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Joining Longer Queues: Information Externalities in Queue Choice

Abstract
A classic example that illustrates how observed customer behavior impacts other customers' decisions is the
selection of a restaurant whose quality is uncertain. Customers often choose the busier restaurant, inferring
that other customers in that restaurant know something that they do not. In an environment with random
arrival and service times, customer behavior is reflected in the lengths of the queues that form at the individual
servers. Therefore, queue lengths could signal two factors—potentially higher arrivals to the server or
potentially slower service at the server. In this paper, we focus on both factors when customers' waiting costs
are negligible. This allows us to understand how information externalities due to congestion impact
customers' service choice behavior.

In our model, based on private information about both the service-quality and queue-length information,
customers decide which queue to join. When the service rates are the same and known, we confirm that it may
be rational to ignore private information and purchase from the service provider with the longer queue when
only one additional customer is present in the longer queue. We find that, due to the information externalities
contained in queue lengths, there exist cycles during which one service firm is thriving whereas the other is
not. Which service provider is thriving depends on luck; i.e., it is determined by the private signal of the
customer arriving when both service providers are idle. These phenomena continue to hold when each service
facility has multiple servers, or when a facility may go out of business when it cannot attract customers for a
certain amount of time. Finally, we find that when the service rates are unknown but are negatively correlated
with service values, our results are strengthened; long queues are now doubly informative. The market share of
the high-quality firm is higher when there is service rate uncertainty, and it increases as the service rate
decreases. When the service rates are positively correlated with unknown service values, long queues become
less informative and customers might even join shorter queues.
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capacity
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Online Technical Appendix

Joining Longer Queues: Information Externalities in Queue Choice
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PROOF of Proposition 3: We show the detailed proof that Ab is not an equilibrium when fixed

queue difference thresholds are greater than one, i.e. b > 1. Consider a strategy whose fixed

threshold is b > 1. We write out the steady state probability transition equations for all boundary

states under the Ab strategy.

πk,0(λ+ µ) = πk−1,0λ+ πk+1,0µ+ πk,1µ ∀k ≥ b+ 2.

πk,0(λ+ µ) = πk−1,0λg + πk+1,0µ+ πk,1µ ∀1 ≤ k ≤ b+ 1.

Adding the above equations for all values of k, and writing a similar equation for all states (0, n)

for all n, we have the following equations below:

ρ(1− g)
b∑

k=1

πk,0 + π1,0 = ρgπ0,0 +
∞∑
k=1

πk,1 (11)

ρg
b∑

k=1

π0,k + π0,1 = ρ(1− g)π0,0 +
∞∑
k=1

π1,k (12)

Since each customer follows his/her signal at the state (1, 0), we have π1,0 ≤ g
1−gπ0,1. Now

consider equation 11:

ρ(1− g)
b∑

k=1

πk,0 = ρgπ0,0 − π1,0 + µ
∞∑
k=1

πk,1

= −ρ(1− g)π0,0 + π0,1 +
∞∑
k=1

πk,1 by using π1,0 + π0,1 = ρπ00

> ρ(1− g)π0,0 − π0,1 +
∞∑
k=1

π1,k

= ρg

b∑
k=1

π0,k.
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Hence we have
∑b
k=1 πk,0∑b
k=1 π0,k

> g
1−g . There is some n such that at least for some n, 1 ≤ n ≤ b we have

πn,0
π0,n

> g
1−g . There is some state whose queue difference is within fixed threshold where the best

response of an arriving customer would be NOT to follow the signal if all other customers were to

follow the signal within this fixed queue difference.

Before we prove Proposition 5, as a first step, we show that any mixing between threshold

strategies is not in equilibrium. Without loss of generality let server 1 be better than server 2

(i.e. v1 > v2) again. Given a strategy (set of actions at every state by all customers) we write

the steady state transition equations and then solve for stationary probabilities. When server 2

provides higher valuation than server 1 we can write the same steady state by suitably replacing g

with 1−g. Strategy A0+p is the strategy in which all customers follow their private signal when the

queue lengths are equal. When the queue length difference is greater than one, the customers follow

the longer queue. When |n1−n2| = 1, i.e. when the queue lengths differ by one, the customers mix

between two strategies: following the longer queue and following their private signal. They follow

their signal with probability p or ignore their signal, and follow the longer queue with probability

1− p. Consequently, they join the longer queue 1 with probability p′ = g + (1− g)(1− p) and join

queue 2 with probability 1− p′ = p(1− g). Let πm,n be the long-run stationary probabilities of the

state (m,n) under some strategy when v1 > v2.

