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What Can Be Learned from Classical Inventory Models? A Cross-
Industry Exploratory Investigation

Abstract
Classical inventory models offer a variety of insights into the optimal way to manage inventories of individual
products. However, top managers and industry analysts are often concerned with the aggregate macroscopic
view of a firm's inventory rather than with the inventories of individual products. Given that classical inventory
models often do not account for many practical considerations that a company's management faces (e.g.,
competition, industry dynamics, business cycles, the financial state of the company and of the economy, etc.)
and that they are derived at the product level and not the firm level, can insights from these models be used to
explain the inventory dynamics of entire companies? This exploratory study aims to address this issue using
empirical data.

We analyze absolute and relative inventories using a quarterly data panel that contains 722 public U.S.
companies for the period 1992–2002. We have chosen companies that are not widely diversified and whose
business in large part relies on inventory management to concentrate on empirically testing hypotheses
derived from a variety of classical inventory models (economic order quantity (EOQ), [Q, r], newsvendor,
periodic review, etc.). We find empirical evidence that firms operating with more uncertain demand, longer
lead times, and higher gross margins have larger inventories. Furthermore, larger companies appear to benefit
from economies of scale and therefore have relatively less inventory than smaller companies. We obtain mixed
evidence on the relationship between inventory levels and inventory holding costs. We also analyze the
breakdown of data into eight segments—oil and gas, electronics, wholesale, retail, machinery, hardware, food,
and chemicals—and find that, with a few notable exceptions, our hypotheses are supported within the
segments as well. Overall, our results demonstrate that many of the predictions from classical inventory
models extend beyond individual products to the aggregate firm level; hence, these models can help with
high-level strategic choices in addition to tactical decisions.
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Abstract: Classical inventory models offer a variety of insights into the optimal way to manage 

inventories of individual products. However, top managers and industry analysts are often concerned 
with the aggregate macroscopic view of a firm’s inventory rather than with the inventories of individual 
products.  Given that classical inventory models often do not account for many practical considerations 
that a company’s management faces (e.g., competition, industry dynamics, business cycles, the financial 
state of the company and of the economy, etc.) and that they are derived at the product and not at the 
firm level, can insights from these models be used to explain the inventory dynamics of entire 
companies?  This exploratory study aims to address this issue using empirical data. 

We analyze absolute and relative inventories using a quarterly data panel that contains 722 
public US companies for the period 1992 to 2002. We have chosen companies that are not widely 
diversified and whose business in large part relies on inventory management in order to concentrate on 
empirically testing hypotheses derived from a variety of classical inventory models (EOQ, (Q,r), 
newsvendor, periodic review, etc.). We find empirical evidence that firms operating with more uncertain 
demand, longer lead times and higher gross margins have higher inventory levels.  Furthermore, larger 
companies appear to benefit from economies of scale and therefore have relatively less inventory than 
smaller companies. We obtain mixed evidence on the relationship between inventory levels and 
inventory holding costs.  We also analyze the breakdown of data into eight segments—oil and gas, 
electronics, wholesale, retail, machinery, hardware, food and chemicals—and find that, with a few 
notable exceptions, our hypotheses are supported within the segments as well.  Overall, our results 
demonstrate that many of the predictions from classical inventory models extend beyond individual 
products to the more aggregate firm level; hence, these models can help with high-level strategic choices 
in addition to tactical decisions.  

                                                 
1 The authors gratefully acknowledge financial support from the Fishman-Davidson Center for Service and Operations 
Management.  We are indebted to Vishal Gaur, Lorin Hitt, Taylor Randall, Justin Ren, Christian Terwiesch and Anita 
Tucker, who provided detailed and thoughtful comments on the previous version of this paper.  Helpful comments from the 
special issue editor Aleda Roth, senior editor and two referees are gratefully acknowledged. 
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1. Introduction 

Inventory management theory is mostly concerned with finding the optimal way to manage 

inventories given exogenous and usually static business environments. As a result, most of the classical 

inventory models are normative in nature, since they prescribe how rational agents must behave.  

Modeling and analysis typically occur at the microscopic level of a representative product or group of 

products, so that the entire firm is analogous to a “black box” and the analysis is conducted “inside the 

black box.” The potential flaw of the inside-the-black-box approach is that simplified assumptions made 

by the modeler may not reflect business realities because they may not (and typically do not) account for 

competition, business cycles, industry trends, a company’s financial distress, etc.  Additionally, most of 

the models are derived for specific product(s)/echelon(s) and ignore the complexity of supply chains 

encountered in practice.  Hence, it is not clear if high-level managers and industry analysts can benefit 

from understanding classical inventory models (which are typically taught to MBA students), because 

their concern is aggregate inventory behavior at the firm level, which can be dominated by effects other 

than those accounted for in inventory models. 

The field of macroeconomics takes an entirely different view: it looks at firms from “outside the 

black box” by analyzing the surrounding environment and studying the aggregate behavior of the 

economy/industry. The goal is to analyze the partial or general equilibrium in an industry or in the 

economy and to link various macroeconomic indicators by looking at the joint dynamics of their time 

series.  However, without looking inside the black box the macroeconomic approach is less useful in 

describing drivers of individual firms’ inventory behavior.  For example, the macroeconomic approach 

cannot predict the relationship between lead times and inventories, whereas classical inventory models 

do offer the necessary intuition. 

Our goal in this paper is to analyze whether the insights from inside-the-black-box analytical 

models developed by operations researchers are consistent with outside-the-black-box macroeconomic 

data.  While classical inventory models are successfully applied in practice at the tactical level, the 

strategic decisions of high-level managers are often segregated from the tactical and data-driven 

operational decisions at the product and plant levels.  By exploring the link between macroeconomic 

data and classical inventory models, we contribute to the operations literature by demonstrating 

empirically that many insights from classical inventory models continue to hold at the company level, 

and therefore understanding these models can aid in the managerial decision-making process.   
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We begin by describing our research methodology and by pointing out two crucial aspects of 

firm-level empirical inventory analysis: the issue of time and space aggregation and the difference 

between the prescriptive nature of underlying inventory models (“how much to order?”) and the 

descriptive nature of observed parameters in practice (“what is the inventory level for a firm?”). We then 

formulate six hypotheses postulating monotone relationships between aggregate inventory levels and 

environmental variables such as mean demand and demand uncertainty, lead times, margins, inventory 

holding costs and the extent of economies of scale.  All these hypotheses are formulated using well-

known results from classical inventory models such as EOQ (Economic Order Quantity), newsvendor, 

(Q,r), periodic review and other models.  We use quarterly data containing 44 time points for each of 

722 companies from 1992 to 2002, representing about 30% of US manufacturing and retailing 

inventories.  We find that our data is consistent with predictions from these models that higher inventory 

levels are associated with higher demand uncertainty, longer lead times, higher margins and lower 

economies of scale.  We also find mixed evidence on the relationship between inventory levels and 

inventory holding costs.  In addition to the aggregate analysis, we test our hypotheses across eight 

segments of the economy.  We find that most of the hypotheses are robustly supported in split 

regressions as well, although there are a few notable exceptions. 

Our second contribution is to quantify the association between the environmental variables and 

inventories at the firm level.  Namely, we estimate the elasticity of inventory levels to changes in mean 

demand, demand uncertainty, earnings uncertainty, lead times, margins, inventory holding costs, and 

several other control variables.  Hence, we evaluate empirically the magnitude of the comparative statics 

that are often conducted in the inventory management literature.  We find that, for the absolute inventory 

model, COGS, demand uncertainty, margins, lead times and the time trend explain approximately 70%, 

7%, 5%, 2% and 1% of variance in inventories, respectively.  Whereas classical inventory models only 

quantify the impact of environmental variables in a stylized setting that abstracts away many real-world 

effects, our analysis estimates the impact of these variables upon inventory across segments, as likely to 

be observed by management in practice.  Our results can be used by management to budget inventory 

requirements by, for example, taking into account the relationship between scale economies and 

inventory.  Although our study is exploratory in nature, it offers several fruitful directions for future 

research that might shed additional light on the behavior of inventories and the predictive power of 

classical inventory models at the firm level. 

The rest of the paper is organized as follows. In Section 2 we review the literature on related 

research in operations management and economics. In Section 3 we formulate hypotheses to be tested, 
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and in Section 4 we describe data. In Section 5 we define the variables of the regressions, and in Section 

6 we specify the econometric model.  Results are presented in Section 7, and Section 8 concludes the 

paper with a discussion of results, limitations and directions for future research. 

