggests a parameter penalty which grows logarithmically in

n. (This association is spurious; see [5].) The idealized length

of the resulting one-part code for Y , or stochastic complexity,

using the p dimensional model Pθp(Y ) is then

Sp(Y ) = log Cn,p + log
1

Pθ̂p(Y )(Y )
.

Compared to the length of a two-part code, stochastic com-

plexity replaces the lengths of the prefixes "(p) and "s(z̃p) in

(1) by the log of an integral, the parametric complexity. Thus

parametric complexity avoids the choice of a prefix code for

the discretized parameter and the need to find the conditional

density of Y given z̃p. Further, the absence of a rounded es-

timate simplifies the comparison of models because it avoids

the need to consider the complex quadratic patterns induced

by rounding [5].

III. The Competitive Complexity Ratio

To introduce the competitive complexity ratio, we consider

encoding a scalar location model for Gaussian data. We first

consider the impact of parameter constraints on the paramet-

ric complexity. For this section, we assume Yi ∼ N(µ, σ2), i =

1, . . . , n, with µ unknown and σ2 given. The likelihood func-

tion is

Pµ(Y ) =
e−

∑
(Yi−µ)2/2

(2πσ2)n/2
.

In general, the parameter space for µ is unbounded, and the

integral (2) which defines the parametric complexity is infinite.

To reinforce its role in defining the parameter space, we denote

a constraining interval for µ by

Θ[a,b] = {µ : a ≤ µ ≤ b, −∞ < a ≤ b < ∞} .

Under the condition that a ≤ µ ≤ b, the maximum likelihood

estimator of µ is not Y =
∑

i
Yi/n, but is restricted to this

range,

µ̂ =


a , Y < a ,

Y , a ≤ Y ≤ b , and

b , Y > b .

With bounds on the parameter space, the integration is

finite and the parametric complexity is well-defined. Following

[1], the parametric complexity is most easily found by using

the sufficiency of Y for µ. The distribution of Y factors into

Pµ(Y ) = P (Y |Y )hµ(Y )



where P (Y |Y ) is the conditional distribution of Y given Y

(which is free of µ by sufficiency) and hµ(Y ) is the distribution

of Y ,

hµ(y) =
(

n
2πσ2

)1/2

e
− n

2σ2 (y−µ)2
.

Since P (Y |Y ) is a density, the parametric complexity nor-

malizes just the maximum likelihood density for the sufficient

statistic. When µ̂ = Y , this density reduces to a constant,

hY (Y ) =
(

n
2πσ2

)1/2

. (4)

Integrating over all sequences, the parametric complexity un-

der the constraint µ ∈ Θ[a,b] is

Cn(Θ[a,b]) =

∫
Y

Pµ̂(Y )dY (5)

=

∫ b

a

hm(m)dm

+

∫ a

−∞
ha(m)dm +

∫ ∞

b

hb(m)dm (6)

= 1 +
1√
2π

b− a

σ/
√

n
. (7)

This calculation is one larger than similar expressions in vari-

ous papers of Rissanen and coauthors (such as the review [1])

because µ, not the sample mean Y , is restricted to Θ[a,b]. Since

the data are unrestricted, we term log Cn(Θ[a,b]) the uncon-

ditional parametric complexity of this model given µ ∈ Θ[a,b].

The assumption that µ ∈ Θ[a,b] constrains the MLE, not the

data, so that the range for Y in (5) is unrestricted. Subse-

quently, we use the term conditional parametric complexity

written as Cn(Y |Θ[a,b]) to refer to the integral in (6) which

does not include the boundary contribution,

Cn(Y |Θ[a,b]) =

∫ b

a

hm(m)dm = Cn(Θ[a,b])− 1

=
1√
2π

b− a

σ/
√

n
. (8)

This notation reinforces the distinction that the data are con-

strained in the definition of the conditional parametric com-

plexity.

When combined with the code length for the data, the un-

conditional parametric complexity gives the total code length,

or stochastic complexity of Y . Given the constraint a ≤ µ ≤ b,

the stochastic complexity is

L(Y, Θ[a,b]) = log
Cn(Θ[a,b])

Pµ̂(Y )
= log Cn(Θ[a,b])

+ log
PY (Y )

Pµ̂(Y )
+ log

1
PY (Y )

(9)

The log of the likelihood ratio or observed relative entropy

log
PY (Y )

Pµ̂(Y )
=

log e
2

n(Y − µ̂)2

σ2

measures the increase in code length that occurs when Y falls

outside the parameter space for which the code is designed.

As long as µ̂ is near Y , the cost in bits for enforcing such

constraints is small. For example, if Y > b, the increase in

code length is a multiple of the squared z statistic for testing

H0 : µ = b.