πk,0(λ+ µ) = πk−1,0λ+ πk+1,0µ+ πk,1µ ∀ k ≥ 3

π2,0(λ+ µ) = π1,0λp
′ + π3,0µ+ π2,1µ

π1,0(λ+ µ) = π0,0λg + π2,0µ+ π1,1µ

Adding all the equations for k = 1, · · · ,∞

(λ+ µ)
∞∑
k=1

πk,0 = π0,0λg + π1,0λp
′ + λ

∞∑
k=2

πk,0 + µ

∞∑
k=2

πk,0 + µ

∞∑
k=1

πk,1 (13)

λπ1,0 + µπ1,0 = λgπ0,0 + π1,0λp
′ + µ

∞∑
k=1

πk,1 (14)

λ(1− p′)π1,0 + µπ1,0 = λgπ0,0 + µ

∞∑
k=1

πk,1 (15)

The above equation becomes,

(λ(1− p′) + µ)π1,0 = λgπ0,0 + µ
∞∑
k=1

πk,1 (16)

(ρ(1− p′) + 1)π1,0 = ρgπ0,0 +
∞∑
k=1

πk,1 (17)

2



Writing a similar expression for π0,1 we have,

(ρp′ + 1)π0,1 = ρ(1− g)π0,0 +
∞∑
k=1

π1,k (18)

From the balance equations, we note that the probability transition matrix when v1 > v2 is a

transpose of the transition matrix when v2 > v1. Hence, we have the likelihood ratio at (1, 0) as

l(1, 0) =
π1,0(v1 > v2)
π1,0(v2 > v1)

=
π1,0(v1 > v2)
π0,1(v1 > v2)

=
λgπ0,0 + µ

∑∞
k=1 πk,1

λ(1− g)π0,0 + µ
∑∞

k=1 π1,k

λp′ + µ

λ(1− p′) + µ
.

>
λgπ0,0 + µA

λ(1− g)π0,0 + µB

λg + µ

λ(1− g) + µ

where A =
∑∞

k=1 πk,1 and B =
∑∞

k=1 π1,k. Then under the A0+p we have,

πk,1 ≥
g

1− g
π1,k ∀ k ≥ 3 and π2,1 =

g

1− g
π1,2

which gives
∑
k≥2

πk,1 ≥
g

1− g
∑
k≥2

π1,k >
∑
k≥2

π1,k

A

B
≥ g

1− g

i.e. A > B

We provide a proof by contradiction. If A0+p is in equilibrium, we have one necessary condition

at (1, 0) as l(1, 0) = g
1−g

l(1, 0) =
g

1− g
λgπ0,0 + µ

∑∞
k=1 πk,1

λ(1− g)π0,0 + µ
∑∞

k=1 π1,k

(
λp′ + µ

λ(1− p′) + µ

)
=

g

1− g
ρgπ0,0 +A

ρ(1− g)π0,0 +B

ρp′ + 1
ρ(1− p′) + 1

=
g

1− g

(ρgπ0,0 +A)(ρp′ + 1)(1− g) = g(ρ(1− g)π0,0 +B)(ρ(1− p′) + 1)

we need A(ρp′ + 1)(1− g) + ρ2g(1− g)p′π0,0 = Bg(ρ(1− p′) + 1) + ρ2g(1− g)(1− p′)π0,0

But we have, A
B ≥

g
1−g ⇒ A(1− g) ≥ Bg. Further, p′ = g+ (1− g)(1− p) > g > 1− g > 1− p′.

Therefore, ρp′ + 1 > ρ(1− p′) + 1 and consequently, A(1− g)(ρp′ + 1) > Bg(ρ(1− p′) + 1).

Since p′ > 1 − p′ we also have ρ2g(1 − g)p′π0,0 > ρ2g(1 − g)(1 − p′)π0,0. Therefore LHS =

A(ρp′ + 1)(1 − g) + ρ2g(1 − g)p′π0,0 > Bg(ρ(1 − p′) + 1) + ρ2g(1 − g)(1 − p′)π0,0 = RHS which

is a contradiction of the necessary condition. The necessary indifference condition for applying a
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mixed strategy at (1, 0) is violated at (1, 0) if all other customers follow A0+p. So A0+p is not an

equilibrium strategy. Using similar arguments, it can be shown that a similarly defined modified

strategy Ab+p is also not in equilibrium.

PROOF of Proposition 5:

Without loss of generality let server 1 be better than server 2 (i.e. v1 > v2) again. Given a strategy

(set of actions at every state by all customers) we write the steady state transition equations and

then solve for stationary probabilities. When server 2 provides higher valuation than server 1 we

can write the same steady state by suitably replacing g with 1− g.