2. Literature review 

Inventory modeling has been an area of intense inquiry in operations management and operations 

research.  Starting from a simple deterministic Economic Order Quantity (EOQ) model dating from over 

a century ago, the field of operations management has developed much more advanced inventory 

models that incorporate stochastic and correlated demands, multiple products and multiple echelons of 

inventory. Some widely used inventory models are described in Silver et al. (1998), Zipkin (2000), 

Porteus (2002) and Cachon and Terwiesch (2005). 

In an anniversary article, Wagner (2002) underscores the issues of aggregation and data 

availability.  He points out that product-level theoretical modeling historically dominated the field of 

operations research, whereas industry-level data modeling was widely used in economics.  As a result, 

there are few if any implementable solutions at the product level and especially at the firm level of 

aggregation.  He also suggests that the field of inventory management started getting more attention 

when more product-level and firm-level data became available at the SKU level and when effects that 

are very often beyond the scope of classical inventory models became obvious (e.g., skewness and 

discontinuity of demand, promotions, competition, etc.).  Wagner suggests that the pure operations 

research model “is blind to data issues” and that “the objective should be stocking and replenishing logic 

that is driven by such data.” 

At the same time, only a few papers in operations management analyze inventories empirically 

and try to reconcile the inventory behavior observed in practice with the behavior predicted by the 

models.  Rajagopalan and Malhotra (2001) study trends in inventory levels at US firms over time to test 

the widely held belief that inventory management has improved due to the introduction of just-in-time 

(JIT) practices and IT system implementations.  Using a large sample of firms from the US Census 

Bureau including both private and public companies, they find that material and work-in-process 

inventories decreased in the majority of the two-digit SIC industries from 1961 to 1994.  Furthermore, in 

some segments there were greater improvements after the 1980s, when JIT practices were adopted. 

Rajagopalan and Malhotra (2001) also find that inventories of finished goods decreased in only a few 

industry segments. Chen et al. (2005a, 2005b) analyze inventory trends for US public companies in the 

manufacturing and retailing sectors.  They find that between 1981 and 2001 median manufacturing 
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inventory levels declined from 96 days to 81 days, with an average rate of reduction of 2% per year.  In 

the retail and wholesale segment, the median inventory levels decreased from 72 days to 52 days.  

Moreover, Chen et al. (2005a, 2005b) show that public companies with abnormally high inventory 

levels have experienced abnormally low levels of financial returns, but on average lower inventory 

levels are not associated with higher financial returns.  Lai (2006) reports evidence that, when the 

market discounts high inventory firms, firms decrease inventory, and vice versa. 

Gaur et al. (2005) examine firm-level inventory behavior in retailing companies. They propose a 

model explaining differences in inventory turns across companies and create an adjusted measure of 

inventory turns that is better suited to gauging the operational metrics of retailers.  Gaur et al. (2005) 

also find that inventory turnover for retailing firms is positively correlated with capital intensity and 

sales surprise and, similar to our result, is negatively correlated with gross margins.  Gaur et al. (1999) 

demonstrate that the financial excellence of retailing companies comes from various operational 

strategies that may involve low or high product margins and low or high inventory turns in different 

retailing segments.  Although all of these studies deal with aggregate companies’ inventories, they 

pursue different goals and, with the exception of one hypothesis in Gaur et al. (2005), do not test the 

implications stemming from classical inventory models. 

Several studies analyze inventories in the automotive industry.  Fisher and Ittner (1999) study the 

impact of product variety on automotive assembly plant operations and find that increased option 

content variability in car assembly has an adverse effect on plants’ operational performance, which is 

manifested in higher total labor hours, overhead hours, downtime hours, rework and inventory levels. 

Lieberman and Asaba (1997) and Lieberman and Demeester (1999) study inventory management and 

JIT practices in the Japanese auto industry and compare these to the US automotive segment. They find 

that Japanese companies are leaner and that the introduction of JIT systems in US companies has helped 

them to become leaner as well.  Lieberman et al. (1999) study the dynamics of inventory levels for 

automotive suppliers in North America. They use a combined survey and secondary plant-level data to 

show that inventory levels are affected both by technological and managerial factors in a manner 

consistent with classical inventory theory. Namely, they show that inventory levels at selected plants are 

increasing with setup costs, per unit item costs, and production lead times and that inventories are lower 

for plants in which the workforce engages in making process improvements. Surprisingly, the plants of 

Japanese companies in North America hold no less inventory than the plants of American companies. 

This study is, perhaps, the closest to ours in that some of the hypotheses tested follow directly from 

classical inventory models.  We, however, study a more diverse set of companies that belong to eight 
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different industrial segments and test several relationships not investigated in Lieberman et al. (1999).  

We also extend our analysis to quantifying the elasticities of inventory as a decision variable with 

respect to other operating variables and find differences across segments that can be used to aid in 

managerial decision-making. 

Several other papers do not study inventories directly but focus on issues related to supply chain 

management and are therefore relevant to our work.  Hendricks and Singhal (2005) show that supply 

chain disruptions are very costly to public companies, since they cause a substantial loss in market 

value.  Randall and Ulrich (2001) investigate the relationships among product variety, supply chain 

structure and firm performance. They show that matching the supply chain structure to the type of 

product variety results in the higher financial performance of companies in the American bicycle 

industry.  Randall et al. (2006) find that Internet retailers selecting supply chain structures in accordance 

with classical inventory models are less likely to go bankrupt.  Cachon et al. (2004) find evidence that 

demand variability is often higher in the lower echelons of the supply chain than in the higher echelons, 

which is contrary to predictions based on the widely cited bullwhip effect. 

The last related stream of operations literature attempts to estimate empirically the parameters 

that companies use to make decisions using the classical newsvendor inventory model.  Cohen et al. 

(2003) use data on demand forecasting, actual orders, production lead times, and delivery dates for a 

semiconductor supply chain to show that the supplier perceives the cost of order cancellation to be about 

two times higher and the holding cost to be about three times higher than the delay cost.  Olivares et al. 

(2004) show how to estimate overage and underage costs using data for operating room capacity 

reservations at hospitals. In our paper we do not attempt to estimate the parameters used by managers in 

practice, for we believe that the aggregate company data with which we are working is too crude for 

these purposes. 

Finally, inventory has long been a focus of research in the field of macroeconomics, mostly from 

the viewpoint of aggregate economy dynamics.  Kahn (1987, 1992), Kahn and Bils (2000) and Blinder 

and Maccini (1991) indicate that inventory investments (changes in inventory levels) have been the main 

source for US GDP fluctuations and hence understanding inventories would help us to understand the 

behavior of the economy in general.  Amihud and Mendelson (1989) examine the empirical relation 

between the market power expressed either by the market share or by Lerner’s index and demonstrate 

that both are positively related to mean inventory levels and their volatility.  Reassuringly, this finding is 

consistent with predictions from economic models. (We refer to economic models here, because 

classical inventory models ignore competition.) 
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Blinder and Maccini (1991) provide a detailed summary of inventory research in economics, 

which dried out somewhat in the late 1980s.  As Ramey and West (1999) summarize, economists have 

proposed stock-adjustment, production-smoothing, and other models to link inventory with production, 

sales and GDP to explain two main stylized facts about inventory behavior, namely (i) the procyclical 

nature of aggregate economy-level inventory dynamics and (ii) the persistence in the relationship 

between sales, production and inventory in the form of production smoothing (i.e., lower variability of 

production than variability of sales and the stabilizing role of inventory).  To date, little evidence 

consistent with these models has been found.  Instead, data seem to indicate that (i) based on the de-

seasonalized data, in the US production has been more volatile than sales (see Kahn 1992), which 

contradicts the linear-quadratic stock-adjustment model in Ramey and West (1999) and (ii) the imputed 

speed of inventory adjustments based on linear-quadratic models is unrealistically low (see Blinder 1986 

and Blinder and Maccini 1991). Moreover, there is some evidence that the (S,s) inventory model 

(introduced in Arrow et al. 1951 and extended in numerous operations research papers) may better 

explain inventory behavior (see Blinder and Maccini 1991).  

Caplin (1985) demonstrates that the (S,s) model, even after aggregation over multiple firms, 

captures the fact that production is more volatile than sales in the U.S. retail industry.  Mosser (1991) 

finds empirical support for the (S,s) model by showing that industry-level sales and inventory data 

support the (S,s) model and not the linear-quadratic model.  Both Caplin (1985) and Mosser (1991) 

make important contributions by addressing the data aggregation issue.  In most economics papers the 

analysis is done at the industry level using the linear-quadratic model, with few attempts to disaggregate 

this approach to the firm-level data.  On the contrary, most of the classical inventory models are derived 

at the product level and therefore there is a challenge in product-to-firm aggregation, the issue that 

Caplin (1985) partially addresses. 

Finally, several studies consider the relationship between product variety and other variables.  

