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Testing the Validity of a Demand Model: An Operations Perspective

Abstract
The fields of statistics and econometrics have developed powerful methods for testing the validity
(specification) of a model based on its fit to underlying data. Unlike statisticians, managers are typically more
interested in the performance of a decision rather than the statistical validity of the underlying model. We
propose a framework and a statistical test that incorporate decision performance into a measure of statistical
validity. Under general conditions on the objective function, asymptotic behavior of our test admits a sharp
and simple characterization. We develop our approach in a revenue management setting and apply the test to a
data set used to optimize prices for consumer loans. We show that traditional model-based goodness-of-fit tests
may consistently reject simple parametric models of consumer response (e.g., the ubiquitous logit model),
while at the same time these models may “pass” the proposed performance-based test. Such situations arise
when decisions derived from a postulated (and possibly incorrect) model generate results that cannot be
distinguished statistically from the best achievable performance—i.e., when demand relationships are fully
known.
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Abstract

The fields of statistics and econometrics have developed powerful methods for testing the

validity (specification) of a model based on its fit to underlying data. Unlike statisticians,

managers are typically more interested in the performance of a decision rather than the statistical

validity of the underlying model. We propose a framework and a statistical test that incorporates

decision performance into a measure of statistical validity. Under general conditions on the

objective function, asymptotic behavior of our test admits a sharp and simple characterization.

We develop our approach in a revenue management setting and apply the test to a data set used

to optimize prices for consumer loans. We show that traditional model-based goodness-of-fit tests

may consistently reject simple parametric models of consumer response (e.g., the ubiquitous logit

model), while at the same time these models may “pass” the proposed performance-based test.

Such situations arise when decisions derived from a postulated (and possibly incorrect) model,

generate results that cannot be distinguished statistically from the best achievable performance

– i.e., when demand relationships are fully known.
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1. Introduction

1.1 Motivation and the main objective

Prescriptive solutions to applied problems in operations management invariably hinge on the spec-

ification of a model for the underlying system or phenomenon of interest. The key model primi-

tives (e.g., demand distribution, service time distribution, functional relationships between decision

variables and observed response, etc.) are typically estimated from historical observations, and

subsequent to that a suitable model-based objective function is optimized to arrive at operating

decisions.

An important diagnostic step in this roadmap involves “tweaking” the model to better fit the

data or to increase its predictive power, relying on standard measures of statistical fit such as Mean

Average Percentage Error (MAPE), concordance, Bayesian Information Criterion (BIC), etc. More

generally, statisticians and econometricians have developed powerful tools to test the validity of a

model based on its fit to underlying data. These tools allow an analyst to determine, by means of

a suitable statistical test, whether the postulated model is well specified (or not) in a statistically

significant sense. In contrast to the search for statistical significance, managers are likely to be

more interested in the quality of decisions derived from a given model; this suggests the value of

an operations-centric view as opposed to the traditional model-centric one.

Our goal in this paper is to propose a framework and a statistical test for evaluating models,

that formalize an operations perspective. We focus on the problem of specifying a model for the

relationship between price and realized demand, which is central to the areas of revenue management

and economics. The main reason for this focal point, beyond the desire to be concrete, stems from

the research having its origins in an empirical analysis of pricing data, the details of which are

discussed in Section 8. The main question that surfaced there concerned the use of simple models

of consumer choice (such as the logit or probit) in applied revenue management. In particular, in

such settings the model is first calibrated to data (i.e., its parameters are estimated), and then

placed within an optimization problem to support pricing and/or capacity allocation decisions; see

Talluri and van Ryzin (2005) and Phillips (2005) for examples and further pointers to the literature.

The sheer parsimony of the logit/probit-type models, among other documented deficiencies,

suggests that they are unlikely to pass a formal statistical model testing procedure. At the same

time, as mentioned above, these are by far the most widely used models in practice. This naturally

leads to the following question:

What is the loss incurred by using decisions derived from a restricted class of models,

relative to the best achievable profits had one known the true relationship between price

and average demand?

If the above loss is suitably “small,” the assumed demand model, whether well specified or not,
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might be deemed adequate from a revenue manager’s perspective. Much of this paper deals with

putting these statements on rigorous ground, articulating a suitable formulation for testing them,

and quantifying what “small” means in a precise statistical sense.

1.2 A simple illustration of the key idea

Consider the following simple setup which is characteristic of many pricing problems. Consumers

inspect a product or service on offer by a company. The fraction who will purchase it is governed

by a so-called response function or equivalently, a willingness-to-pay distribution. Denote by

λ(x) the probability that an arbitrary customer within this population will purchase at a price

x. (This function is assumed not to change over the relevant time horizon over which decisions

are made.) The revenue manager’s objective is to maximize, say, the expected profit-per-customer

π(x) = (x− x0)λ(x), by suitably setting the price x (where x0 is the cost per unit sold). Since the

true underlying response function is not known, a class of (demand) models is put in place based

on which the profit maximization problem is solved.

In Figure 1(a), we depict two response functions (demand models) that are visibly quite distinct;

think of one [solid line] as corresponding to the “true” underlying model λ(·), and the other [dashed

line] as corresponding to the postulated one. In Figure 1(b) the profit function associated with each

model is represented: the solid line depicts the true profit function; and the dashed line represents

the profit function corresponding to the postulated model. The optimal price corresponding to the

true response function [solid line] is $5, while the price prescribed by the postulated model [dashed

line] is $6.

As discussed in Section 1.1, the traditional statistical perspective on model testing would ask

whether the two curves in Figure 1(a) are suitably “close” or “far apart,” and strive to conclude

whether the postulated model is misspecified relative to the true one. (For this purpose, imagine

that all models are constructed on the basis of a finite number of historical purchase decisions.) In

contrast, the operations perspective advocated in this paper asks whether the expected profit rate

generated by the model-based decision π(6), is significantly different, in a statistical sense, from the

optimal profit rate π(5). The former describes the profits that are achieved using the model-based

prescription, when consumer behavior is dictated by the true underlying response function. Figure

1(b) depicts this difference (∆) graphically. If ∆ is suitably small, so that based on a sample of

past sales it cannot be distinguished from zero in a well defined statistical sense, then one would

not reject the model-based estimate.

It is worth pointing out that the setting we are focusing on is static, in the sense that a single

optimal operating point is sought. In dynamic settings, where the optimal price levels typically

change over time due to capacity and product perishability considerations, the traditional model-

testing approach may be more appropriate, as one needs to ensure a valid “global” representation
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Figure 1: Demand model misspecification and performance implications. ∆ = difference

between optimal profit rate and profits achieved using model-based price-estimate. The magnitude

of ∆ quantifies the profit loss due to model misspecification.

of the demand model.

1.3 The main contributions and key qualitative insights

Main contributions. Our main objective is to provide a rigorous foundation for the operations-

centric approach. This is done by first formalizing the aforementioned hypothesis test in Section

5. (Some preliminaries and background on the traditional model-based testing approach are given

in sections 3 and 4.) The next step is fleshing out how ∆, the profit loss due to the use of a given

model class, can be used as a formal test statistic to resolve the above mentioned test. This is done

in sections 5 and 6.

To determine what values of ∆ differ from zero in a statistically significant manner, we develop

limit theory which establishes that a suitably normalized estimator of ∆ converges in distribution to

a simple limit as the sample size grows large (Theorems 2 and 3). This limit is given by a scaled Chi-

squared distribution γχ2, based on which p-values can be derived to determine whether one rejects

the null or not (i.e., whether a postulated model should be rejected from this operations-based
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perspective). The scalar γ is characterized explicitly and its magnitude is seen to be proportional

to the level of “noise” associated with the observations, and inversely proportional to the “flatness”

of the profit function in the neighborhood of the point of maximum. Thus, more noise and increased

flatness contribute to a larger value of γ, which in turn makes it harder to reject the null; see Remark

1 following Theorem 2 for further discussion. Numerical experiments in Section 7 focus on synthetic

examples similar to the one described in Figure 1, and illustrate some properties and efficacy of

the proposed test. The proof of the pudding is in the eating, and to that end we discuss in Section

8 the application of our method to an empirical data set arising in financial services (see further

comments below).

In terms of methodology, we rely on non-parametric estimation techniques to construct and

study the properties of a consistent estimator of the true unknown response function; for accessible

overviews of non-parametric estimation, see Härdle (1990) and Pagan and Ullah (1999). Large

sample theory of maximum likelihood estimation in a misspecified environment also plays an im-

portant role in our derivations; see, e.g., White (1996) and the literature review below for general

references on these topics.

To the best of our knowledge, the present paper is the first to propose a statistical test that strives

to assess the validity of a model from purely operational considerations, i.e., focusing on decision

making implications of model specification. In addition, the essence of the approach transcends the

revenue management application which is the focal point of the paper. In Section 9, we indicate

how to “cut and paste” the various modules in our proposed approach and apply them in the

context of two prototypical inventory and queueing problems.

Bearing on practice. Both theory and practice of revenue management, certainly within the

context of the example discussed in Section 1.2, stress the use of simple models of demand and

consumer choice; the logit and probit are two of the most ubiquitous examples. This is due by and

large to a combination of convenience and mathematical tractability: simple models are easy to

understand, calibrate and optimize. On the other hand, it is difficult to expect such models to fully

capture the true underlying behavior, and hence also unlikely that they survive rigorous statistical

tests for model specification; see the literature review in Section 2 for references. This has led

to the introduction of increasingly complex models that are variants of the basic ones mentioned

above (e.g., nested logit and hierarchical models), with most of this work being pursued within the

marketing community; see, e.g., Leeflang et al. (2000). On the other hand, if one inspects various

application areas of revenue management one still finds prevalent use of simple models such as logit.