Consider the class of strategies where customers mix between following the signal and following

the longer queue, along all the recurrent states in A0 strategy. In particular, at state (k, 0) (and

(0, k)) they follow their signal with probability pk (0 ≤ pk ≤ 1) or ignore their signal, and follow the

longer queue with probability 1− pk. Consequently, they join the longer queue 1 with probability

p′k = g + (1 − g)(1 − pk) and join queue 2 with probability 1 − p′k = pk(1 − g). Let πm,n be the

long-run stationary probabilities of the state (m,n) under some strategy when v1 > v2.

πk,0(λ+ µ) = πk−1,0λp
′
k + πk+1,0µ+ πk,1µ ∀ k ≥ 2

π1,0(λ+ µ) = π0,0λg + π2,0µ+ π1,1µ

Adding all the equations for k = 1, · · · ,∞ and assigning p′0 = g.

(λ+ µ)
∞∑
k=1

πk,0 = λ
∞∑
k=1

p′kπk,0 + µ
∞∑
k=2

πk,0 + µ
∞∑
k=1

πk,1 (19)

λ
∞∑
k=1

(1− p′k)πk,0 + µπ1,0 = λgπ0,0 + µ
∞∑
k=1

πk,1 (20)

The above equation becomes,

ρ
∞∑
k=1

(1− p′)πk,0 + π1,0 = ρgπ0,0 +
∞∑
k=1

πk,1 (21)

Similarly, at states (0, k) ∀ k, they join the longer queue 1 with probability p′′k = g + (1− g)pk

and join queue 2 with probability 1− p′′ = (1− pk)(1− g).

ρ

∞∑
k=1

(1− p′′)π0,k + π0,1 = ρ(1− g)π0,0 +
∞∑
k=1

π1,k (22)

From the steady state balance equations, we note that the probability transition matrix when

4



v1 > v2 is a transpose of the transition matrix when v2 > v1.

λ
∑∞

k=1(1− p′)πk,0 + µπ1,0

λ
∑∞

k=1(1− p′′)π0,k + µπ0,1
=

λgπ0,0 + µ
∑∞

k=1 πk,1
λ(1− g)π0,0 + µ

∑∞
k=1 π1,k

.

=
λgπ0,0 + µA

λ(1− g)π0,0 + µB
.

where A =
∑∞

k=1 πk,1 and B =
∑∞

k=1 π1,k.

For mixing to be in equilibrium we require,

ρ
∑∞

k=1(1− p′)πk,0 + π1,0

ρ
∑∞

k=1(1− p′′)π0,k + π0,1
=

ρgπ0,0 +
∑∞

k=1 πk,1
ρ(1− g)π0,0 +

∑∞
k=1 π1,k

. (23)

If customers mix at every indifferent state, we have l(k, 0) = g
1−g ∀k.

Consider the left-hand side of the equation λ
∑∞
k=1(1−p′)πk,0+µπ1,0

λ
∑∞
k=1(1−p′′)π0,k+µπ0,1

. Suppose π1,0

π0,1
> g

1−g . Then

the customers join the longer queue, and we are done. Suppose π1,0

π0,1
= g

1−g . We intend to show

that there is at least one state where customers would strictly prefer to deviate and always join the

longer queue. We have π1,0 = gρπ0,0 and π0,1 = (1− g)ρπ0,0. Hence, the equation (23) reduces to

ρ
∑∞

k=1(1− p′)πk,0
ρ
∑∞

k=1(1− p′′)π0,k
=
∑∞

k=1 πk,1∑∞
k=1 π1,k

. (24)

If π(k,0)
π(0,k) = g

1−g∀ k, then we have
∑
pkπ(k,0)∑
pkπ(k,0) = g

1−g for some constants pk. Using the result, 1− p′k =

pk(1− g) and 1− p′′k = pkg, we then have

ρ
∑∞

k=1(1− p′)πk,0
ρ
∑∞

k=1(1− p′′)π0,k
=

ρ
∑∞

k=1 pk(1− g)πk,0
ρ
∑∞

k=1 pkgπ0,k

=
1− g
g

∑∞
k=1 pkπk,0∑∞
k=1 pkπ0,k

=
1− g
g

(
g

1− g
).

From RHS of equation (24) we have, for g > 1/2,
∑∞
k=1 πk,1∑∞
k=1 π1,k

> g
1−g > 1, which would imply that

ρ
∑∞
k=1(1−p′)πk,0

ρ
∑∞
k=1(1−p′′)π0,k

> 1. Hence we would require that there exist at least some k such that πk,0
π0,k

> g
1−g .

Therefore, there is at least one state where customers deviate and join the longer queue.