We do not account for product variety in our work but, since its impact is potentially important, it is 

useful to understand the effects that omitting product variety may impose on our results.  Extant theory 

postulates that larger product variety allows firms to increase sales and profit margins but results in 

larger inventory and production costs.  Empirical evidence related to product variety is mixed and 

limited due to the difficulties inherent in measuring product variety.  Kekre and Srinivasan (1990) find 

that larger product variety is associated with a larger sales/market share and do not find any evidence 

that larger product variety translates into higher costs.  Bayus and Putsis (1999), on the other hand, find 

that the costs (including inventory and production costs) of wider product lines outweigh any benefits.  
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Cachon et al. (2005) find that product variety is associated with greater finished goods inventory and 

increased sales but not with higher profit margins. 

3. Formulation of research hypotheses 

Firms hold inventories for at least one of the following reasons: production typically does not 

occur at the same time and place as demand (in other words, there are procurement lead times); 

production capacity might be rigid but demand is typically variable; there are economies of scale in 

handling inventories; or there is non-stationarity (seasonality, stochasticity) in demand and/or supply.  In 

this paper we touch upon each of these reasons to hold inventories, although our analysis is limited by 

data availability, so we might be unable to account for all drivers of inventories that exist in practice. 

To be able to use classical inventory models to guide our analysis of inventories at the firm level, 

we need to address at least two major methodological challenges.  First, we need to understand what 

insights from classical inventory models, if any, might continue to hold after aggregating data across 

time and space (e.g., multiple products/echelons).  We need to address this issue, because classical 

inventory models are typically formulated at the single-product level, although there are multi-product 

extensions.  We argue that many structural properties of inventory models will not survive aggregation, 

because there is no way to identify statistically product-specific lead times and cost and revenue 

parameters as well as demand parameters unless we make an unrealistic assumption that products are 

perfectly homogenous (in the space of the model parameters) and that the inventory control system is 

synchronized across products.  

On the other hand, we argue that monotone (or comparative statics) properties of inventory 

models will survive aggregation across time (from daily inventory decisions to quarterly data) and space 

(from the product to the firm-level).  For example, if we believe that the inventory of every product 

decreases in inventory holding costs, then the same will be true for a firm’s inventory that combines 

millions of products.  Thus, we hope to see those monotone properties in the aggregate data despite all 

the noise of aggregating across product lines that are managed differently.  Conceptually, this argument 

is similar to that of Caplin (1985), who demonstrates that a particular property of the (S,s) model (i.e., 

amplification of demand uncertainty) survives aggregation, as later confirmed empirically by Mosser 

(1991) using aggregate industry-level analysis. 

Inventory, unlike sales, is one of the few variables that are largely (but not completely) 

determined by internal decision makers.  Thus, the second methodological challenge is to understand the 

relationship between observations of operational variables (inventory, sales, etc.) over the course of a 
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firm’s operations and the decision-making process within the firm.  Indeed, prescriptive inventory 

models typically provide us with the optimal inventory positions at the beginning of the replenishment 

cycle whereas firm-level data only allows us to observe inventories at the end of certain time periods 

(months, quarters, years), which do not necessarily coincide with either the beginning or the end of the 

inventory replenishment cycle.  However, we argue that we can use even these snapshots of aggregate 

inventories to analyze monotone properties derived from the classical inventory models, because these 

properties apply equally to the optimal inventory decisions as well as to observations of inventory 

positions at random points during the review period.  For example, longer lead times are associated with 

higher order-up-to levels in the periodic review model and hence with a higher inventory position 

throughout the review period.  Thus, it is methodologically feasible to measure stochastic time series 

realizations of various variables over discrete points of time and to relate them to each other.  Similar 

logic applies to many other empirical studies in the social sciences, such as those that observe stock 

price dynamics to judge investor expectations in finance. 

Throughout the paper we refer to our findings as associations and we do not try to test/impose 

causality, because it is hard to do so using only realizations (sample paths) of variables instead of the 

true population and the underlying data available for the decision-making process.  Our hypotheses rely 

on the assumption that firms behave rationally and make inventory decisions to maximize expected 

profit (or to minimize expected cost, as is the case in many classical inventory models).  Hence, firms’ 

behavior is manifested in the relationship among such operational variables as inventory, sales, margins, 

demand uncertainty, lead times and inventory holding costs, which should be consistent with classical 

inventory models.  Clearly, there are many variations of classical inventory models accounting for 

various phenomena observed in practice.  Understandably, some of our hypotheses may not be 

consistent with certain variations of these models.  Thus, when discussing results following from 

classical inventory models, we refer to the most traditional formulations.  For example, it is assumed 

throughout the paper that demand is stationary and independent across time periods in the periodic 

review models, etc.  We do, however, introduce control variables and proxies that account for behavioral 

aspects of inventory management and do not rely on classical inventory models. 

Our first hypothesis comes from the combination of the classical EOQ model and stochastic 

inventory models (see Silver et al. 1998) and relates absolute inventories and mean demand.  The EOQ 

model evaluates a trade-off between fixed ordering costs and inventory holding costs, resulting in the 

expression for the optimal order quantity (which is proportional to inventory) that exhibits a square-root 

dependence with respect to demand.  This simple inventory model has proven its reliability in a variety 
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of applications in part because it is very robust to parameter changes and in part because it has been 

adopted in environments with stochastic demand.  For example, Johnson and Montgomery (1974, p. 59) 

demonstrate that when demand is stochastic (stationary), inventory is reviewed continuously and the 

policy is to order the same batch Q when inventory drops below reorder point r, the dependence between 

inventory and mean demand is still governed by the square root formula (both under lost-sales and back-

ordering assumptions).  On the other hand, if inventory ordering costs are minimal (as in, e.g., the 

newsvendor or the order-up-to models in Cachon and Terwiesch 2005), the relationship between 

inventory and the optimal order quantity is linear.  When we aggregate over various products utilizing 

variants of models with and without ordering costs, we expect to see a concave relationship between 

expected demand and average inventory levels (i.e., somewhere between linear and square root 

functions). Therefore: 

H1: Inventory level is positively associated with mean demand through a concave function. 

Hypothesis 1 can be generalized somewhat.  Inventory management is typically subject to 

economies of scale because manufacturing and distribution tasks involve significant fixed costs. The 

EOQ model accounts for fixed inventory ordering costs and demonstrates that inventory is increasing 

more slowly than demand due to the fixed costs of placing replenishment orders.  Moreover, there are 

also statistical economies of scale in inventory management.  For example, in a stochastic environment 

(e.g., in the newsvendor model), higher mean demand typically corresponds to a higher standard 

deviation of demand.  However, if we increase both mean demand and standard deviation of demand 

while holding their ratio fixed, it is easy to verify that inventory will increase at a rate lower than mean 

demand.  Hence, a larger firm (a firm facing larger mean demand) should enjoy economies of scale in 

inventory management.  Eppen (1979) generalized this notion under the umbrella of risk pooling: a 

larger firm can pool together demand from many locations/stores/warehouses/products, resulting in less 

inventory in relative terms.  Hence, whether Hypothesis 1 holds or not, it should still be the case that 

larger companies are able to hold relatively less inventory. Thus: 

H2: Relative inventory level (i.e., the ratio of inventory to sales) is negatively associated with 

company size. 

Our third hypothesis postulates the relationship between inventory and demand uncertainty.  

Many classical inventory models lead to the well-known result that inventory levels increase with 

demand uncertainty, i.e., that firms buffer inventories against demand uncertainty.  The single-period 

newsvendor inventory model leads to this result when the cost of having too little inventory is lower 
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than the cost of having too much inventory, the situation encountered in the vast majority of practical 

situations.2  This result holds irrespective of problem parameters for the end-of-period inventory in 

periodic review inventory models (see Cachon and Terwiesch 2005, p. 259), multi-echelon inventory 

models and many others.  The underlying intuition for this result is that firms need more slack (in the 

form of spare inventory or safety stock) to be able to respond to large swings in demand.  Hence, in line 

with the extant inventory theory we hypothesize that: 

H3: Inventory level is positively associated with demand uncertainty. 

Similar to buffering inventory against demand uncertainty, companies should buffer inventory 

against longer lead times.  Longer lead times increase the intervals between product deliveries and hence 

require more inventory to satisfy demand while awaiting replenishment.  Several classical inventory 

models demonstrate this effect.  Cachon and Terwiesch (2005) discuss periodic review inventory models 

with deterministic lead times and demonstrate that the longer the lead time, the higher the inventory 

level.  Similarly, in models with stochastic lead times (see, e.g., Zipkin 2000) both the mean and 

variance of the lead time increase the amount of inventory the company needs to hold.  Lieberman et al. 