One means to bound the parametric complexity in this

model is to incorporate bounds as part of the code itself. This

approach is reminiscent of a two-part code. The first part

of the code indicates Θ[a,b], and the second part encodes the

data under this constraint. As usually implemented, however,

the prefix gives a range for the observed statistic Y rather

than the parameter µ, and the subsequent code uses the con-

ditional parametric complexity. The structure of the first part

varies in how the region for Y is specified. For example, in [1]

the region is defined as Y
2 ≤ R2 with the prefix encoding R2

or perhaps log R2. Alternatively, one might constrain Y on a

standardized scale as Y
2 ≤ r2σ2/n as in [9]. Taking a different

approach, one can follow the logic leading to the NML density

and perform a further normalization over the parameter space

[10].

Rather than consider various means of incorporating in-

formation about the parameter space Θ[a,b] directly into the

code, we instead consider a competitive analysis of how well

a realizable code fares when compared to a code that knows

features of the true parameter space. We formulate this infor-

mation about the parameter space as a collection of ‘experts’

that define sets that contain the process mean µ. Let A de-

note a collection of intervals of R where each interval A ∈ A
has finite length, λ(A) < ∞. Intuitively, these intervals repre-

sent the advice from various ‘experts’ in the following sense.

When coding Y , each interval A ∈ A implies a code length

L(Y, A) as given by (9); this is the number of bits required to

encode Y under the assumption µ ∈ A. The ‘advice’ of the

best expert produces the shortest code for Y ,

L∗(Y,A) = inf
A∈A

L(Y, A) ,

and obtains the minimal regret,

R∗(Y,A) = L∗(Y,A)− log
1

PY (Y )

= inf
A∈A

log Cn(A) + log
PY (Y )

Pµ̂A(Y )

= inf
A∈A

log

(
1 +

λ(A)√
2πσ2/n

)
+

log e
2

n(Y − µ̂A)2

σ2
, (10)



where the MLE is µ̂A ∈ A. Since the optimal regret de-

pends on Y only through its mean Y , we will also write it

as R∗(Y ,A).

Now consider the task of coding Y without the assistance of

such an expert. Let L(Y, α) and R(Y, α) denote the length and

regret, respectively, obtained by a uniquely decodable prefix

code α that does not benefit from the advice of such experts.

To compare this coding procedure to that obtained through

the use of experts, consider the worst-case ratio of the regret

of α to the regret of the code provided by the best expert,

ρn(α,A) = sup
Y

R(Y, α)

R∗(Y,A)
.

We call ρn the competitive complexity ratio. If ρn(α,A) is

bounded for every n, we shall say that the coding procedure

α provides a universal code for this model class with respect

to the collection A of experts. Were we to define ρn using the

full code lengths L and L∗, the ratio would not be discrimi-

nating since the likelihood component log 1/PY (Y ) = O(n)

would dominate the comparison of code lengths for finite-

dimensional models. Given a class of experts, one prefers

coding procedures for which ρn is small. The competitive

ratio ρn has some intuitive properties with regard to the set

of experts. In particular, ρn increases with the collection of

experts. If we let α denote a coding procedure and A1 and

A2 two sets of experts, then it follows that

A1 ⊂ A2 ⇒ ρn(α,A1) ≤ ρn(α,A2) . (11)

It is not possible to obtain bounded competitive regret in

the sense of ρn for arbitrary classes of experts. For example,

for any 0 < δ < ∞, let

Bδ = ∪x∈R{y ∈ R : |y − x| < δ, } .

denote the set of arbitrarily translated balls of radius δ.

Clearly, when the radius is small, say δ < σ/
√

n (the standard

error of Y ) these experts — truly more like oracles in this case

— essentially reveal the value of the MLE, and R∗(Y,Bδ) is

but one or two bits for any Y . No coding strategy can main-

tain bounded competitive regret for all Y versus such experts,

for any finite radius δ. To see that this is so, suppose that β

were such a code. Since the sets in Bδ are of fixed size, R(Y, β)

would be bounded by some constant, say R(Y, β) < B. Now

choose a set of the form Θ[−c,c] where c is sufficiently large

so that the parametric complexity log Cn(Θ[−c,c]) > B. Since

the parametric complexity is the minimax regret, it cannot

everywhere be greater than the regret obtained by the code

β, and we have a contradiction. Thus in the Gaussian location

problem, no coding procedure has finite competitive complex-

ity ratio versus the experts Bδ. In addition, (11) implies that

we cannot obtain bounded competitive regret for any class of

experts containing Bδ. Since we cannot compete against such

experts, we need to consider a less informative collection that

is not uniformly well-informed for all µ.