The approach and tools developed in this paper can help in providing further theoretical support

for the use of such models.

With that point in mind, we refer the reader to Section 8 in the paper that contains an empirical

study based on data from a firm that offers automobile loans. Our analysis shows that at least
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in several instances within that data set, a simple logit model is rejected based on a standard

model-based test, but there is not enough statistical evidence to reject it from the perspective of

our operations-centric test. This offers a potential explanation for the prevalent use of the logit

model in practice. Roughly speaking, the intuition behind the above observations lies in the fact

that traditional model-based tests are predicated on global criteria of functional fit, while our test is

local in nature, focusing only on the relevant region of interest (the neighborhood of the maximum

profits).

Given that the test we propose relies on nonparametric estimates, it requires the availability of

sufficient data. One could argue that in such settings it is possible to resort to non-parametric mod-

eling of the response function. However, practitioners would most likely be reticent to depart from

the world of simple parametric models in favor of more complicated and opaque non-parametric

ones, even in data-rich environments. Our proposed test, while relying on non-parametric estima-

tion techniques for diagnostic purposes, is actually more likely to lend support to simple parametric

models due to its less stringent nature (relative to model-based tests).

2. Literature review

Our focus in this paper is on a revenue management application which centers on consumer choice

behavior. There is a large stream of literature focusing on such models; Ben-Akiva and Lerman

(1985) and Train (2002) provide an overview on the topic. As discussed earlier, various measures

of fit are used in practice, based on a significant body of work dating back to the pioneering paper

of Akaike (1974) that deals with model selection; the typical approach there is to formulate an

optimization problem that penalizes the complexity of a model (e.g., log-likelihood with penalty

for the number of parameters in the model). It is important to note that all models considered in

these comparisons may still be misspecified with respect to the true mechanism that generates the

data. Amemiya (1981, Section II.C) reviews some criteria typically used for model selection, and

gives a general econometrics perspective on this and related issues; Leeflang et al. (2000) provide a

general overview from a marketing perspective.

Distinct from that line of research is the model testing paradigm in which the specification of a

model is tested against the true underlying structure of interest; this approach is covered in almost

any graduate level textbook on statistical theory; see, e.g., Borovkov (1998). Broadly speaking,

our paper falls into this category. For the purpose of our revenue management application, the

response function is a conditional probability and hence one can draw on general results that have

been developed in the literature for testing the validity of regression (conditional expectation)

type models. Perhaps the two most notable examples are the conditional moment tests of Bierens

(1990), and the conditional Kolmogorov test of Andrews (1997); see also references therein for

further pointers to this literature. Both these tests enjoy certain optimality properties in terms of
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their power against local alternatives. Unlike these types of tests that do not directly estimate the

regression function, there are various others that use intermediary non-parametric approximations

to the regression function; see, e.g., Härdle and Mammen (1994).

Various instances of the model specification tests mentioned above have been applied to empirical

data sets in order to assess the validity of widely used models such as the logit or probit. Horowitz

(1993) analyzes the binary response model of choice between automobile and public transit, and

Bartels et al. (1999) apply a non-parametric test to scanner panel data and reject the multinomial

logit model; see also references therein. While not focusing on testing per se, Abe (1995) discusses

benefits and drawbacks of non-parametric models relative to simple parametric ones (logit) in the

context of marketing research.

Our work is also related to a stream of work in operations management which highlights op-

erational objectives when estimating a model for an underlying system. Cachon and Kok (2007)

analyze the perils associated with salvage value estimation in the context of the newsvendor prob-

lem and Liyanage and Shantikumar (2005) study the interaction between optimization and esti-

mation of the demand distribution in a newsvendor setting; see also Ernst and Cohen (1990) for

an earlier study of similar flavor. Cooper et al. (2006) study the interaction between demand

distribution/parameter estimation and operational objectives, but in a capacity control revenue

management problem, highlighting potential consequences of model misspecification. These stud-

ies do not focus on model testing per se, nor on statistical analysis, and therefore intersect with

our work more in terms of philosophy rather than actual focus and methods.

Our study also shares a common theme with the field of statistical decision theory (see, e.g., the

overview in Berger (1980)), as an important feature of the approach we propose is that it takes into

account decision making. Similarly, there has long been a recognition within the decision analysis

literature that the value of quantitative modeling should be judged primarily by the quality of the

decisions they support (see, for example, Nickerson and Boyd (1980)). However, there has been a

lack of methodologies for evaluating the adequacy of a particular model from this vantage point.

3. Problem Formulation

A single product can be sold for a price x ∈ X := [x, x], with 0 < x < x < ∞. At the prevailing

price, x, a consumer will purchase the product with probability P{Y = 1|x}. Here Y ∈ {0, 1} is a

random variable such that Y = 1 corresponds to a purchase decision, and Y = 0 corresponds to a

situation where the consumer declines to purchase the product. We refer to λ(x) := P{Y = 1|x}
as the consumer response function.

Let r(x) denote a function that describes the revenue/profit resulting from a given sale. The

decision-maker’s objective is to set a price that maximizes the expected profit per customer. That
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is, for the expected profit function

π(x) := r(x)λ(x), (1)

the objective is to seek x∗ ∈ arg max{π(x) : x ∈ X}. Under mild conditions on π(·), e.g., continuity,

such a point of maximum exists. The optimal profits are then π∗ := π(x∗). This is an example of

the so-called customized pricing problem as described in Phillips (2005).

The decision-maker does not know the true response function λ(·) characterizing the market.

S/he only has access to data in the form of n past observations Dn = {(Xi, Yi) : 1 ≤ i ≤ n}; each

pair (Xi, Yi) describes the sales outcome Yi ∈ {0, 1} when offering the product at price Xi ∈ X .

Using this data, a model for the response function is fitted from a parametric family L(Θ) =

{ℓ(·; θ) : θ ∈ Θ}, where Θ ⊆ R
d is a compact set. (As discussed in the introduction, this parametric

estimation procedure is the typical approach used in practice.) In what follows, we use Pθ(y|x) to

denote the conditional probability of observing y when x is chosen under the assumed parametric

model ℓ(·; θ); in particular, note that this probability might differ from the actual probability of

observing y given a choice of x. For any θ ∈ Θ, we let p(x; θ) := r(x)ℓ(x; θ) denote the profit function

under the parametric assumptions describing the postulated model. Put x∗(θ) to be a maximizer

of p(x; θ), where x ∈ X . Hence for a fixed choice of the parameter θ ∈ Θ, x∗(θ) represents the

optimal model-based decision (price). In practice, the value of the parameter θ is estimated from

the data Dn and we let θ̂ denote such an estimate, i.e., a mapping from Dn to Θ. While many such

estimation procedures exist, we will focus here on the method of maximum likelihood, which is by

far the one most prevalently used in practical settings.

Our main objective is to assess the validity of the class of models L(Θ) selected by the decision-

maker.

4. General Background and Model-Based Testing

We first describe briefly the classical model-based approach which is the one found in the statistics

and econometrics literature. In passing, we also introduce some necessary background on hypothesis

testing and the key concepts that will be used throughout the paper. Subsequent to that, we

review a specific model-based test developed by Andrews (1997), that will later serve as a basis for

comparison against our proposed performance-based test which is described in Section 6.

4.1 The traditional model-based approach and some general background on

hypothesis testing

The traditional statistical approach strives to determine, based on observations Dn, whether the

true unobservable conditional probability λ(·) can be distinguished from the “best approximation”
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within the model class L(Θ). Formally, one can formulate the hypothesis test as follows:

H0 : λ(·) = ℓ(·; θ∗) for some θ∗ ∈ Θ (2)

H1 : λ(·) 6= ℓ(·; θ) for all θ ∈ Θ, (3)

where the ‘ 6=’ in the alternative hypothesis means that for any θ ∈ Θ there exists some x ∈ [x, x]

such that λ(x) 6= ℓ(x; θ). It is worth emphasizing that what one is testing via this traditional

statistical formulation is a hypothesis about the model that generates the data.

The decision rule that is used to resolve the test typically hinges on a suitably chosen test statistic

Tn : Dn → R+. The idea is that when Tn (properly scaled) exceeds, say, a suitably chosen threshold

τ , the null hypothesis H0 is rejected. Since the distribution of “good” test statistics is often difficult

to compute, one resorts to an asymptotic analysis. (Note also that the hypotheses in (2)-(3) are

not simple hypotheses, as the distribution of the response Y conditional on the covariate X is not

fully specified under H0.)

Suppose that there is a scaling sequence of positive real numbers {an} such that anTn converges

in distribution to a limit random variable Z; we denote this as anTn ⇒ Z as n→ ∞1. The threshold

τ is then chosen so that

P{anTn > τ | H0} → α as n→ ∞, (4)

where α ∈ (0, 1) is called the significance level of the test. In other words, the choice of τ ensures

that the Type 1 probability of error, i.e., the likelihood of rejecting the null when it is true, is

asymptotically equal to α. A decision rule or test (we use the two interchangeably in what follows)

is said to be consistent if

P{anTn ≤ τ | H1} → 0 as n→ ∞. (5)

This restriction ensures that the Type 2 error, namely, not rejecting the null when it is false, has

vanishingly small probability as the sample size increases. Finally, the p-value associated with the

test is the minimum level of significance at which one rejects the null hypothesis (the smaller the

p-value, the more evidence there is to reject the null). In particular, if the p-value falls below the

significance level α, the null is rejected.