(1999) propose the same hypothesis.  In line with these results, we hypothesize that: 

H4: Inventory level is positively associated with procurement lead times. 

Most classical stochastic inventory models focus on the trade-off between underage costs (the 

cost of having too little inventory) and overage costs (the cost of having too much inventory).  This 

trade-off is best reflected in the solution to the newsvendor model postulating that the optimal order 

quantity is located at the fractile of demand distribution that is equal to the ratio of underage cost to the 

sum of underage and overage costs (Cachon and Terwiesch 2005).  Many of the more elaborate 

inventory models including periodic review (S,s), (Q,r) and multi-echelon models follow the same logic.  

Hence, all else being equal, larger underage costs lead to higher inventory levels in these models (see 

Silver et al. 1998).  In the newsvendor model the underage cost is typically taken as the product’s gross 

margin.  The same assumption is often made in multi-period models with lost sales.  Even in multi-

period models with full back-ordering the penalty for stocking out is likely to be correlated with the 

product’s margin (see Cachon and Terwiesch 2005): customers buying high-margin products are likely 

to be more sensitive to stock-outs.  Hence, we hypothesize that more inventory will be associated with 

                                                 
2 In the newsvendor model with symmetric demand distribution, the sufficient condition for this relationship is the critical 
ratio that is higher than 0.5.  
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higher product margins, because higher margins correspond to a higher cost of underage (see Gaur et al. 

2005 for a similar hypothesis with respect to inventory turnover). Thus: 

H5: Inventory level is positively associated with product margins.  

Our final hypothesis concerns inventory holding costs.  In the EOQ model the level of inventory 

is decreasing in the inventory holding cost parameter, an intuitive proposition, because the amount of 

inventory should be decreased as holding inventories becomes more expensive.  In stochastic multi-

period inventory models, the inventory holding cost appears as the cost of overage.  Hence, once again, 

the higher the cost of overage, the less inventory should be stocked.  Consistent with these observations, 

we hypothesize that: 

H6: Inventory level is negatively associated with inventory holding costs. 

4. Data description 

We use a representative sample of public US companies obtained from the COMPUSTAT 

financial database through Wharton Research Data Services. Public companies are obliged to provide 

operational and financial information following GAAP standards to ensure that investors have access to 

data regarding their performance dynamics. The choice of public companies restricts our findings from 

being representative of the whole US economy. However, due to the lack of reliable operational data for 

private companies, we focus on public companies alone.  

We use quarterly data containing 44 time points between 1992 and 2002 for every company in 

our sample.  The 1992 cutoff is somewhat arbitrary, but it allows us to analyze the most recent data that 

is less affected by such factors as price inflation and changing industry structure.  This time period also 

helps us to minimize panel attrition.  We utilize quarterly rather than annual data to account for seasonal 

inventory fluctuations within a given year (i.e., demand/inventory shifting across quarters), which has a 

major and statistically significant impact in many industries.  Moreover, quarterly data allows us to 

obtain more accurate estimates of demand uncertainty than annual data.  We use calendar quarters 

instead of fiscal quarters since companies have different fiscal periods (i.e., fiscal periods starting in 

different quarters, which leads to different codifying).  Using quarterly data we cannot obtain separate 

information on different inventory types (raw materials, work in process, finished goods), whereas this 

information is available in the annual data (see Rajagopalan and Malhotra 2001).  However, we do not 

perceive this issue to be significant, because our goal is to study inventories at the aggregate company 

level, and our hypotheses would not differ by inventory types.  Although more frequent (say, monthly or 
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weekly) data may seem a good alternative to quarterly data, the monthly survey data provided by the US 

Census are insufficient for our analysis, since they do not track revenues and costs. 

Working with a panel of data allows us to be certain that the statistical relations we obtain are 

neither applicable at only a single point of time (the cross-sectional aspect of analysis) nor driven by a 

single company (the time series aspect of analysis). We use pooled and segment-specific estimations to 

test whether our hypotheses hold within certain segments, and we ensure that possible biases are reduced 

through proper panel data estimation. 

The sample itself was selected as follows. We excluded service, construction and transportation 

industries and focused only on inventory-rich economy segments: minerals and mining (SIC codes 

1000-1499), manufacturing (SIC codes 2000-3999) and wholesale and retail segments (SIC codes 5000-

5999).  First, we decided to focus on eight industry segments (oil and gas, wholesale, retail, consumer 

electronics, food, chemicals, hardware, and machinery) in which the importance of inventory is 

particularly obvious.  We then selected at random several two-digit SIC codes within these eight 

segments of the economy.  From those SIC codes we further selected all companies that were active in 

the period between 1992 and 2002 and have not merged and have not been acquired.  Next, we excluded 

companies that had fewer than $5M in sales cumulatively over 10 years and those that had zero sales 

and inventory data for the first three years of data, even if they were otherwise active.  The purpose of 

the filtering process was to ensure that the final sample contained only companies that had been actively 

operating in inventory-related business activities: retailing, distribution or manufacturing.  While it is 

possible to explicitly control for exits and entrances and to analyze their effects on inventories, these 

effects are outside the scope of our study. 

We obtained a final sample of 722 companies including 233 S&P500 companies. To make sure 

that our sample was representative of the US economy as a whole, we verified that the total inventory in 

our sample represented 30% of the total US manufacturing and retailing business inventory and, 

moreover, that it is strongly correlated with the total US inventory (Pearson r=.91, p<.001).  We could 

also have used the total COMPUSTAT inventory-related data population, but COMPUSTAT itself is 

only a sample of public companies out of the universe of companies operating in the US and is subject 

to such potential flaws as survivorship bias and size bias.  We proceeded with the analysis of the 722 

sampled companies in the hope of obtaining robust and repeatable results across different yet not-too-

numerous segments that would indicate that the sample properties are representative of the population 

properties.  The usage of a limited number of segments allows us to compare segment-specific results; 

otherwise the potential number of segments would be too large to fit within one paper.  For that reason, 
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previous studies often focused on retailing/wholesaling/manufacturing segments only (see Gaur et al. 

2005, Chen et al. 2005a, 2005b). 

The obvious disadvantage of using COMPUSTAT as a source of information for testing 

hypotheses about inventory models is that financial accounting (especially after aggregation) may only 

crudely reflect actual processes within a company. For example, at the industry level one can use 

consumer price indexes to express everything in constant dollar terms, an approach that is not applicable 

for firm-level data. It is a typical practice in empirical research (see Blinder et al. 1981, Kahn 1992) to 

use deflators while working with economy-level or industry-level data but not to use common deflators 

(e.g., inflation indexes for specific industries) for firm-level analysis, since it is not a valid proxy for 

capturing firm-level price effects. We partially control for inflation by using variables expressed in the 

same price terms—inventory and COGS (sales in inventory prices). Price inflation has historically been 

a smaller source of dollar output fluctuations compared to unit output fluctuations in the US (see Blinder 

and Maccini 1991). 

As we discussed earlier, another potential problem is that the data is aggregated across product 

lines and production units and time within a company, meaning that different processes with potentially 

different operational structures are merged.  Although this may lead to biases due to a difference in 

product variety, we, as explained above, expect that the direction of effects should be preserved even at 

the aggregate level so that conceptually it is possible to capture product-level operational effects in the 

firm-level data.  Follows-ups on our exploratory study might use our basic model but incorporate other 

variables such as product variety. 

Table 2 summarizes the sample.  Companies in the sample hold on average $396M of inventory 

and have on average $527M of quarterly sales expressed in input prices. From Table 2 we also see that 

companies vary in size across segments, with the oil and gas and retail segments having larger 

companies on average.  We also see that relative inventory levels vary by segment: the chemicals, 

computer hardware and electronics segments have the largest relative inventory levels (1.40, 1.25 and 

1.22 respectively for quarterly relative inventory levels), whereas the oil and gas segment appears to be 

the leanest, with an average relative inventory ratio of only .42. Such preliminary observations point out 

the heterogeneity of operational and technological factors across industries that impose different 

conditions on the ways companies operate and make inventory decisions.  