In keeping with our interest in model selection, a more

realistic class of experts consists of all intervals that contain

the origin. The previous experts Bδ are equally precise for all

Y and have constant regret. A less informative collection are

more accurate for certain sequences, in particular sequences

with mean near zero. Let E0 denote the set of intervals of

positive length that include zero,

E0 = ∪Θ[a,b] , a ≤ 0 ≤ b , a *= b .

For this class of ‘origin-covering experts’, the best expert is

the interval that minimizes the regret (10). If Y ≥ 0, the left

endpoint of this interval is zero. Expressed on the standard

error scale, the right endpoint of the best interval is ẑσ/
√

n >

0, where ẑ is defined by

ẑ = argmin
z>0

log

(
1 +

z√
2π

)
+

log e
2

(z − zY )2 , (12)

with

zY =
√

n Y /σ . (13)

The expression for the optimal endpoint has ‘kinks’ at |zY | =

1/
√

2π. For |zY | ≤ 1/
√

2π, ẑ = 0. For larger zY > 1/
√

2π,

ẑ = 1
2

(
zY −

√
2π +

√
(zY +

√
2π)2 − 4

)
, (14)

whereas for zY < −1/
√

2π,

ẑ = 1
2

(
zY +

√
2π −

√
(zY −

√
2π)2 − 4

)
. (15)

One obtains a slightly shorter message length by picking an

expert whose parameter region does not contain Y . The end-

point of the interval is shrunken toward zero. For Y > 0, the

shrinkage toward zero is about

ẑ − zY ≈
−2

zY +
√

2π
, for zY >> 0.

It is a straightforward task to find a coding procedure which

obtains the minimax competitive complexity ratio. Our direct

approach is to find a Kraft-tight prefix code α∗0 for which the

competitive complexity ratio is constant,

sup
Y

R(Y, α∗0)
R∗(Y, E0)

= ρ∗0,



say. Given such a code, the fact that it is Kraft tight implies

that it is the minimax code since any other code which is

shorter for coding some Y will also be longer for some other

Y ′. To construct α∗0, we observe that no prefix code can obtain

the expert regret R∗(Y, E0) for all Y because the ‘density’ for

zY implied by the regret R∗(Y, E0),

f(z) = (1/
√

2π)2−R∗(ẑσ/
√

n,E0) ,

is not integrable. (The constant 1/
√

2π arises from the max-

imum likelihood density hY given in (4).) It is, however, a

fairly simple a numerical problem to find the smallest con-

stant ρ∗0 for which

f∗(z) = (1/
√

2π)2−ρ∗0R∗(ẑσ/
√

n,E0) (16)

is a density. In this problem, the multiplier is approximately

ρ∗0 ≈ 3.26863. Because of the segmented form of the optimal

endpoint ẑ given in (14) and (15), we integrated f∗(z) over the

region |z| < 1/
√

2π analytically and added to this a numerical

estimate of the integral over the rest of the parameter space.

The code α∗0 could then be implemented using an arithmetic

coder for the mixture density

g0(Y ) =

∫
P (Y |y)f∗(

√
n y/σ)(

√
n/σ)dy .

We summarize this result as

Theorem 1 The minimax competitive complexity ratio in

comparison to codes based upon the experts E0 is

inf
α

sup
Y

R(Y, α)

R∗(Y, E0)
≈ 3.26863 ,

which is attained by the code α∗0 implied by the density f∗(z) =

(1/
√

2π)2−ρ∗0R∗(ẑσ/
√

n,E0).

For those who find this numerically generated code unappeal-

ing, we construct an explicit two-part code which obtains sim-

ilar performance in the next section in a simplified, approxi-

mate version of this problem.

Before closing this section, we recognize one may view

the experts E0 as too well informed in the sense that they

‘know’ the sign of µ. In this case, one can consider the class

of experts based on less informative, symmetric intervals Es
0

around zero. For these, the best expert for coding Y with

standardized mean zY =
√

n Y /σ has symmetric endpoints

[−ẑsσ/
√

n, ẑsσ/
√

n] where (compare to (12))

ẑs = arg min
z>0

log

(
1 +

2z√
2π

)
+

log e
2

(z − zY )2 .

The only difference from the regret obtained by the asymmet-

ric experts E0 is the doubling of the z score in the leading

complexity term of (12).

The resulting optimal symmetric endpoint is 0 for |zY | ≤
2/
√

2π. For zY > 2/
√

2π,

ẑs = 1
4

(
2zY −

√
2π +

√
(2zY +

√
2π)2 − 16

)
,

and for zY < −2/
√

2π,

ẑs = 1
4

(
2zY +

√
2π −

√
(2zY −

√
2π)2 − 16

)
.