As a side comment, we note that it is not always possible to directly use the limiting distribution

(of Z) to compute p-values, as the latter will in general depend on characteristics of the true

demand model which are unknown (for example, this distribution may depend on θ∗). As a result,

an additional step is typically needed to arrive at a fully implementable test.

Testing model specification as in (2)-(3) has received significant attention in the fields of eco-

nomics (econometrics) and statistics as discussed in Section 2. A specific test that falls into this

category and has certain desired properties is described in the next section.

1Note that identifying an appropriate scaling sequence an is often is often a significant step in the analysis, and

that such convergence results will in general hinge on structural assumptions characterizing the observations Dn.
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4.2 Example of a model-based test

Below, we briefly describe a model-based test developed by Andrews (1997) which resembles the

classical Kolmogorov-Smirnov test used to assess if two samples are drawn from the same distri-

bution (see, e.g., Borovkov (1998)). Based on historical data Dn = {(Xi, Yi) : 1 ≤ i ≤ n}, the test

uses the conditional Kolmogorov test statistic which is defined as follows

CKn =
√
nmax

j≤n

∣∣∣∣
1

n

n∑

i=1

1{Yi ≤ Yj} 1{Xi ≤ Xj} −
1

n

n∑

i=1

Pθ̂(Y ≤ Yj |X = Xi) 1{Xi ≤ Xj}
∣∣∣∣, (6)

where θ̂ is the maximum likelihood estimate of θ, and in our setup Pθ(Yi ≤ Yj |Xi) = 1 if Yj = 1 and

Pθ(Yi ≤ Yj |Xi) = 1 − ℓ(Xi; θ) if Yj = 0. The conditional Kolmogorov test statistic compares two

terms. The first is an empirical version of the cumulative distribution function of the vector (X,Y ).

As the sample size grows large, this term converges to the true cumulative distribution function

(cdf) of the vector (X,Y ) by the law of large numbers. The second term is a semi-parametric,

semi-empirical version of the cdf of (X,Y ), and under the null hypothesis, it also converges to the

same limit as above. However, when the null is false, the two limits will differ, and the statistic,

which is scaled by
√
n, will diverge to infinity. In that regard, we make the following assumption

Assumption 1 For i ≥ 1, (Xi, Yi) are independent and identically distributed (iid) with response

function given by P(Y = 1|X = x) = λ(x) and marginal distribution G with density function g(·)
which is positive and continuous everywhere on its support [x, x].

Assumption 1 is adopted for convenience as it facilitates the mathematical analysis in what follows

(namely, the derivation of large sample properties of certain test statistics). From that perspective,

it can be significantly weakened to allow for some dependency between (Xi, Yi) pairs; this is well

documented in the statistical and econometrics literature (see, for example, White (1996)). Essen-

tially, the iid assumption together with the postulated density condition are put in place to ensure

sufficient “dispersion” in the decision variable X. In the absence of such dispersion, it would be

difficiult to reconstruct the response function consistently. In the practice of revenue management,

such dispersion can sometimes arise as a consequence of price experiments that are aimed at infer-

ring the nature of consumer preferences and purchasing behavior. The empirical study presented

in Section 8 indicates the presence of such price dispersion in Figure 4. (An important problem,

which is beyond the scope of the current paper, is the formal quantification of price dispersion

present in datasets as well as the design of appropriate price experimentation schemes to achieve

adequate dispersion.)

We also make the following technical assumption, which is quite standard in the context of

parameter estimation problems.

Assumption 2 Each member of the family of response function models ℓ(x; θ) ∈ L(Θ) is contin-

uously differentiable on [x, x] ×Θ.
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Theorem 1 (Andrews (1997)) Let Assumptions 1 and 2 hold. Under the null hypothesis,

CKn ⇒ K as n→ ∞.

The precise characterization of the limit K is given in Andrews (1997). The limit distribution

depends on several nuisance parameters including the true parameter vector θ∗ (under the null) and

the marginal distribution G(·). In addition, the form of the limit distribution is fairly complicated.

To implement the test, Andrews (1997) suggests a bootstrapping procedure. We come back to this

test in sections 7 and 8, where we compare its conclusions to those of the approach proposed in the

present paper.

5. The Proposed Approach: Key Ideas

Motivation. The model-based approach, and hence the test described in (2)-(3), focuses on the

specification of the response model. Roughly speaking, for a given estimator θ̂, the null hypothesis

will be rejected when the estimated response function ℓ(·; θ̂) differs in a statistically significant

manner from the true response model λ(·). Yet even under such circumstances it is possible that

the estimated response function would still give rise to a “good” pricing prescription, i.e., a price

that performs well under the true underlying response function. As illustrated in Figure 1 in the

introduction, this is possible even if the postulated model class L(Θ) is misspecified in a significant

manner relative to the underlying response model λ(·).
We now describe a new test that focuses directly on the performance of decisions derived from

the parametric model class L(Θ). In particular, the question that will be answered by this test

is whether decisions that are derived from the “best” parametric model in L(Θ) lead to actual

performance (profits) that differ significantly from (i.e., are inferior to) the best achievable perfor-

mance. The latter corresponds to profits generated by the optimal decision derived from the true

underlying response model λ(·).

Background on parametric inference under model misspecification. To describe our

proposed test, we first need to articulate what is meant by the “best” parametric model in L(Θ),

as that class need not include the true response function λ(·); a good reference on the topic is the

book by White (1996).

Let

θ̂ ∈ arg max

{
1

n

n∑

i=1

log
(
Pθ(Yi|Xi)

)
: θ ∈ Θ

}

be the maximum likelihood estimator based on the sample Dn, where Pθ denotes the conditional

probability distribution of Y given X for a parameter vector θ ∈ Θ. In our context, Pθ(y = 1|x) =

1 − Pθ(y = 0|x) = ℓ(x; θ). The right-hand-side above, which is being maximized, is a sample-

based approximation to the expected log-likelihood E
[
log

(
Pθ(Y |X)

)]
, where the expectation is
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with respect to the true distribution P of (X,Y ), which may be distinct from any distribution

{Pθ : θ ∈ Θ}. It is easily seen that the expected log-likelihood is maximized for a value of θ = θ∗

which minimizes

E
[
log

(
P(Y |X)/Pθ(Y |X)

)]
, (7)

over the parameter space Θ.

The expression in (7) is called the Kullback-Leibler divergence (KL) and can be shown to be

non-negative and equal to zero if and only if θ is such that λ(·) = ℓ(·; θ) for almost all x in its

support X . Hence one can think of KL as a measure of “distance” between the true underlying

response function, and members of the parametric class L(Θ) (although KL is not a metric since

it does not satisfy the triangle inequality). As the sample size n grows large, the empirical log-

likelihood converges to the expected log-likelihood, and hence one expects that θ̂ will converge to

the point θ∗ which minimizes the KL (7); This can be shown to hold under some mild technical

conditions (see White (1996)). Thus, when using ML estimation, one is effectively using a finite

sample estimate of the parameter θ∗ that minimizes the KL distance between the parametric class

L(Θ) and the true underlying response function which generates the data.

Formulation of the performance-based test. The pertinent hypothesis test can be formu-

lated as follows

H0 : π∗ = π(x∗(θ∗)) (8)

H1 : π∗ > π(x∗(θ∗)), (9)

where: π∗ represent the optimal profit rate; x∗ ∈ arg max{π(x) : x ∈ X} is the optimal price relative

to the true underlying profit function; x∗(θ) is the maximizer of the profit rate corresponding to the

parametric model class p(x; θ) = r(x)ℓ(x; θ) for θ ∈ Θ; and π(x∗(θ∗)) is the true profit rate achieved

by the latter decision when θ = θ∗. Thus, what is being compared above is the best achievable

performance π∗, and the performance achieved by a decision (price) that optimizes the parametric

model that “best fits” the data.

This test is quite different in flavor from the traditional statistical one given in (2)-(3). The

latter would reject a given parametric model class unless it provides a “good” global fit to the

true underlying response function. The test described above is local in nature: it will reject the

null only if the resulting price prescriptions do not fall within the region where the true profit

function achieves its maximum. In this manner, we substantially relax the statement of the null

H0 in comparison with the model-based test (2). In particular, whenever the null hypothesis is not

rejected in the latter, it will also not be rejected in the performance-based test. However, the new

notion of a null hypothesis can hold under a much broader set of scenarios; the example depicted

in Figure 1 in Section 1.2 provides such an illustration.
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The reader would have obviously noted that the best achievable performance π∗, as well as the

best performance achieved by pricing based on the parametric model class π(x∗(θ∗)) are not directly

computable, as λ(·) is not known to the decision-maker. The remaining challenge is therefore to

prescribe a procedure for executing the performance-based test so as to meet a required significance

level as well as the requirement of consistency. This is spelled out in the next section.