5. Description of variables 
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We use three subscripts to account for time-specific (t=1,…,44), company-specific (i=1,…,722) 

and segment-specific (s=1,…,8) effects as in Gaur et al. (2005).  For dependent variables, we use both 

absolute and relative inventory.  Although classical inventory models typically work with absolute 

inventory levels, we also conduct cross-company analysis and comparison, which is more meaningful 

for relative inventories.  We denote absolute inventory for the firm i in the segment s by  which is 

measured by the inventory expressed in monetary terms at the end of the corresponding quarter t as 

reported in quarterly balance statements. Relative inventory is measured by the inventory-to-cost-of-

goods-sold (denoted by ) ratio for the corresponding quarter taken from the income statement 

and is denoted by . 

itsInv

itsCOGS

its its itsInvCOGSratio =Inv /COGS

For explanatory variables we use the following proxies (see summary statistics in Table 4 and 

definitions in Table 1).  To measure product margins we use gross margins.  Several other margins are 

available (operating margin EBIT and EBITDA, net margin, returns on assets, equity and sales), but we 

believe that gross margin is more appropriate, because it does not include fixed costs and other items 

such as the effects of taxes, amortization, etc. that are not directly related to inventory management.  

Gross margin is defined as a percentage difference between net sales and the cost of goods sold: 

. ( )its its its itsGrossMargin = Sales -COGS /Sales

Inventory holding costs typically include two components: the physical cost of holding inventory 

and the opportunity cost of tying up capital in inventory.  Data for the physical cost of holding inventory 

is not publicly available and is generally difficult to estimate due to several fixed and variable 

components.  Therefore, our proxy for inventory holding costs only accounts for the opportunity cost of 

capital, so our results on the association between holding costs and inventories may be diluted.  

However, capital costs tend to account for a larger portion of holding costs and, moreover, as indicated 

in Irvine (1981), the physical holding cost is much more stable over time than the opportunity cost of 

capital, so arguably we account for the more important part of the inventory holding cost.  We use two 

proxies for the opportunity cost of holding inventory.  The first proxy is the three-month T-bill rate 

(coded as TBillRatet), which is known to be a good proxy for risk-free interest rates and industry-wide 

capital opportunity costs and has been used in economics for that reason (Irvine 1981).  This is an 

admittedly crude proxy, as it does not account for differences across companies (in that some companies 

may borrow and raise capital more cheaply than others).  The second proxy we use accounts for firm-

specific cost of capital and is denoted by CostCapitalits. To estimate this proxy we follow the realized 

returns approach as suggested by Lieberman (1980) and Botosan and Plumbee (2005). Namely, we 
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estimate historical non-compounded realized quarterly returns on equity by using historical price and 

dividend data: the last month of the quarter closing price, the first month of the quarter price and 

dividends paid during the period. Next, we estimate the historical period-average cost of debt 

outstanding for a company expressed as the ratio of interest paid to debt outstanding. Finally, we 

estimate the weighed average of the two measures using a company capital (debt/equity) structure.  

There are many other ways to estimate the cost of debt/equity and the cost of capital for a firm. 

This topic has been an area of extensive research in finance and accounting (see Fama and French 1999 

and Botosan and Plumbee 2005 for summaries and references). An alternate approach to the backward-

looking historically realized returns is typically to use the cost of capital imputation based either on 

direct expectation-based imputation from both the realized and expected times series of stock prices and 

dividends or on model-based imputation from CAPM or APT models. Expectation-based or model-

based approaches may well serve their roles in predicting future expected stock returns or in analyzing 

additional factors affecting stock prices, since they are forward-looking by construction, but for our 

research purposes we believe that realized return usage based on historical stock, dividend and interest 

paid data is the right choice. The correlation between the two inventory holding cost proxies is r=.66 

(p<.01). 

Lead time data is not publicly available and in practice varies both by product and by supplier.  

As a proxy for a procurement lead time, we use the average days of accounts payable outstanding, such 

that  where APitsLeadTime = ( its its365/ 4×COGS / AP ) its stands for accounts payable.  Justification for 

this proxy comes from financial accounting definitions.  Production cycle time is defined as the average 

days of inventory outstanding, sourcing lead time for inputs is defined as the average days of accounts 

payable outstanding, and cash collection (or output delivery time, or days of sales outstanding) is 

defined as the average days of accounts receivable outstanding (see Stickney and Weil 1999).  Together, 

these measures define a cash conversion cycle—the average time it takes a dollar of investment to buy 

inputs, produce, sell outputs and collect cash. Although these measures are only proxies for the physical 

production cycle and lead times, they provide the right direction of logic; accounts payable are credited, 

then input product is shipped by the supplier and is typically debited, then it is received and cash is paid 

for it.  Hence, we argue, financial transactions should be correlated with times of shipment and delivery 

of inputs and therefore should be correlated with the lag a company has to respond to changing market 

environment by adjusting inventories. It is worth noting that accounts receivables cannot be used as a 

proxy for lead times because they represent an after-sale process and should not affect a company’s 

ability and need to source/produce units in advance to have inventory ready for sale.  
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The recognition of shipments/payments is linked to a company’s policy of recognizing 

revenues/expenses and is known to vary by company to some extent.  However, since we study public 

companies that are closely monitored by investors and the Securities and Exchange Commission, in 

most cases these companies will have practices that are relatively consistent if not in the aggregate then 

within the industry segment.  There are at least three more issues associated with the lead time proxy: 

payment terms can be dominated by standard arrangements existing in the industry, the timing of 

recognition of shipments/payments may correlate with the size/power of a company and cash payments 

might be used instead of accounts.  To verify that the lead time proxy is not dominated by standard 

payment terms (e.g., 30 or 60 days), we analyzed the distribution of LeadTimeits and found that it is well 

approximated by the log-normal distribution with coefficient of variation 3.  Hence, we did not find any 

evidence of “spikes” in payables around some standard values.  To ensure that lead times are not entirely 

driven by the size/power of the company, we also checked for correlation between the inventory level 

and the lead time proxy and the company’s market power as measured by the market share within a 

four-digit industry segment.  We found that both correlations are insignificant and negative.  We further 

verified this result by constructing a regression model with the lead time proxy as a dependent variable.  

We did not find statistically significant evidence that the lead time proxy is affected by company size as 

measured both by sales and by market power. Therefore, the lead time proxy does not appear to be 

affected on average by the ability of a company to change the terms of payments due to market power.  

Finally, we believe that cash payments are rare relative to payments through accounts payable and 

receivable, since most public companies operate with suppliers through accounts rather than through 

cash transactions.  We verified that the average ratio of accounts payable to cash holdings for our sample 

companies exceeds 13, indicating that the use of accounts payable dominates cash payments.  In closing, 

we acknowledge the possibility that, to some extent and for some companies, the LeadTime proxy might 

be capturing payment lead time rather than sourcing lead time, so that our results with respect to lead 

times can be diluted.  Nevertheless, while payment lead times are not typically a part of classical 

inventory models, we expect them to have the same directional effect: longer payment lead times to 

suppliers should lead to more inventories (in essence, suppliers finance buyer’s inventories).  From the 

publicly available data it appears impossible to separate out sourcing lead times from payment lead 

times.  However, we do believe that these two variables are strongly correlated, which suffices for our 

exploratory analysis.  Future research might be able to suggest a better proxy for lead times.  

Estimation of demand uncertainty is typically of first-order importance in any finance-related 

research, since variability is priced in financial markets via derivatives and there is a “market” for 
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uncertainty.  Various techniques and estimations have been proposed for very frequent financial trading 

data that often do not exhibit any deterministic trends.  In non-financial markets, however, the situation 

is quite different—the major concern is typically to predict sales, profits and expenses.  Therefore, it is 

important to forecast trends in data and deal with first-order rather than second-order estimated 

moments. Variance estimation techniques are much less sophisticated in both the theory and practice of 

operations management, and this simplicity is driven both by the scarcity of data and by the absence of 

markets for uncertainty analogous to derivatives markets.  Nevertheless, the impact of demand 

uncertainty on inventories is a focal point of many classical inventory papers and we thus ensure that 

demand uncertainty is captured adequately. 