This endpoint is zero over twice the region as with the asym-

metric experts, and is also shrunken toward zero. We again

find the minimax complexity ratio by determining the smallest

multiple c of the regret for which

(1/
√

2π)2−c R∗(ẑsσ/
√

n,Es
0 )

is a density. The same combination of analytic and numerical

integration shows that the competitive complexity ratio vis-a-

vis symmetric experts is about two-thirds that for asymmetric

experts,

min
α

ρn(α, Es
0 ) ≈ 2.2398 .

IV. Results for Codes with Integer Regret

The regret of the minimax codes in the previous section

approaches zero as the standardized mean
√

n Y /σ goes to

zero. Such performance is only possible when using a one-part

code like α∗0 in a context in which the gain of a fractional bit

can be realized. These gains are real when coding an ensemble

of many sequences, each with its own distinct mean value;

here, the fractional bits can be accumulated and the savings

realized. When coding a single series, however, gains of a

fractional bit offer no advantage. In such cases, it becomes

interesting to study the competitive complexity ratio when the

regret takes on integer values. The results in this section are

also more in the spirit of two-part codes and lead to methods

that are familiar in that context.

In order to work with two-part codes, we define the regret

as

R̃(Y, A) =

⌈
L(Y, A)− log

1
PY (Y )

⌉
. (17)

This regret is the least upper bound on the actual difference in

integer code lengths under arbitrary quantization, R(Y, A) ≤
R̃(Y, A). This definition also gives a regret as an integer so

that we can think of it as the explicit length in bits of a prefix.



With this definition and a naive selection of experts, we can

construct a two-part code that obtains the minimax compet-

itive complexity ratio, which in this case is 2. For the rest of

this section, we consider the following competitive complexity

ratio

ρ̃n(α,A) = sup
Y

R̃(Y, α)

R̃∗(Y,A)
.

In addition, we define the minimum expert regret R̃∗ to cap-

ture the notion of naive selection of experts by forcing the

chosen expert to contain the sufficient statistic Y ,

R̃∗(Y,A) = min
A∈A:Y ∈A

R̃(Y, A) .

Under this definition with Y > 0, the interval of the best

expert is [0, Y ], and the minimum regret is

R̃∗(Y, E0) = R̃(Y, Θ[0,Y ]) =

⌈
log

(
1 +

zY√
2π

)⌉
, (18)

where zY =
√

n Y /σ. Because of rounding, R̃∗ is a step

function with increments where |zY | =
√

2π(2j − 1), j =

1, 2, . . ..

A variety of two-part coding procedures α have bounded

competitive regret ρ̃n(α, E0) under this definition. Their con-

struction takes the following general approach: form a count-

able partition of the parameter space and construct a two-part

code by attaching a prefix with a universal code for the index

of the chosen subset to the message. The second part of the

message encodes Y given Y lies in the region indicated by

the prefix. To be competitive versus E0, such a procedure

must use short codes when competing against accurate ex-

perts, the small sets in E0 near the origin. To accomplish

this, we enumerate a partition of the parameter space by

counting out from the origin and encoding the index using

a prefix code for integers. One such prefix code is the so-

called universal prior of Rissanen [6]. This code represents

the positive integer j > 0 using about 2.9 + log∗ j bits, where

log∗ x = log x + log log x + · · · , and the summands are added

so long as the prior term is positive. A simpler code for anal-

ysis is the so-called doubly-compound code of Elias [3]. This

code concatenates a simple prefix code for log j with the bi-

nary representation of j. The length of the doubly compound

code is about "d(j) ≈ log j + 2 log log j bits. Both of these

codes are asymptotically optimal as defined in [3]. The length

of each grows at a rate log j + o(log j). It may come as some

surprise, but we will find the so-called unary code more use-

ful. The unary code represents the integer j as a sequence of

j bits: j − 1 zeros followed by a single 1. The unary code is

Table 1: Two prefix codes for integers.

Doubly-Compound Code Unary Code

j Bits !d(j) Bits !u(j)

1 0 1 1 1

2 10 1 3 01 2

3 1100 10 6 001 3

4 1100 11 6 0001 4

8 1110 111 7 00000001 8

32 - 11 - 32

not optimal in the sense of [3] or [6], but codes small integers

particularly well. Table 1 shows the doubly compound and

unary codes for several small integers.