6. The Proposed Approach: The Test Statistic and its Properties

6.1 A non-parametric estimate of the profit function

The first step towards operationalizing the test (8)-(9) is to define a consistent estimator of the

true profit function π(x); the postulated model class L(Θ) need not contain the response function

λ(·). Letting Zi = r(Xi)Yi for i = 1, ..., n, the available data can be viewed as noisy observations

of the profit rate at n discrete points given by the Xi’s. Indeed,

Zi = r(Xi)Yi = π(Xi) + εi, (10)

where εi = r(Xi)Yi − π(Xi), and given Xi, εi is a random variable with zero mean and variance

E[ǫ2i |Xi] = (r(Xi))
2λ(Xi)(1 − λ(Xi)). We let Z denote a generic random variable with the same

distribution as r(X)Y and σ2(·) denote the function x 7→ (r(x))2λ(x)(1 − λ(x)). One of the most

straightforward nonparametric estimator is the Nadaraya-Watson estimator:

π̂n(x) :=

1
nh

∑n
i=1K

(
x−Xi

h

)
Zi

1
nh

∑n
j=1K

(
x−Xj

h

) , (11)

where h, the so-called bandwidth, is a positive tuning parameter and the kernel, K : R → R+ is

such that
∫
K(u)du = 1 and K(u) = K(−u). The approximation π̂(x) of π(x) can be seen to take

the form of a weighted sum of the observations Zi, where the weight of observation i depends on

the proximity of Xi to x. One also notes that the denominator in (11)

ĝn(x) :=
1

nh

n∑

i=1

K
(x−Xi

h

)
(12)

approximates the density of X at the point x, g(x).

For concreteness, we will assume throughout that the kernel is Gaussian, i.e.,K(x) = (2π)−1/2 exp{−x2/2}
for x ∈ R, noting that other choices are possible; cf. Härdle (1990).

Remarks i.) Various nonparametric techniques can be used to approximate the profit function;

The Nadaraya-Watson kernel estimator has been widely used and studied in the literature, and

hence is a natural candidate. The specific results we present can be derived in a similar manner

for many other nonparametric techniques; cf. Härdle (1990) for an overview of alternatives. ii.)
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The bandwidth parameter h plays a crucial role in the approximation and its specification requires

care. There exist simple prescriptions for specifying the magnitude of the bandwidth based on the

sample size. Additional considerations and techniques are discussed in Härdle (1990, Chapter 5).

iii.) Nonparametric methods typically become less practical to apply in higher dimensions due to

significant data requirements. This fact limits the applicability of our test to higher dimensional

problems.

6.2 The test statistic

Note that π̂n(·) is continuous and let x̂n ∈ arg max{π̂n(x) : x ∈ [x, x]} where π̂n(·) is defined

in (11). Recall that x∗(θ) ∈ arg max{p(x; θ) : x ∈ [x, x]} and that θ̂ denotes the maximum

likelihood estimator of the parameter vector θ based on the same observations used to estimate

π̂n(·), {(Xi, Yi) : i = 1, ..., n}. The performance-based test statistic ∆n is then defined as

∆n = π̂n(x̂n) − π̂n(x∗(θ̂)). (13)

The motivation behind this construction is as follows. As the sample size grows large, the approxi-

mation π̂n(·) should eventually provide a good approximation for the true profit function π(·), and

hence we anticipate that π̂n(x̂n) ≈ π(x∗). Similarly, θ̂ should be close to θ∗ and this should imply

that π̂n(x∗(θ̂)) ≈ π(x∗(θ∗)). As a result ∆n can be viewed as a noisy version of the difference

between the two terms in the null hypothesis (8), i.e., ∆n ≈ π(x∗) − π(x∗(θ∗)). Based on this,

we anticipate that ∆n, properly scaled, would converge in distribution to some random variable

under H0, while it would diverge under the alternative hypothesis. The intuition above and the

conditions under which it is valid will be formalized in Theorem 2. We first impose the following

technical assumptions.

Assumption 3 (Interior maximum) i.) π(·) is twice continuously differentiable [x, x] with

unique maximizer x∗ ∈ (x, x) such that π′′(x∗) < 0.

ii.) p(·; ·) is twice continuously differentiable on [x, x] × Θ. For all θ ∈ Θ, p(·; θ) has unique

maximizer x∗(θ) ∈ (x, x) and ∂2p(x∗(θ); θ)/∂x2 < 0.

Assumption 4 (Maximum Likelihood) i.) E[| log P(Y |X)|] < ∞ and | log Pθ(y|x)| ≤ f0(x)

for all θ ∈ Θ, where f0(·) is bounded on X .

ii.) The KL E
[
log

(
P(Y |X)/Pθ(Y |X)

)]
admits a unique minimum θ∗ ∈ Θ, which is interior.

iii.) log Pθ(y|x) is twice continuously differentiable with respect to θ on Θ.

iv.) There exist functions f1(·) and f2(·) bounded on X such that for all θ ∈ Θ, for all i, j = 1, ..., d,

and for all (x, y) ∈ X × {0, 1},
∣∣∣
∂ log Pθ(y|x)

∂θi

∣∣∣ ≤ f1(x),
∣∣∣
∂2 log Pθ(y|x)

∂θi∂θj

∣∣∣ ≤ f2(x).
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v.) For each θ ∈ Θ, let Aθ and Bθ be the matrices whose elements are defined as:

Aθ(i, j) := Eθ

[∂2 log Pθ(Y |x)
∂θiθj

]
i, j = 1, ..., d.

Bθ(i, j) := Eθ

[∂ log Pθ(Y |x)
∂θi

∂ log Pθ(Y |x))
∂θj

]
i, j = 1, ..., d.

Assume that Bθ∗ is nonsingular and Aθ has constant rank in some open neighborhood of θ∗.

Assumption 4 is standard in the context of asymptotic analysis of maximum likelihood estimators

(cf. White (1982)). Assumption 3 ensures that the optimal decision is an interior point. (The

analysis of boundary maximizers constitutes a straightforward extension of the results in section

6.3, and is omitted for space considerations.)

6.3 Large sample theory

Theorem 2 (Consistency and Asymptotic Distribution) Let Assumptions 1, 3 and 4 hold.

Put

γ := − 1

2π′′(x∗)

σ2(x∗)

g(x∗)

∫ +∞

−∞

(K ′(ψ))2dψ, (14)

and let hn ↓ 0 be a sequence of positive real numbers such that nh6
n → ∞ and nh7

n → 0, then

i.) Under H0: nh3
n∆n ⇒ γ χ2 as n→ ∞,

ii.) Under H1: nh3
n∆n ⇒ ∞ as n→ ∞,

where χ2 is a Chi-squared random variable with one degree of freedom.

Remark 1 (value of γ). The value of the constant γ given in (14) plays a crucial role in the

proposed test: the higher this value is, the “harder” it will be to reject the model. Consistent

with basic intuition, γ is increasing in the variance of the noise associated with observations at the

optimal operating point σ2(x∗); higher variance in the noise induces larger confidence bands around

any non-parametric estimator of the profit function, and as a result makes it harder to reject any

given model. The constant γ is also inversely proportional to π′′(x∗). To this end, note that the

“flatter” the profit function is in the region of the optimum (i.e., the smaller the value of |π′′(x∗)|),
the harder it should be to reject a model. This stems from the fact that operating away from the

optimum will have lesser ill effects on performance.

Discussion. Given that nh3
n∆n converges under the null hypothesis to a scaled χ2 random

variable, and diverges to infinity under the alternative, a consistent decision rule can be constructed

straightforwardly on the basis of the limiting distribution under H0. At a significance level α, the

decision would be to reject H0 if nh3
n∆n > τα where τα is the (1−α)-quantile of γχ2. Note that the
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test is also consistent, as the probability of not rejecting H0 when H1 is true P(nh3
n∆n ≤ τα|H1)

converges to zero as n→ ∞ by Theorem 2 ii.). At a more qualitative level, the above test procedure

can only distinguish the best performance of the model-based decision from the best achievable

performance up to fluctuations of order (nh3
n)−1. In other words, if ∆ = π(x∗) − π(x∗(θ∗)) > 0 is

of this order for a given sample, the test would conclude that the model-based decision gives rise

to performance that is statistically indistinguishable from the best achievable performance.

An implementable test. The value of the constant γ depends on characteristics of the true

profit function, which is not known. Hence to compute p-values based on the asymptotic result in

Theorem 2 one would need to approximate the value of γ. Indeed, g(x∗) can be approximated by

ĝn(x̂n), where ĝn(x) is given in (12). Then π′′(x∗) can be approximated by π̂′′n(x̂n), and σ2(x∗) can

be approximated by using a kernel approximation to compute E[(Z − E[Z|X = x̂n])2|X = x̂n] as

follows

σ̂2(x̂n) =

1
nh

∑n
i=1K

(
x̂n−Xi

h

)(
Zi − π̂(x̂n)

)2

1
nh

∑n
i=1K

(
x̂n−Xi

h

) . (15)

The “plug-in” estimator

γ̂n := − 1

min{2π̂′′n(x̂n)ĝn(x̂n);−1/n} σ̂
2(x̂n)

∫ +∞

−∞

(K ′(ψ))2dψ +
1

n
(16)

is then expected to converge to γ in probability (this is made rigorous in the proof of Theorem 3);

the 1/n correction factors are introduced to ensure that the denominator does not equal zero and

that γ̂n > 0. The following corollary provides an implementable version of the performance-based

test using this idea

Theorem 3 (Implementable test) Let Assumptions 1, 3 and 4 hold. Set hn = chn
−1/7/(log n)1/7

where ch is a positive constant, then

i.) Under H0: c3hn
4/7(log n)−3/7γ̂−1

n ∆n ⇒ χ2 as n→ ∞,

ii.) Under H1: c3hn
4/7(log n)−3/7γ̂−1

n ∆n ⇒ ∞ as n→ ∞.