We assume that our data is decomposable in an additive way into trend, seasonal and noise 

components.  Additive techniques are by far the most common and are used by the US Census (e.g., X-

12ARIMA for monthly Census data) as well as by other statistical agencies.  Additive decomposition 

implies that variance of sales is determined by variance of noise only.  To estimate noise, we run 

individual regressions with a polynomial capturing trend and with seasonal (quarterly) dummies and we 

take residuals as demand noise. We tried several other specifications (e.g., higher-degree polynomials) 

and finally conducted the estimation using the first-degree polynomial (linear trend) with seasonal 

dummies, because this specification minimizes in-sample average mean squared forecasting error 

(Greene 1997). We conduct this estimation for all 772 firms in our panel and thereafter we estimate the 

variance of residuals, again using a four-quarter moving window as follows: 
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We note that, to our knowledge, there is no commonly accepted way to estimate demand 

uncertainty using past data in the operations management literature.  We provide three arguments to 

motivate employing four past quarters of sales data: (i) similar approaches appear in popular textbooks 

and cases, indicating that companies employ similar techniques in practice (see, for example, Cachon 

and Terwiesch 2005 and the LLBean case by Schleifer 1992); (ii) it is advantageous to use recent data in 

an uncertainty estimation; and (iii) longer rolling-back estimation horizons create more missing or quasi-

missing data points in estimations.  It should be noted that for the sake of removing seasonality the exact 

number of past quarters for model-based de-seasoned and de-trended data is of secondary importance, 

since the model fitted over the total time horizon ensures that the residuals are seasonality-corrected.  
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We acknowledge that other proxies for demand uncertainty can prove to be less biased or more efficient 

when analyzed using other criteria (AIC, BIC, out-of-sample MSE; see Greene 1997): for example, 

when performing detailed, firm-specific demand forecasting one could use additional explanatory 

variables or use parametric truncated distributions to impute demand forecast from sales data.  However, 

for the purposes of our exploratory cross-sectional study that involves data aggregation, we believe that 

using the proxy described above endows us with a sense of firm-level demand uncertainty.  Moreover, 

we repeated our analysis with several other demand uncertainty proxies.  We measured both uncertainty 

in sales expressed in inventory prices (so-called top-line uncertainty following the accounting 

terminology, see Stickney and Weil 1999—sales are recorded at the top of the income statement) and 

uncertainty in earnings (EBITDA or operating income, the so-called “bottom-line uncertainty,” since it 

is recorded at the bottom of the income statement).  Furthermore, we used another technique to estimate 

the variance of sales and earnings using raw uncertainty (rather than de-trended and de-seasonalized 

uncertainty).  We found the results to be very robust as to both the model complexity and model 

specification.  Therefore, we report our results only for the demand uncertainty proxy defined above. 

As a proxy for company size, we use the fixed assets variable FixedAssetsits. We repeated our 

analysis for sales as a proxy for company size (not reported), and the results were robust.  As previously 

mentioned, we use seasonal dummies qt to control for season-specific effects and yearly dummies (from 

1 to 11) to control for the time trend.  Two more control variables are introduced to capture the second-

order relations between sales and inventory in addition to the first-order relation captured by the 

absolute level of demand.  Most classical inventory models rely on the assumption that demand is 

independent and identically distributed across time periods.  In practice, however, there are typically 

well-known deterministic trends in demand that could result from the expansion of the company or of 

the industry or of the whole economy (as opposed to the stochastic component captured by the proxy for 

demand uncertainty).  The variable SalesGrowthits measures a percentage growth in COGSits from 

quarter to quarter, which is essentially the speed of change in sales.  The variable PositiveSalesSurpriseits 

takes the value of 1 if the realized demand is higher than forecasted and takes the value of 0 otherwise.  

This last dummy variable is included to account for a lower-than-expected inventory level in case the 

demand exceeds the forecast (which is somewhat similar to the approach of Gaur et al. 2005).  It should 

be noted the two proxies differ from each other: the first one captures the total growth, whereas the 

second one captures the potential non-symmetry of inventory reaction to sales shocks.  Summary 

statistics for all variables are found in Table 4. Table 3 contains correlations among independent 

variables. 
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6. Model specification 

In line with Gaur at al (2005), we use two multiplicative regression models (“multiplicative” in 

that independent variables are in multiplicative form before the log transformation) to capture inventory 

dynamics and to test the proposed hypotheses: one model for absolute inventory levels and the other one 

for relative inventory levels. The model for absolute inventory levels is: 
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The disturbance term itsε  additively includes firm-specific and time-specific effects along with 

random noise to ensure that unobserved variables in the panel such as management quality, marketing 

decisions, etc. are controlled for so as to avoid biased estimators (Greene 1997). We model firm-specific 

and time-specific effects using both random and fixed-effect models.  When reporting final results we 

use fixed-effects coefficients estimation because the Hausman test (Greene 1997) rejects the hypothesis 

that random-effects estimators are efficient and because the large size of our sample as well as our 

attention to the eight specific segments indicates the need for fixed effects in the research design.  

Finally, we control for possible autocorrelation in the data by conducting estimation with the AR(1) 

disturbance term.  We do not report autocorrelation coefficients that are on average 0.1 or smaller, and 

we also checked that the regression results are robust with respect to autocorrelation of residuals 

specification.  We use log-log model specification because (i) it helps deal with heteroskedasticity; (ii) 

the distribution of inventory data is not normal but rather is skewed to the right; and (iii) such 

specification has shown the best results in previous studies (Gaur et al. 2005). 

The model for relative inventory levels is defined analogously, the only exception being that we 

control for firm size by excluding COGS and by including FixedAssets in the regression to avoid 

possible collinearity issues.  We run a pooled regression first and then run the same model within 

segments to see how the variables are related within specific segments and whether the hypotheses are 

supported therein.  Our relatively short and wide panel (with large cross-sectional dimension and short 

time-series dimension) has more similarities to cross-sectional analysis than to time-series analysis.  

Therefore, we did not analyze such aspects as the stationarity of data or vector autoregression  properties 
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(which is in line with Greene 1997).  We did include an explicit time trend in the model even though 

inventory management theory does not indicate a need to do so: time trends should affect sales and sales 

forecasts in the first place, and companies should react by adjusting their operating policies.  Hence, one 

could assume that the time trend is captured by sales dynamics and that inventory is managed rationally.  

To check the robustness of our results, we conducted analysis with and without the time trend.  We find 

that our assumption about rationally managed inventory cannot be rejected: estimated coefficients do not 

change significantly compared to the no-time-trend approach, the only exception being inventory 

holding cost coefficients.  The time trend adds little explanatory power to the model, as indicated by the 

levels of F-statistics.  We use analysis with the time trend when reporting final results.  

To ensure the robustness of our results we also used alternative econometric specifications.  We 

employed linear regression instead of multiplicative regression and added several interaction terms to 

see if they could improve the overall fit expressed in the adjusted goodness-of-fit measure. Linear 

models were rejected, since they performed significantly worse, and interaction terms between COGS, 

margins and lead times did not incrementally increase the explanatory power of the model, while the 

directions of main effects did not change.  We do not include interaction terms in our final analysis, 

because we could not find theoretical or empirical justifications for them in either operations 

management or economics literature.  To test Hypothesis 1 we used a polynomial model (with respect to 

inventory as a function of COGS) with up to 5th-degree polynomials and down to 1/5th-degree 

polynomials and found that the fit of such a model was inferior to multiplicative models. We did try to 

introduce additional and nonlinear terms and found that those terms did not add explanatory power 

while the directions of main results did not change.  

7. Results  

We use panel data modules “xtreg” and “xtregar” in STATA to perform our analysis. The 

STATA package, similar to the SAS package, provides embedded tools to analyze panel data and to 

estimate fixed and random effects regressions with possible autoregression structure.   

Table 5 provides results for the model with absolute inventory level as a dependent variable (the 

adjusted goodness of fit is 85%), and Table 6 provides results for the model with relative inventory level 

as a dependent variable (the adjusted goodness of fit is 12%).  We report results only with TBillRatet 

used as a proxy for inventory holding costs, because the alternative measure, CostCapitalits, yields 

qualitatively similar results.  Although it appears that the absolute inventory model results in a better 

adjusted goodness of fit, the two non-nested models should not be directly compared: after the log-
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transform, the domain of the absolute inventory is much smaller than that of the relative inventory and 

hence the difference in explanatory power.  Finally, Table 7 provides results split by industry segment 

for the model with relative inventory (the adjusted goodness of fit ranges from 4% to 29%).  We utilize 

the relative inventory model in Table 7 because comparisons across segments are rather meaningless for 

absolute inventory levels. 

The data are consistent with Hypothesis 1: elasticity of inventory to COGS is .68 such that 

inventory is a sub-linear function of sales, implying a concave relationship and hence hinting at 

economies of scale in inventory management.   

The data are consistent with Hypothesis 2: relative inventory levels are negatively associated 

with company size as measured by fixed assets, indicating the presence of economies of scale in 

inventory management.  We find that a 1% increase in the fixed assets of a company is, on average, 

associated with a .12% decrease in relative inventory.  From Table 7, the (absolute) elasticity of relative 

inventory to company size is highest for retail and machinery.  The food segment shows the lowest 

degree of economies of scale in inventory management, and from the Table 7 we observe that 

Hypothesis 2 is supported across all segments. 

The data at the aggregate level is consistent with Hypothesis 3: both absolute and relative 

inventory levels increase with demand uncertainty.  We find that a 1% increase in sales uncertainty 

increases absolute inventory on average by .02%.  When we run segment-specific regressions, it turns 

out that the relationship is not statistically significant for the chemicals segment and, moreover, for the 

retail segment the relationship is reversed.  Given the difficulty in estimating uncertainty in actual 

demand and the variety of methods used in practice, it is not surprising that the expected result is not 

supported in all industry segments.  The statistically significant negative association between uncertainty 

and inventory in the retail segment is truly interesting and requires further investigation. 