A coarse partition of the parameter space indexed with a

unary prefix produces a code γ which is minimax with respect

to ρ̃n. The partitioning of the optimal procedure divides the

parameter space into sets of increasing size as we move from

the origin. In particular, the optimal partition is a set of

intervals whose boundaries are located at points of increase

of the naive expert regret (18), zY = ±(2j − 1)
√

2π. These

points define a partition of the positive half of the parameter

space into intervals which we denote as

Ij = [(2j−1 − 1)
√

2πσ/
√

n, (2j − 1)
√

2πσ/
√

n] .

The prefix of γ is formed as follows. The first bit denotes the

sign of Y , so we can hence restrict attention to the positive

real axis. The next bits of the prefix give the unary code for

the smallest j such that Y ∈ Ij . Since the enumerated in-

tervals are growing geometrically in length, this enumeration

is in effect on a log scale. The rest of the prefix accounts for

the conditional parametric complexity of Ij . Each partition of

the parameter space identifies the location of Y rather than µ,

and thus the conditional parametric complexity measures the

associated regret. From (8), the conditional parametric com-

plexity of the jth interval satisfies log Cn(Y |Ij) = j−1 and so

consumes j−1 bits. To summarize, the code γ requires a sign

bit, the unary code for the index j of the interval Ij containing

Y , and the log of the conditional parametric complexity of Ij .

The regret of this code is thus

R̃(Y, γ) = 1 + j + (j − 1) = 2 j , |Y | ∈ Ij , j = 1, 2, . . . .

By construction, the regret of the naive expert code is piece-

wise constant with value j when Y lies in Ij , R̃∗(Y, Ij) = j.



Consequently, the regret of γ is precisely twice this so that

ρ̃n(γ, E0) = 2 ,

which can be compared to the competitive complexity ratio

ρ∗0 ≈ 3.3 obtained with continuous regret and optimized ex-

perts. Since the complexity ratio for γ is fixed for all Y , γ

obtains the minimax regret given the naive selection of ex-

perts. Any code which has less regret than γ for some Y will

do worse than γ for some Y
′

since γ is Kraft tight. A simi-

lar procedure produces the minimax regret versus symmetric

experts.

V. Multivariate Models

The results obtained for ρn in the scalar location model

extend immediately to normal models with p parameters and

orthogonal estimates. An important illustration of such mod-

els are wavelet regression models used in function estima-

tion and denoising ([2], [10]). In an orthogonal regression,

the expert code has access to a collection of coordinate ex-

perts that supply an interval for each of the model parame-

ters θj , j = 1, . . . , p. In essence, such side information tells

the expert code which parameters to include in the model.

The combination of orthogonality with normality implies that

the maximum likelihood estimates of the p model parameters

θ̂p are independent. Thus, an arithmetic coder for the density

f∗(z) defined in (16) can efficiently represent p parameters

with the same competitive ratio, ρ∗0 ≈ 3.3, as obtained in the

scalar problem.

VI. Discussion

Our results have several implications for the use of stochas-

tic complexity in model selection.

First, the regret of the minimax code is about two or three

times that of the competing code which is given the best in-

tervals for the model parameters. Choosing a model on the

basis of smallest competitive ratio will produce a different se-

lection criterion from those often advocated for use in MDL[1].

The latter criteria in effect use a spherical prior for encoding

the parameters, and one can construct pathological examples

where the competitive complexity ratio of such codes is at

least p/2.

Second, since the minimax code favors certain sequences

because of the structure of the experts, our results imply that

stochastic complexity is not invariant of the coded sequence.

Rather than being a fixed model property as can be obtained

in the Bernoulli setting, the regret of the minimax code de-

scribed in Theorem 1 depends upon the mean of the coded

sequence. Although dependent upon the data and choice of

experts, the notion of the competitive complexity ratio does

lead to a minimax solution which is free of the ambiguity of

various prefix schemes that can be used to define a range for

the parameter space and so bound the integral defining the

parametric complexity (2).

Finally, these results qualitatively differ from those ob-

tained in a traditional minimax analysis in statistics. In this

setting, one compares the risk attained by a regression model

that can select from any of p predictors to that of a model that

benefits from using the the right variables. The best ratio of

expected squared error is ([2], [4])

min
Ŷ

sup
θ

E ‖Ŷ − E Y ‖2
(1 + dim(θ))σ2

≤ 2 log p ,

and this bound is essentially tight. That is, the minimax ratio

of the squared error risk of an estimator Ŷ to that obtained

by a model using the best subspace is on the order of the

log of the number of predictors, log p. Whereas the ratio of

regrets using a worst-case analysis is bounded, this ratio grows

with the number of model parameters. An explanation of this

difference appears to lie in the use of the maximum likelihood

fit to define the worst-case regret and is the subject of our

current research.
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