It is worth stressing that failure to reject the null in the performance-based framework does not

imply that we have identified the “right” model, nor that we have used the “right” decision. Rather,

it asserts that based on the available data one cannot distinguish (statistically) the performance

induced by the best decision based on the parametric model, and the best achievable performance

had we known the true underlying model.

An alternative procedure to estimate γ. For finite samples, the approximation resulting

from the weak convergence result in Theorem 3 i.) depends critically on the quality of the approxi-

mation of γ by γ̂n. Given that this involves estimating the second derivative of the profit function,
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we expect the estimate to be fairly noisy. To improve the finite sample performance of the test, we

propose a bootstrapping procedure for estimating the constant γ.

Algorithm 1: Bootstrapping estimate of γ

1) For a fixed positive integer b and j = 1, ..., b, randomly draw n vectors with replacements from

{(Xi, Yi) : 1 ≤ i ≤ n}. Let D(j)
n = {(X(j)

i , Y
(j)
i ) : 1 ≤ i ≤ n} denote the resulting draw, and let

π̂
(j)
n (·) denote the kernel based estimator of the profit function based on the dataset D(j)

n .

2) Let x̂
(j)
n ∈ arg max{π̂(j)

n (x) : x ∈ [x, x]} and

∆(j)
n = π̂(j)

n (x̂(j)
n ) − π̂(j)

n (x̂n). (17)

3) Let

γ̂b
n =

1

b

b∑

j=1

nh3
n∆

(j)
n . (18)

4) For the significance level α, let τα to be the (1 − α) quantile of γ̂b
nχ

2. Then one rejects the null

if and only if nh3
n∆n > τα.

Based on classical results for bootstrapping (see, e.g., Efron and Tibshirani (1993) and Giné and

Zinn (1990)) we expect that, under the conditions of Theorem 3, γ̂b
n converges to γ under H0 as

n and b grow to ∞ in a suitable sense. While spelling out this limit theory is beyond the scope

of this paper, we do compare numerically results obtained using the bootstrapping procedure with

those using the estimation procedure (16) in the next section and in Appendix C.

7. Properties of the Proposed Test: Illustrative Numerical Exam-

ples

We present below numerical results that illustrate properties of the performance-based test, and

contrast them with the model-based test discussed in Section 4.2. For illustrative purposes, we

consider two response function models: a logit structure ℓ(x; θ) = exp{θ1−θ2x}
(
1+exp{θ1−θ2x}

)−1

with parameters (θ1, θ2); and an exponential structure ℓ(x; θ) = θ1 exp{−θ2x} with parameter

(θ1, θ2). In all cases, the per-customer revenue function is given by r(x) = (x− 1), and the Xi’s are

drawn from a uniform distribution on [1, 9]. The bandwidth is taken to be hn = chn
−1/7/(log n)1/7,

with ch > 0 a tuning constant whose effects are examined below. The procedure we follow is to

approximate the distribution of the scaled test statistic on the basis of Theorem 3, as well as based

on the bootstrapping procedure that was discussed thereafter. Given the limit distribution and a
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significance level α, we can define the rejection region for the null. In particular, for an estimated

value of the scaling constant γ̂, we take the (1−α)-quantile τα such that P{γ̂χ2 > τα} = α. In our

experiments, we focus on a standard choice of α = 0.05.

In Table 1, we consider a scenario where the sample size is n = 500, and is generated according to

a logit with parameters (θ1 = 3, θ2 = −.9). The assumed logit structure is well-specified and hence

the null hypothesis will be true in both the model-based formulation (2) as well as the performance-

based one (8). We study the impact of the constant ch affecting the bandwidth and compare the

accuracy of the test using the asymptotic distribution in Theorem 3, versus the bootstrap procedure

in Algorithm 1, with b = 250. In particular, we depict the number of times one rejects the null at

the α = 0.05 level based on 500 independent replications of the experiment.

ch 1.5 2 3 4

performance-based test 18.2% 8.4% 4.0% 0.8%

performance-based test (bootstrap) 9.8% 8.2% 4.4% 1.2%

Table 1: Efficacy of the performance-based test. Fraction of timeH0 is rejected at the α = 0.05

level (based on 500 replications), as a function of the bandwidth parameter. The data-generating

model is a logit and the assumed structure is a logit (well-specified case).

It is evident that the choice of bandwidth parameter ch impacts the behavior of the test statistic

and a constant ch in the range [2, 3] seems appropriate; “rules-of-thumb” for selecting the bandwidth

are discussed in Härdle (1990, Chapter 5). We note that the bootstrapping procedure provides more

consistent results across bandwidths, and improves the finite sample performance of the test.

In Table 2, we focus again on the fraction of time one rejects the null at the 5% level based on

500 replications. We compare the results provided by the performance-based test to those of the

model-based test. In the first (case 1), the true model is a logit with parameters (θ1 = 3, θ2 = −.9)

and the assumed structure is also logit. In other words, the true response function belongs to

the postulated family, and H0 is true in this case from both model-based and performance-based

perspectives. The second (case 2) considers again a true model which is a logit with parameters as

above but the assumed structure is exponential ℓ(x; θ) = θ1 exp{−θ2x}. In the last setting (case

3), the true model is a logit with parameters (θ1 = 4.5, θ2 = −.9) and the assumed structure is

exponential. Thus both cases 2 and 3 correspond to misspecified settings, and one anticipates that

at least the model-based test would reject the null. The bandwidth for the performance-based test

in all cases is taken to be hn = 2n−1/7/(log n)1/7 and the number of bootsraps used is b = 250.

We observe that when the model is well specified (case 1), and hence H0 is correct for both

model- and performance-based tests, the latter rejects H0 about 8% of the times at the α = 0.05

level. Turning to case 2, where the assumed structure is incorrect, we observe that the model-based

test rejects the exponential model more than 98% of the times. This is in sharp contrast with the
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case 1 case 2 case 3

true model logit: (3,−0.9) logit: (3,−0.9) logit: (4.5,−0.9)

assumed structure logit: (θ1, θ2) exp: (θ1, θ2) exp: (θ1, θ2)

Data size (n) 5 × 102 103 5 × 102 103 5 × 102 103

model-based test 3.0% 6.2% 98.6% 100% 100% 100%

performance-based test (bootstrap) 8.2% 8.4% 12.8% 14.4% 91.4% 98.8%

Table 2: Comparison of the model- and performance-based tests. Fraction of time one

rejects H0 at the α = 0.05 level (based on 500 replications). In case 1, the demand model is

well-specified while in both cases 2 and 3, it is misspecified.

performance-based test that only rejects the exponential model about 13% of the times. In case 3,

where again the assumed structure is misspecified relative to the true response function, both tests

reject the null more than 90% of the times.

To better understand the phenomena at play in cases 2 and 3, we present in Figures 2 and 3 the

true demand model (logit) and the “best” exponential fit (see discussion in Section 5). We observe

that the discrepancy between the two response curves is quite noticeable, exceeding in places 10%

in absolute value (Figures 2(a), 3(a)). Analyzing the profit curves corresponding to case 2 in Figure

2(b), we observe that the difference between the optimal performance under the true model, and

the performance of the decision dictated by the best exponential fit, differ by an amount ∆ which

is quite small. Thus the performance-based test indicates that it is difficult to distinguish the

difference in performance with dataset sizes of 500 or 1000. In case 3, focusing on the profit curves

in Figure 3(b), we see that the difference ∆ becomes significant when compared to case 2. This is

why the performance-based test now rejects the null more than 90% of the time. Note also that

the amount of times one rejects the null increases with the size of the data, illustarting that the

difference ∆ becomes more significant for larger sample sizes, as one would expect based on the

theory contained in Theorems 2 and 3.

Further experiments investigating the approximation of the test statistic by a χ2 distribution

and the impact of the estimation technique used to approximate γ (plug-in versus bootstrapping)

are reported in Appendix C.

8. Empirical Example

This section illustrates an application of the proposed performance-based test to sales data ob-

tained from an auto-lender operating in an online direct-to-consumer sales channel. We provide a

description of the dataset in Section 8.1, then discuss the setup and profit maximization objective

of the auto-lender in Section 8.2 and present our results in Section 8.3.
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Figure 2: Model misspecification that is not rejected by the performance-based test.

The true model is a logit with parameters (θ1 = 3, θ2 = −0.9). Panel (a) gives the true demand

model and the best exponential fit; Panel (b) depicts the true profit function and that based on

the best exponential fit. ∆ indicates the difference between the optimal profits, and those achieved

on the basis of the optimal decision of the best exponential fit.
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Figure 3: Model misspecification that is rejected by the performance-based test. The

true model is a logit with parameters (θ1 = 4.5, θ2 = −0.9). Panel (a) gives the true demand model

and the best exponential fit; Panel (b) depicts the true profit function and that based on the best

exponential fit. ∆ indicates the difference between the optimal profits, and those achieved on the

basis of the optimal decision of the best exponential fit.
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8.1 Data description

The data is obtained from the following loan process whose key steps are summarized as follows:

1. A customer fills out an online loan request consisting of the amount and term of loan desired,

the type of transaction (purchase a new car, purchase a used car, or refinance) as well as a

questionnaire with personal data required for credit evaluation.

2. The lender then analyzes the loan application and either directly rejects the application or

quotes a rate to the applicant.