The data at the aggregate level is consistent with Hypothesis 4: both absolute and relative 

inventory levels are increasing in lead times.  Specifically, a 1% increase in lead time leads to a .11% 

increase in absolute inventory and a .13% increase in relative inventory. This relationship is statistically 

significant for all industry segments. 

The data at the aggregate level is consistent with Hypothesis 5: both absolute and relative 

inventory are increasing in product margins, which is consistent with the finding of Gaur et al. (2005) 

that inventory turns and gross margins are negatively related in retailing.  The elasticity of absolute and 

relative inventory levels to gross margin is about .03.  The relationship between margins and inventory 

is also not significant for the electronics segment, and it is reversed for the machinery segment. 
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The data are not consistent with Hypothesis 6: the relationship between holding costs and 

inventory appears to be positive rather than negative, and it is not significant in the pooled regressions.  

The relationship turns out to be of the right sign for the oil and gas, wholesale and food segments, but 

the opposite is true for all other segments.  We check for the robustness of results for Hypothesis 6 by 

using both the risk-free interest rate TBillRatet and the firm-specific proxy CostCapitalits.  The latter 

gives very similar results (and therefore we do not report additional tables) with respect to both signs 

and significance.  We also observe that inventory holding cost proxies are the only ones among 

dependent variables that are sensitive to linear and quadratic time trends, implying that they are 

impacted by the cyclical nature of interest rate dynamics during the period from 1992 to 2002.  If the 

time trend is excluded, the relationship between inventory holding costs and inventory levels becomes 

negative (as predicted by Hypothesis 6) and significant in most tests. 

We note that, for the absolute inventory model, COGS, demand uncertainty, margins, lead times 

and the time trend explain approximately 70%, 7%, 5%, 2% and 1% of variance in inventories, 

respectively.  Seasonality and other dummy variables explain a very small proportion of variances in 

inventories.  In addition to the results of the tests of the hypotheses, we also make several observations 

on the significance of various dummy variables included in the analysis.  Variable SalesGrowth (the 

percentage increase in sales from the previous quarter) exhibits a statistically significant negative 

association with absolute and relative inventory levels which also persists in all eight industry segments.  

Hence, as demand increases, companies do not react immediately by increasing inventory.  Variable 

PositiveSalesSurprise (valued at 1 if demand is higher than forecasted) exhibits statistically significant 

positive associations with absolute and relative inventory levels which also persists in seven out of eight 

industry segments (except machinery).  These two results do not contradict but rather complement each 

other—while inventories, on average, decrease with higher overall sales growth, inventories also, on 

average, increase when sales increase unpredictably.  This observation supports the idea of both 

nonlinearity and non-symmetry at the level of association between sales activities and inventory levels: 

inventory dynamics lag somewhat behind sales dynamics in terms of growth rates, which can be 

partially explained by managers’ adaptive expectations and predictions that are typically based on 

historical data.  For example, if changes in sales speed up, adaptive expectations and adaptive demand 

forecasting will underestimate sales and result in lower than optimal planned inventory levels.  

Moreover, inventory levels are adjusted more rapidly when there is a mismatch in the demand forecast.  

This effect makes sense if managers become more optimistic when demand realization is higher than 

forecasted.  It is interesting to note that such empirical observations are not grounded in existing 
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inventory models, and they provide directions for further theoretical inventory modeling that would 

attempt to link the nonlinear and non-stationary nature of most of the demand processes with the 

behavioral aspects of inventory management decisions.  Finally, seasonal and yearly dummies are 

statistically significant in most cases, demonstrating the importance of accounting for business 

seasonality and time-trends, something that is rarely incorporated into inventory models. It is interesting 

to notice that the time trend is positive in our models after controlling for other effects. This does not 

necessarily contradict the results in Chen et al. (2005a, 2005b) and Rajagopalan and Malhotra (2001), 

who show that US public inventories have been declining for the past 20 years.  The reason is that we do 

not directly study the behavior of inventories over time (inventory, indeed, has a negative and significant 

time trend in the absence of other variables).  Instead, we capture both cross-sectional and time-series 

inventory fluctuations and show that, after controlling for significant cross-sectional effects (as predicted 

by the inventory models), the unpredictable portion (partial residuals without accounting for the time 

trend) of both absolute and relative inventory is positively associated with the time trend.  Namely, the 

positive time trend in our studies (despite the fact that inventories do decrease over time in our sample) 

is an indication that other explanatory variables (COGS, margins, lead times) also change over time and 

explain a significant portion of inventory variance, whereas the time trend by itself can explain only 

around 1% of inventory variance. We thus believe that there is a need to capture the time trend directly, 

since other explanatory variables are also time-dependent and change along with inventory over time in 

our panel. 

8. Summary 

A rich variety of inventory models have been created in operations management based on the 

cost-minimizing approach for price-taking monopolistic companies.  In this exploratory study we have 

identified the need for conducting empirical research to test predictions from classical inventory models 

to understand whether predictions from these models help explain aggregate inventories of entire 

companies.  We tested for several predictions using a large quarterly panel data set from the 

COMPUSTAT financial database of US public companies operating during the 1992-2002 period.  In 

our sample we included eight segments of the US economy: oil and gas, retail, wholesale, electronics, 

hardware, chemicals, food, and machinery. Nearly 45% of S&P500 companies are present in our 

sample, making a total of 722 companies that have continuously been in operation and have had nonzero 

financial results. We tested proposed associations for pooled data as well as across segments. 
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We find that multiplicative models best capture inventory dynamics. Our model explains 85% of 

the dynamics for absolute inventory level. We believe it is fair to say that classical inventory models 

continue to explain inventory behavior well, even at the company level. We proposed several proxies for 

the independent variables. Average days of accounts payable outstanding are used to measure lead 

times, and we find that companies do buffer inventory against longer lead times.  The treasury bill rate 

and the weighted-average cost of capital are used to measure the opportunity cost of carrying inventory, 

but our findings regarding holding costs are inconclusive and are affected by the inclusion of the time 

trend.  It is possible that findings in Lai (2006) indicating the need to find new ways of calculating the 

cost of capital for operations models will be helpful in the future research. We obtain consistent results 

that companies do buffer inventory against demand uncertainty. We also find that higher gross margins 

are associated with higher inventory and that large companies enjoy economies of scale and hence stock 

less inventory in relative terms.   

It is reassuring to see evidence that predictions from classical inventory models appear to work at 

the aggregate (company) level.  Hence, we believe that these models should be taught to business 

students and executives.  Even though these models do not account for competition, business cycles, and  

industry dynamics and do not endogenize many other decisions (e.g., pricing), they still appear to be 

useful in guiding our intuition with respect to inventory behavior.  We do not, however, claim that there 

is a causal relation between operational variables such as lead time, demand uncertainty, margin, and 

inventory.  The relationships we tested are based only on statistical associations that are stable over time. 

One could try to go further and notice that in the case of operational models there is a clear model-

driven causality: “inputs” such as lead time, margins, uncertainty and sales might affect “outputs” such 

as profits and inventories. That is, inventory may always be a function of both exogenous variables 

(mean demand, uncertainty) and a firm’s decisions (when and how much to order given these variables). 

In this setting, some of the statistical statements tested may also impose causality on the operational 

relations.  For example, longer lead times, higher demand uncertainty and higher margins may cause 

both relative and absolute inventory to increase, while the statement that “larger companies are leaner” 

does not impose causality.  These distinctions could be addressed in follow-up work. 

Our study comes with several potential limitations. We use aggregated COMPUSTAT financial 

data that can cause both space (product variety and different units) and time aggregation biases, and 

therefore we focus on the monotonic properties of inventories.  Other explanatory variables (such as 

product variety, product life cycle lengths, quantity discounts, and forecasts of supply chain disruptions) 

are not included in our models. More research is needed to find adequate proxies for these variables.  
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Limitations of this kind are quite standard in the empirical literature working with inventories (see 

Rajagopalan and Malhotra 2001 and Gaur et al. 2005).  Furthermore, we are using imperfect proxies for 

some of the independent variables such as lead times and inventory holding costs.  If better data become 

available, it might be prudent to reevaluate our findings.  