3. The customer, upon receiving the offer, has 30 days to decide whether or not to accept the

offer.

There were many different alternative sources of automobile loans for customers with good credit

scores. Based on discussions with the lender, it is likely that the majority of customers who decline

an offered loan will end up borrowing from another lender. However, rates from competitors, as

well as the final (lender) choice of customers, in case there is such, are not, in general, publicly

available2 preventing the lender from being able to model the “full” choice of customers (among

all lenders). As a result, the approach we take models this as a choice between the lender’s own

offer and the “outside” world, i.e., we consider a response function with respect to the lender’s

offer. Note that this accounts indirectly for the competitive environment, and is appropriate as

long as the latter is reasonably stable. When prices of competition are observable and not stable,

then they could be directly included as explanatory variables in the estimation of price-response.

If competitive rates were likely to vary in response to changes in rates offered by this lender, then a

game-theoretic analysis might be required. However, the auto-lending market in the United States

is very dispersed, with no single lender enjoying a market share greater than 16%. Furthermore,

the lender examined in this study had a market share of less than 2% of the market and did not

feel that other lenders responded directly to changes in its rates.

The data set contains all instances of incoming customers who were offered a loan during a

period ranging from December 2003 to December 2004. For each such customer i, the following

information is available:

1) characteristics of the loan requested:

a) date of the request

b) amount requested (in dollars), denoted W1,i.

2The only on-line competitive rates available are those advertised by competitors, which are typically the rates

offered to the best credit quality customers (roughly, these are customers with FICO scores higher than 740). In this

study, we do not consider this customer segment.
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c) term requested (in months), denoted W2,i. This variable indicates the length of time over

which the loan is repaid.

d) loan type, denoted W3,i. This variable indicates whether the loan was used for a used car, a

new car or to refinance a car.

2) annual percentage rate: quoted to the customer, denoted Xi (this is a decision variable

determined by the firm).

3) decision of the customer:

a) accept/reject decision, denoted Yi ∈ {0, 1}, indicating whether the customer accepted (Yi =

1) or rejected (Yi = 0) the offer.

b) date of acceptance of the offer for customers who accepted the quoted rate.

4) customer characteristics:

a) the FICO score, denoted W4,i. FICO score is a widely used measure of credit quality. The

FICO score for a particular customer is computed through a proprietary algorithm using the

customer’s credit history and other factors to estimate the probability of default. The score

ranges from 300 to 850 with higher scores denoting lower default probabilities.

b) the state in which the customer lives, denoted W5,i.

8.2 The profit maximization problem

Let W be the vector summarizing the loan and customer characteristics. The firm would ideally

like to have a handle on the response function, λW (x), i.e., the probability of acceptance as a

function of the quoted rate x for a given loan/customer profile. If x0 denotes the cost of funds for

the auto-lender, the profit maximization problem can be approximated by

max
x≥x0

(x− x0 − risk factor)λW (x), (19)

where the risk factor might also depend on other characteristics of the loan and the customer. The

risk factor term was not available and we will not consider it for this illustration. However, it should

be apparent that a proper description of the risk factor, if available, can be easily incorporated.

Similarly, the exact value of the cost of funds x0 was not available and in what follows, we will take

x0 = 2% for illustrative purposes3.

Rather than solving (19) for every profile W , we will segment the space of profiles W along

various dimensions and and maximize the profits over each segment. Note that for each segment,

we are in the setup considered in the problem formulation. For the purposes of this study, we will

3Experiments with other values yileded similar results.
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only focus on loans for used cars and customers with FICO scores in the range 690 to 740; see the

discussion in §8.1 and footnote 1 for further explanation about why we do not focus the highest

FICO scores. Within that group of customers/loans, we segment customers with two possible FICO

score ranges ((690 − 715] and (715 − 740]) and four possible requested term values which will be

referred to as: term 1, term 2, term 3, term 4.

For each segment, the parametric family of models for the acceptance probability is assumed to

be the logit class4

ℓ(x; θ1, θ2) =
exp{θ1 + θ2x}

1 + exp{θ1 + θ2x}
, (20)

where θ1 and θ2 are parameters to be estimated from data.

8.3 Results

Price dispersion. An important prerequisite for the asymptotic theory outlined in previous

sections is encoded in Assumption 1 which requires some dispersion in the decision variable X as

seen in historical data. While we have not made an attempt to spell out a formal test for the

presence of sufficient dispersion, we illustrate below in Figure 4 that in the empirical application

under consideration one indeed observes significant variation in the decision variable (offered rate).

The performance of the logit. We present in Table 3 the results obtained when applying the

model- and performance-based tests to four of the segments described above over the period of six

months.5 Each segment is analyzed over the first and the second half of the year where data was

available. The four other segments either did not have an interior maximum in the region of rates

that were experimented with by the lender, or there was insufficient data. For the experiments,

250 bootstrap samples were used for both tests and the bandwidth h for the performance-based

test was set to hn = 2n−1/7/(log n)1/7.

We observe that at the α = 0.05 level, one rejects the logit model in four out of eight instances.

In contrast, the performance-based test rejects the logit model only in one of these cases. We also

observe that the model-based test rejects the logit model in all term 3 segments but not in the term

1 segments. This result is probably driven by the limited number of data points available in the

latter segments and does not imply that the logit is an appropriate global fit for those. Interestingly,

even in the presence of a high number of data points (term 3 segments), the performance-based

test rejects the logit in only one of those four instances.

To summarize, the simple logit model (20) appears to perform well enough for practical purposes

of revenue management in seven out of eight instances studied here; this was the case despite the

4Experiments were also conducted using the probit class and lead to similar results.
5While we did not have access to the re-estimation points that the lender was using, a period of six months

between parameter updates appears to be appropriate given the volume of incoming customers in the present case,

and is quite in line with industry practices.
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Figure 4: Price dispersion. Histograms of rates offered over the course of one year in four different

segments. (a) Segment with FICO scores in (690− 715] and term value 1; (b) Segment with FICO

scores in (690−715] and term value 3; (c) Segment with FICO scores in (715−740] and term value

1; (d) Segment with FICO scores in (715 − 740] and term value 3.

term 1 term 1 term 3 term 3

time period (1st half) (2nd half) (1st half) (2nd half)

FICO range 1 (690-715]

sample size n 323 269 1528 1552

parameter estimates (θ̂1, θ̂2) (6.91,−1.35) (2.79,−0.56) (1.92,−0.50) (0.64,−0.30)

model-based test p-value 10.8% 47.2% 0.4% 0.0%

performance-based test p-value 100% 93.5% 1.0% 45.9%

FICO range 2 (715-740]

sample size n 352 306 1141 1261

parameter estimates (θ̂1, θ̂2) (0.89,−0.30) (2.71,−0.58) (1.86,−0.51) (1.52,−0.46)

model-based test p-value 22.8% 54.4% 0.0% 3.2%

performance-based test p-value 16.8% 55.7% 66.9% 59.7%

Table 3: Empirical example. Comparison of the p-values for the model- and performance-based

tests for the Logit model (250 bootstrap samples). A p-value below 5% indicates that the Logit

model is rejected.
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fact that it does not provide a good global model fit, as evident in the model-based test results.

9. Additional Applications

A performance-based perspective on model testing is pertinent in a wide range of operations man-

agement problems. In this section we briefly outline how the approach developed in this paper can

be used to assess the validity of models in two additional settings: an inventory problem involving a

newsvendor model; and a capacity planning problem involving setting staffing levels in a telephone

call-center.

9.1 The newsvendor problem

Consider a “classical” repeated newsvendor problem where the decision maker orders a non-negative

quantity Xi in period i and faces demand Di, where the Di’s are independent and identically

distributed with cumulative distribution function F (·). The profit in period i is given by

π(Xi) = pE[min{Di, Xi}] + sE[(Xi −Di)
+] − cXi.

Here, c > 0 is the unit cost, p is the selling price and s is the salvage value of unsold items, and it

is assumed that p > c > s ≥ 0. Given F (·), it is straightforward to compute the optimal ordering

quantity, namely, the familiar fractile solution

x∗ = F−1
(p− c

p− s

)
.

Let π∗ := π(x∗) denote the optimal performance with knowledge of the true distribution function.

In practice the distribution F (·) is not known, and one only has access to historical order quan-

tities and associated profits. Let Yi = min{Xi, Di}, i ≥ 1. Historical data in this setting would

take the form Dn = {(Xi, Yi) : 1 ≤ i ≤ n}, or equivalently D′
n = {(Xi, Zi) : 1 ≤ i ≤ n}, where

Zi = pmin{Di, Xi} + s(Xi −Di)
+ − cXi.

When one postulates a family of models L(Θ) = {Φ(·; θ) : θ ∈ Θ} (where Θ is the space of

parameters) for the distribution F (·) and then estimates the corresponding parameters, the central

question is to assess the validity of the family L(Θ).

In this setting, the model-based approach would attempt to assess the validity of the conditional

distribution of Y given an ordering level x. In contrast, the approach developed in Section 5 would

focus on the performance of the decision induced by the postulated parametric family. Given

the historical data, it is possible, just as in the pricing setting, to construct a non-parametric

approximation π̂(·) to the true performance function π(·). If x̂n denotes the maximizer of π̂(·), the

test statistic would again be ∆n = π̂n(x̂n) − π̂n(x∗(θ̂)), where θ̂ denotes the ML estimator of θ,

and x∗(θ̂) denotes the optimal order quantity when facing demand with cumulative distribution
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function Φ(·; θ̂). A similar path to that taken in Section 6 can be followed to analyze the asymptotic

behavior of ∆n, and devise a decision rule to distinguish between the two hypotheses (8) and (9)

in the performance-based test.

9.2 A call center staffing problem

Consider a call center with a single class of customers, and one pool of agents (servers). Calls are

handled on a first-come first-serve basis and those who are not handled upon arrival are placed

in queue. Customers are impatient and hence may abandon from the queue while waiting. The

objective of the system manager is to determine the staffing level N to minimize the sum of staffing,

delay and abandonment costs in steady-state:

π(N) = wN + cdE[D] + caP(Abandon), (21)

where w is the wage rate, N is the number of agents, cd is a delay penalty and ca is an abandonment

penalty. Here, D denotes the steady-state delay. Let N∗ denote the optimal decision and π∗ the

optimal cost corresponding to an oracle that knows the distributions of the inter-arrival times, the

service times as well as the times to abandonment.

In practice, the system manager does not have access to these primitive distributions and would

attempt to infer them based on historical data Dn = {(ti, Si, Ni, D̃i, Ai}) : 1 ≤ i ≤ n}. Here ti is

the arrival time of customer i, Si the service time, Ni is the number of servers when customer i

arrives, D̃i is the actual time spent in the system by customer i before being served or abandoning,

and Ai is an indicator variable registering if customer i abandoned or not.

In order to devise a staffing plan, an approach often adopted in practice is to postulate an

Erlang A model (M/M/N + M), and estimate the arrival rate λ̂, average service time µ̂−1, and

average patience β̂−1, based on the available data. Then, based on the Markovian assumptions

underlying the Erlang A model together with these estimates, it is possible to compute E[D] and

P(Abandon) and optimize the objective (21). The question in this context is whether the postulated

M/M/N +M model is valid.

A natural model-based approach would be to test if the inter-arrival times, service times and

abandonment times are exponential (e.g., using some variant of a Kolmogorov-Smirnov test is the

spirit of the one discussed in Section 4). Roughly speaking, the model will then be declared valid if

all three distributions cannot be distinguished from exponential. It is apparent that this approach

is likely to be overly stringent. In fact, a recent empirical study by Brown et al. (2005) based on call

center data, found that service times have a distribution which is “closer” to a lognormal, not in line

with the prevalent exponential assumption. Interestingly, Mandelbaum and Zeltyn (2005) observe

that the performance predicted by the Erlang A formulae are fairly close to observed performance

despite the various sources of misspecification. This is consistent with the performance-based

approach advocated here.
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Referring back to Section 5, a similar test to the one proposed there can be developed to address

the problem at hand. First, one would construct a non-parametric estimate of the profit function

π̂n(·) using the historical observations and derive the optimal strategy staffing N̂n. This can be done

by estimating the fraction of abandoning customers P(abandon) and average delay as a function of

the staffing level. Second one would obtain the model-based estimate N∗(θ̂) based on the estimated

parameters θ̂ = (λ̂, µ̂, β̂) needed to calibrate the Erlang A model to the data Dn. Then one should

compare the performance of the decisions induced by the former and the latter. In other words,

compute again ∆n = π̂n(N̂n)− π̂n(N∗(θ̂)). The final task is to characterize the limiting distribution

of ∆n, properly centered and scaled, following a similar template to the one followed in Theorems

2 and 3.
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A. Algorithmic Description of the Proposed Testing Approach

Consider a family of demand models {ℓ(·; θ), θ ∈ Θ}, a price domain [x, x] and a set of observations

{Xi, Yi : i = 1, ..., n}.

Assessing the validity of a demand model

Step 1. Initialization

• Set the significance level that will be used for the test: α ∈ (0, 1). Let τα to be the (1−α)

quantile of χ2 (Chi-squared distribution with one degree of freedom).

• Set the bandwidth: h = chn
−1/7/(log n)1/7. (Some preliminary analysis may be needed to

select ch.6)

• Set the number of bootstrap samples b to be used for the estimation of γ.

• Define a uniform grid of N points v1, v2, ..., vN on the price domain [x, x].

Step 2. Parameter Estimation and Optimization

Compute the Maximum Likelihood estimate θ̂ based on the observations:

θ̂ = arg max
θ∈Θ

n∑

i=1

[
Yi log ℓ(Xi; θ) + (1 − Yi) log(1 − ℓ(Xi; θ))

]

Optimize the profit rate based on the assumed model:

x∗(θ̂) = arg max
x∈[x,x]

r(x)ℓ(x; θ̂)

Step 3. Computing and Optimizing a non-parametric approximation to the profit

function

For j = 1, ..., N , compute

π̂n(vj) :=

1
nh

∑n
i=1K

(
vj−Xi

h

)
Zi

1
nh

∑n
i=1K

(
vj−Xi

h

) ,

End

Set

x̂n = arg max{π̂n(x) : x = v1, ..., vN}
6see, e.g., Härdle (1990, Chapter 5)
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Step 4. Computing the test statistic

∆n = π̂n(x̂n) − π̂n(x∗(θ̂)).

Step 5. Estimating γ:

1) For j = 1, ..., b, randomly draw n vectors with replacements from {(Xi, Yi) : 1 ≤ i ≤ n}.
Let D(j)

n = {(X(j)
i , Y

(j)
i ) : 1 ≤ i ≤ n} denote the resulting draw, and let π̂

(j)
n (·) denote the

kernel based estimator of the profit function based on the dataset D(j)
n .

2) Let x̂
(j)
n ∈ arg max{π̂(j)

n (x) : x = v1, ..., vN} and

∆(j)
n = π̂(j)

n (x̂(j)
n ) − π̂(j)

n (x̂n).

3) Compute the bootstrap-based estimate:

γ̂b
n =

1

b

b∑

j=1

nh3
n∆

(j)
n .

Step 6. Assessing the validity of the demand model

If nh3
n∆n/γ̂

b
n > τα

Reject the null hypothesis H0

[the postulated model is not valid]

Else

Do not reject the null hypothesis H0

[the postulated model cannot be rejected]

End

B. Proof of the Main Result

Proof of Theorem 2. The proof is organized as follows. We first decompose∆n into two terms, An

and Bn, separating the misspecification source of error. We then analyze the asymptotic behavior

of each of those terms under both H0 and H1 in Lemmas 1 and 3, respectively.

We decompose ∆n as follows

∆n = An +Bn,
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where

An = π̂n(x̂n) − π̂n(x∗)

Bn = π̂n(x∗) − π̂n(x∗(θ̂))

Next, we analyze each term An and Bn separately under the null and the alternative hypotheses.

Lemma 1 Let Assumptions 1, 3 and 4 hold. Suppose that nh6
n → ∞ and nh7

n → 0, then

nh3
nAn ⇒ γχ2,

where γ was defined in (14) and χ2 is a Chi-squared random variable with one degree of freedom.

Proof of Lemma 1. Noting that π̂(·) is differentiable, a Taylor expansion gives that for some

x1,n ∈ [min{x̂n, x
∗},max{x̂n, x

∗}]

An = −π̂′n(x̂n)(x∗ − x̂n) − 1

2
π̂′′n(x1,n)(x∗ − x̂n)2

= −1

2
π̂′′n(x1,n)(x∗ − x̂n)2 (B-1)

Now, by Ziegler (2002, Theorem 3.1), we have under the assumption that nh6
n → +∞ and that

nh7
n → 0

√
nh3

n(x∗ − x̂n) ⇒ N
(
0,

σ2(x∗)

(π′′(x∗))2g(x∗)

∫
(K ′(ψ))2dψ

)
, (B-2)

where N (0, s2) denotes a centered normal distribution with variance s2.

Let {xn} be any sequence of reals in X . We next establish that π̂′′n(xn) converges to π′′(x)

whenever |xn − x| converges to zero in probability.

|π̂′′n(xn) − π′′(x)| ≤ |π̂′′n(xn) − π′′(xn)| + |π′′(xn) − π′′(x)|
≤ sup

x≤r≤x
|π̂′′n(r) − π′′(r)| + |π′′(xn) − π′′(x)|

The second term on the right-hand-side converges to zero in probability by continuity of π′′(·).
The first term on the right-hand-side also converges to zero under the current assumption that

nh6
n → ∞ (see Ziegler (2002, Theorem 1.5)).

Now note that the sequence x1,n converges in probability to x∗ (since x̂n converges in probability

to x∗ by (B-2) and |x1,n − x∗| ≤ |x̂n − x∗|) . Applying the result above, we have that π̂′′n(x1,n)

converges to π′′(x∗) in probability. Noting that (B-1) implies that

nh3
nAn = −1

2
π̂′′n(x1,n)

[√
nh3

n(x̂n − x∗)
]2
,

Slutsky’s theorem and the continuous mapping theorem, in conjunction with (B-2), imply that

nh3
nAn ⇒

(
− 1

2π′′(x∗)

σ2(x∗)

g(x∗)

∫
(K ′(ψ))2dψ

)
χ2

1
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We now turn to analyze the second contribution to ∆n, Bn. We start with a result on the

estimate θ̂.

Lemma 2 Let Assumptions 1, 3 and 4 hold. Then

√
n(θ̂ − θ∗) ⇒ N (0, Σ2

θ∗) as n→ ∞, (B-3)

for some positive definite matrix Σ2
θ∗.