Future studies could look more closely at various segments of the economy and attempt to 

explain why some of our hypotheses do not hold for certain segments by using better proxies, possibly 

obtained through a combination of surveys and secondary data.  A lot of research has been done to 

explain the behavior of inventories in the automotive industry (see a series of papers by Lieberman et 

al.) and in retailing (see a series of papers by Gaur et al.) but not in other segments that we capture in our 

study and not with the relevant set of all potentially economically important variables. 
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Table 1. Definitions of explanatory variables 

COGS Cost of goods sold, as reported in quarterly income statements 

FixedAssets Long-lived property owned by a firm, as reported in quarterly income statements 

GrossMargin (Sales-COGS)/Sales 

LeadTime 365/(4*COGS/AP), where AP is accounts payable 

SigmaSales ( )23 3

0 0

1 2 1 1 2 2 3 3

4
where

4

t i t ii i

t t

Sales Sales

Sales Sales a t a b q b q b q

− −= =
−

= − − − − −

∑ ∑
 

SalesGrowtht+1 (COGSt+1-COGSt)/COGSt

TBillRate 3-month T-bill rate 

PositiveSalesSurprise 1 is Sales exceeds forecast obtained using extrapolation of Sales: 
 1 1 2 1 1 2 2 3 3

ˆ ˆ ˆˆ ˆ ˆt o tSales a Sales a t a b q b q b q−= − − − − −

q1,q2,q3 Quarter dummies 

Year 1992:Year=1; … 2002:Year = 11 
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Table 2. Sample description (quarterly in $M, 1992-2002 period) 

Segment Segment 
name SIC codes # of 

companies 
Mean 

Inventory 
Mean 
COGS 

Mean 
Inv/COGS 

St.Dev./Mean, 
Inv/COGS 

Median, 
Inv/COGS 

1 oil and gas 1311, 1381, 2911 86 559 1343 .42 5.48 .23 

2 electronics 3630, 3651, 3663, 3672, 3674 190 168 173 1.22 2.51 .89 

3 wholesale 5045, 5047, 5122, 5140, 5172 61 254 502 .39 1.23 .29 

4 retail 5311, 5331, 5411, 5412, 5940, 
5944, 5945 95 968 1057 1.02 1.02 .67 

5 machinery 3523, 3531, 3532, 3537 22 578 573 1.11 .82 .91 

6 computer 
hardware 3571, 3571, 3575, 3576, 3577 117 141 181 1.25 4.38 .84 

7 food and 
beverages 2000, 2011, 2030, 2080, 2082 35 736 872 .64 1.11 .51 

8 chemicals 2800, 2820, 2834, 2844 116 388 314 1.40 1.70 1.01 

Total:   722 396 527 1.03 2.94 .74 

 

Table 3. Correlation table (all variables in Log, all correlations are significant at the  .01 level) 

  COGS 
Fixed 
Assets 

Gross 
Margin 

Lead 
Time 

Sales 
Growth 

Sigma 
Sales TBill rate 

Cost 
Capital 

COGS               
FixedAssets  .46        
GrossMargin -.30  .11            
LeadTime  .09  .31  .17          
SalesGrowth -.01  .07  .00  .05        
SigmaSales  .62  .12 -.20  .09  .01      
TBillRate -.02  .03  .00 -.01 -.07 -.03    
CostCapital  .01  .02  .00 -.00 -.06 -.00  .66  
PositiveSales 
Surprise  .61  .40 -.25  .12  .72  .70 -.03  .00 
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Table 4: Sample summary statistics 

 Mean 25% 
percentile Median 75% 

percentile 
FixedAssets 309.5 4.1 31.6 390 

GrossMargin 0.16 0.15 0.31 0.48 

LeadTime 101.9 34.1 54.9 105.3 

SigmaSales 180.1 3.1 43.8 92.3 

SalesGrowth 0.54 -0.18 0.02 0.21 

TBillRate 1.12 0.79 1.06 1.24 

PositiveSalesSurprise 0.44 0 0 1 
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Table 5. Absolute inventory pooled regression   Table 6. Relative inventory pooled regression  

 Log(Inv)   Log(InvCOGSratio) 
Log(COGS)  .68*** 

(.01) 
 Log(FixedAssets) -.12***  

(.03)  
Log(GrossMargin)  .03*** 

(.01) 
 Log(GrossMargin)  .03*** 

(.01) 
Log(LeadTime)  .11*** 

(.00) 
 Log(LeadTime)  .13***  

(.002) 
Log(SigmaSales)  .02*** 

(.00) 
 Log(SigmaSales)  .01*** 

(.001) 
SalesGrowth -.001*** 

(.00) 
 SalesGrowth -.001***  

(.0001) 
Log(TBillRate)  .03 

(.02) 
 Log(TBillRate)  .02 

(.02) 
PositiveSalesSurprise  .15*** 

(.02) 
 PositiveSalesSurprise  .17*** 

(.02 ) 
q1  .10*** 

(.01) 
 q1  .16*** 

(.02) 
q2  .07*** 

(.01) 
 q2  .08*** 

(.02) 
q3  .10*** 

(.01) 
 q3  .13*** 

(.01) 
Year  .02*** 

(.00) 
 Year  .03*** 

(.001) 
Constant  .06*** 

(.03) 
 Constant  .19*** 

(.02) 
Adjusted goodness of fit 85%  Adjusted goodness of fit 12% 

Note: ***, ** and * denote statistical significance at the 1%, 5% and 10% level.  Standard errors are reported in brackets. 
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Table 7. Relative inventory regression by segment 

Log(InvCOGSratio) oil and gas electronics wholesale retail machinery hardware food chemicals 
Log(FixedAssets) -.17*** 

(.04) 
-.13*** 
(.02) 

-.14*** 
(.03) 

-.19*** 
(.02) 

-.19***  
(.03) 

-.11*** 
(.02) 

-.10***  
(.02) 

-.12*** 
(.03) 

Log(GrossMargin)  .05***  
(.02) 

-.02 
(.01) 

 .06*** 
(.02) 

 .09*** 
(.01) 

-.11*** 
(.02) 

 .06*** 
(.03) 

 .04** 
(.02) 

 .03*** 
(.01) 

Log(LeadTime)  .07*** 
(.02) 

 .08*** 
(.02) 

 .11*** 
(.03) 

 .05*** 
(.01) 

 .05*** 
(.01) 

 .03*** 
(.01) 

 .06***  
(.02) 

 .12***  
(.01) 

Log(SigmaSales)  .02*** 
(.01) 

 .02*** 
(.01) 

.02*** 
  (.01) 

-.001*** 
(.001) 

 .005** 
(.001) 

 .02** 
(.01) 

.04*** 
  (.02) 

-.02 
(.03) 

SalesGrowth -.001* 
(.0004) 

-.02** 
(.003) 

-.001***  
(.0001) 

-.002*** 
(.0006) 

-.001***  
(.0001) 

-.002***  
(.0004) 

-.003***  
(.0008) 

-.001* 
(.0006) 

Log(TBillRate) -.11*** 
(.03) 

 .05*** 
(.02) 

-.07** 
(.04) 

 .05*** 
(.01) 

 .08** 
(.02) 

 .11*** 
(.02) 

-.08***  
(.02) 

 .05* 
(.03) 

PositiveSalesSurprise  .13*** 
(.05) 

 .13*** 
(.05) 

 .12*** 
(.05) 

 .03*** 
(.01) 

 .03 
(.05) 

 .15***  
(.04) 

.15** 
 (.05) 

 .07***  
(.03) 

q1  .12*** 
(.03) 

 .06*** 
(.01) 

 .14*** 
(.03) 

 .12*** 
 (.03) 

 .13*** 
(.03) 

 .14*** 
(.04) 

 .09***  
(.02) 

 .01 
(.03) 

q2  .12*** 
(.03) 

 .06*** 
(.01) 

 .09*** 
(.03) 

 .12***  
(.01) 

 .13*** 
(.04) 

 .08*** 
(.02) 

 .02 
(.02) 

 .06***  
(.01) 

q3  .18*** 
(.03) 

 .07*** 
(.02) 

.11*** 
(.02) 

 .16*** 
(.04) 

 .06** 
(.02) 

 .08***  
(.01) 

 .03*** 
(.01) 

 .08*** 
(.02) 

Year  .02*** 
(.001) 

 .02*** 
(.004) 

-.02*** 
(.01) 

 .07*** 
(.006) 

 .07*** 
(.001) 

-.001 
(.002) 

 .03***  
(.002) 

 .05***  
(.004) 

Constant  .47*** 
(.12) 

-.31* 
(.14) 

-1.34*** 
(.23) 

1.48*** 
(.27) 

1.69*** 
(.37) 

-.67*** 
(.39) 

1.15***  
(.24) 

 .48 
(.12) 

Adjusted R2 4% 17% 5% 19% 29% 29% 9% 9% 
Note: ***, ** and * denote statistical significance at the 1%, 5% and 10% level.  Standard errors are reported in brackets. 
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