Proof of Lemma 2. Note that the conditions spelled out in Assumption 4 ensure asymptotic

normality of the ML estimator by White (1982, Theorem 3.2).

We now characterize the asymptotic behavior of Bn under the null and alternative hypotheses.

Lemma 3 Let Assumptions 1, 3 and 4 hold. Suppose that nh6
n → ∞ and nh7

n → 0, then

i.) Under H0 nh3
nBn ⇒ 0 as n→ ∞.

ii.) Under H1 nh3
nBn ⇒ ∞ as n→ ∞.

Proof of Lemma 3. To prove the result, we decompose Bn into two terms. We have Bn = Cn+Dn,

where

Cn = π̂n(x∗) − π̂n(x∗(θ∗))

Dn = π̂n(x∗(θ∗)) − π̂n(x∗(θ̂))

Analysis under H0: By a Taylor expansion, we have

−Dn = π̂′n(x∗(θ∗))
(
x∗(θ̂) − x∗(θ∗)

)
+

1

2
π̂′′n(x1,n)

(
x∗(θ∗) − x∗(θ̂)

)2
, (B-4)

for some x1,n ∈ [min{x∗(θ∗), x∗(θ̂)},max{x∗(θ∗), x∗(θ̂)}].
We next establish that x∗(·) is Lipschitz continuous. Let C2 = max{|∂2p(x∗(θ); θ)/∂θi∂x| : i =

1, .., d, θ ∈ Θ} and C3 = min{|∂p(x∗(θ); θ)/∂2x| : i = 1, .., d, θ ∈ Θ}. Note that C2 and C3 are

well defined as the maximum and minimum of continuous functions over compact sets. In addition,

note that by Assumption 3 ii.) that C3 > 0. The fact that x∗(θ) is an interior maximizer implies

that it satisfies

∂p(x∗(θ); θ)

∂x
= 0.

In addition, the fact that ∂2p(x∗(θ);θ)
∂2x

< 0 (Assumption 3 ii.)) implies that the equation above has a

unique solution in the neighborhood of x∗(θ). Applying the implicit function theorem yields that

x∗(θ) is differentiable and

∂x∗(θ)

∂θi
= −∂

2p(x∗(θ); θ)/∂θi∂x

∂2p(x∗(θ); θ)/∂2x
.
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We then have that
∣∣∂x∗(θ)/∂θi

∣∣ ≤ C2/C3 and x∗(θ) is Lipschitz continuous with constant C2/C3.

Under H0, x
∗(θ∗) = x∗ and hence π′(x∗(θ∗)) = 0. Coming back to (B-4), it follows that

nh3
nDn = −nh3

nπ̂
′
n(x∗(θ∗))

(
x∗(θ̂) − x∗(θ∗)

)
− nh3

n

1

2
π̂′′n(x1,n)

(
x∗(θ∗) − x∗(θ̂)

)2

= −h1/2
n

√
nh3

n

(
π̂′n(x∗(θ∗)) − π′(x∗(θ∗))

)
hn

√
n
(
x∗(θ̂) − x∗(θ∗)

)

−1

2
π̂′′n(x1,n)nh3

n

(
x∗(θ∗) − x∗(θ̂)

)2
. (B-5)

Focusing on the second term on the right-hand-side above, one can establish as in Lemma 1 that

π̂′′n(x1,n) converges to π̂′′n(x∗(θ∗)). We also have that nh3
n

(
x∗(θ∗) − x∗(θ̂)

)2 ≤ h3
n(C2/C3)

2[
√
n(θ̂ −

θ∗)]2 and the right hand side converges to zero in probability by (B-3) and the fact that hn → 0.

Turning to the first term on the right-and-side in (B-5), we have that h
1/2
n

√
nh3

n(π̂′n(x∗(θ∗)) −
π′(x∗(θ∗))) converges to zero under the assumption that nh7

n → 0 (see Pagan and Ullah (1999,

Theorem 4.3)). On another hand, hn
√
n
(
x∗(θ∗) − x∗(θ̂)

)
≤ hn(C2/C3)

√
n(θ̂ − θ∗) and again the

right hand side converges to zero in probability by (B-3) and the fact that hn → 0. We deduce that

nh3
nDn ⇒ 0 (B-6)

Under H0, x
∗(θ∗) = x∗, which implies that Cn = 0 and hence i.) follows.

Analysis under H1: We now analyze Dn and Cn under H1. Under H1, it is clear that Dn

converges to zero in probability from (B-4), the continuity of x∗(θ) and (B-3). On another hand,

we have

Cn = π̂n(x∗) − π̂n(x∗(θ∗)) = π̂n(x∗) − π(x∗) + π(x∗) − π(x∗(θ∗)) + π(x∗(θ∗)) − π̂n(x∗(θ∗)),

Both terms π̂n(x∗) − π(x∗) and π(x∗(θ∗)) + π(x∗(θ∗)) − π̂n(x∗(θ∗)) converge to zero by the consis-

tency of the non-parametric estimator. We deduce that Cn converges to π(x∗) − π(x∗(θ∗)) > 0 in

probability. Hence Bn converges to π(x∗) − π(x∗(θ∗)) and nh3
nBn ⇒ ∞ since nh3

n → ∞. ii) is now

established and the proof of Lemma 3 is complete.

Combining the results of Lemmas 1 and 3, the result of the theorem follows by an application

of Slutsky’s theorem. This completes the proof.

Proof of Theorem 3. If one establishes that γ̂n converges to γ in probability, then result will

follow from Theorem 2 and an application of Slutsky’s theorem. Next, we show that γ̂n converges

to γ in probability by analyzing separately every term in the definition of γ̂n provided in (16).

Recalling (B-2) and the argument that followed in the proof of Lemma 1, it has already been

established that x̂n converges in probability to x∗ and that π̂′′n(x̂n) converges in probability to

π′′(x∗).

We now proceed with a similar argument to establish that ĝn(x̂n) converges in probability to
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g(x∗).

|ĝn(x̂n) − g(x∗)| ≤ |ĝn(x̂n) − g(x̂n)| + |g(x̂n) − g(x∗)|
≤ sup

x≤r≤x
|ĝn(r) − g(r)| + |g(x̂n) − g(x∗)|

The second term on the right-hand-side above converges to zero in probability by continuity of g(·).
The first term on the right-hand-side above also converges to zero under the current assumption

that nh2
n → ∞ (see Pagan and Ullah (1999, Theorem 2.8)). We conclude that ĝn(x̂n) converges in

probability to g(x∗).

We are left with the analysis of σ̂2(x̂n), which was defined in (15). Note that σ(·) is continuous

on [x, x]. A similar argument as the one just developed for gn(x̂n) in conjunction with Pagan and

Ullah (1999, Theorem 3.4) yields that σ̂2(x̂n) converges in probability to σ2(x∗).

Now, an application of Slutsky’s theorem yields that

γ̂n → γ in probability as n→ ∞.

This concludes the proof.

C. Additional Numerical Results

This appendix complements section 7. In particular, we investigate the quality of the approximation

of (nh3
n/γ̂)∆n by a χ2 distribution under the null hypothesis, as well as the impact of the estimation

technique used to approximate the constant γ. The setting considered is following that of Section

7 and we take throughout hn = 2n−1/7/(log n)1/7. In the experiment, we compute the empirical

distributions of (nh3
n/γ̂)∆n and of the p-value associated with the test by replicating the sampling

and estimation procedures 500 times.

In Figures 5 and 6, we analyze the quantiles of the empirical distribution (nh3
n/γ̂)∆n against

the quantiles of a χ2 distribution. Figure 5 corresponds to a logit model with (θ1 = 3, θ2 = −.9)

while Figure 6 corresponds to a logit model with (θ1 = 4.5, θ2 = −.9). The top plot in each figure

is associated with the basic “plug-in” estimation procedure provided in (16) while in the bottom

plot, γ is estimated using the bootstrapping procedure given in (18).

We observe that when one estimates γ through (16) (Figure 5(a) and Figure 6(a)), the Q-Q plots

are not fully aligned with the 45-degree line, which might be due to potential slow convergence

associated with the plug-in estimates used in the estimation of γ. We note that the Q-Q plots are

much closer to the 45-degree line when using the bootstrapping procedure for estimating γ (16)

(Figure 5(b) and Figure 6(b)). This illustrates that the bootstrapping procedure is in general more

reliable, in line with what was observed in Table 1.
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Figure 5: Q-Q plots and quality of the approximation. 20-Quantiles of the empricial distri-

bution of nh3
n∆n/γ̂ against 20-Quantiles of the limiting distribution (χ2). Squares (�) correspond

to a data size n = 500 and stars (∗) correspond to a data size n = 103. Data is generated according

to a logit demand model with parameters (3,−0.9) and the fitted model is logit. In (a) the con-

stant γ is estimated directly through (16); and in (b) the constant γ is estimated via bootstrapping

through (18) (with 250 bootstraps).
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Figure 6: Q-Q plots and quality of the approximation. 20-Quantiles of the empricial distri-

bution of nh3
n∆n/γ̂ against 20-Quantiles of the limiting distribution (χ2). Squares (�) correspond

to a data size n = 500 and stars (∗) correspond to a data size n = 103. Data is generated according

to a logit demand model with parameters (4.5,−0.9) and the fitted model is logit. In (a) the con-

stant γ is estimated directly through (16); and in (b) the constant γ is estimated via bootstrapping

through (18) (with 250 bootstraps).
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