PROOF of Proposition 6:

The proof to the first part of the proposition is similar to the Proof of Proposition 3 in the paper

where higher fixed queue difference threshold strategies are ruled out. Consider any threshold

strategy such that T0 ≥ 1. Note that when T0 ≥ 1 some interior states are recurrent. Writing the

steady balance equations for states on the outer arm, we have,

πk,0(λ+ µ) = πk−1,0λ+ πk+1,0µ+ πk,1µ ∀k ≥ T0 + 2.

πk,0(λ+ µ) = πk−1,0λg + πk+1,0µ+ πk,1µ ∀1 ≤ k ≤ T0 + 1.
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Adding the above equations for all values of k and writing a similar equation for all states (0, n)

for all n, we have the following equations below:

ρ(1− g)
T0∑
k=1

πk,0 + π1,0 = ρgπ0,0 +
∞∑
k=1

πk,1 (25)

ρg

T0∑
k=1

π0,k + π0,1 = ρ(1− g)π0,0 +
∞∑
k=1

π1,k (26)

Hence we have
∑T0
k=1 πk,0∑T0
k=1 π0,k

> g
1−g for any T0 ≥ 1. There is some n such that for some 1 ≤ n ≤ T0

we have πn,0
π0,n

> g
1−g . There is some state within the threshold at the outer arm, where the best

response of an arriving customer would be to NOT follow the signal if all other customers were to

follow the queue within the threshold.

For the second part of the proof, note that when T0 = 0, all the states (n1, n2) where n1 > 0

and n2 > 0 are transient for λ < µ. Only recurrent states are (n1, 0) and (0, n2) for any n1 ≥ 0

or n2 ≥ 0. When T0 = 0 the actions at all recurrent states are identical to the strategy A0. Due

to the various values that Tk could take for any k > 0, the strategies could be different only at

zero-probability (transient) states. This completes the proof.

PROOF of Proposition 8:

We consider the likelihood of two servers being in the market. Let F ∈ {0, 1, 2} be the number of

servers in the market. Let us examine the strategy A0 conditioning on the presence of two servers

in the market. We have to examine π(n1, 0|v1 > v2, F = 2) and π(n1, 0|v1 < v2, F = 2). Also let

P (F ) be the probability arriving customers see F servers in the market. Since customers arrive

according to a Poisson process PASTA property (Wolff 1982) applies. Given the equilibrium A0

and the customer arrival process, we can determine P (F = i|v1 > v2) = P (F = i|v1 < v2) provided

τ is generated from Φ(·) for all the servers in the market.

l(1, 0|F = 2) =
π(1, 0|v1 > v2, F = 2)
π(1, 0)(v2 > v1, F = 2)

=
π1(1, 0|F = 2)
π2(1, 0|F = 2)

=
π1(1, 0)P (F = 2|v1 > v2)
π2(1, 0)P (F = 2|v1 < v2)

=
g

1− g

Similarly, conditional likelihood properties for states l(k, 0|F = 2) = g
1−g ∀k and l(0, k|F = 2) = 1−g

g

∀k. This completes the proof that A0 is in equilibrium conditional on customers observing two

servers in the market.
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PROOF of Proposition 9: We aim to prove that A0 is an equilibrium strategy for multi-server

queues with each service provider havingN servers. As before, we calculate the long-run equilibrium

probabilities under the strategy of always following the longer queue. The customer follows the

signal at (n, n) ∀ n. At other states, she follows the longer queue. It is evident that states (n1, 0)

and (0, n2) with n1, n2 ≥ 0 will be recurrent states.

Calculating the steady state probabilities when v1 > v2, we get

π1 (n1, 0) =
g

n1!
ρn1K∀0 < n1 ≤ N.

=
g

N !Nn1−N ρ
n1K∀N < n1

π1 (0, n2) =
1− g
n2!

ρn2K∀0 < n2 ≤ N.

=
1− g

N !Nn2−N ρ
n2K∀N < n2

π1 (0, 0) = Kwhere K =

[
N−1∑
k=0

(Nρ)k

k!
+

(Nρ)N

N !
(1− ρ)−1

]−1

.

Similar expressions exist for π2 when (v2 > v1). Considering likelihood ratios we again obtain:

l (n1, n2) =


g

1−g n1 ≥ 1, n2 = 0

1 n1 = 0, n2 = 0
1−g
g n1 = 0, n2 ≥ 1

Following the signal at n1 = 0, n2 = 0 is an equilibrium action if 1−g
g ≤ l (n1, n2) ≤ g

1−g , which is

satisfied since 1
2 < g < 1.

Consider all recurrent states along the outer arms, (n1, 0) n1 > 0 we have l(n1, 0) = g
1−g , where

following the longer queue is consistent with the strategy A0. Similarly, the condition of following

the longest queue when n2 ≥ 1, n1 = 0 is also weakly satisfied. Therefore A0 continues to exist as

an equilibrium strategy even when the providers have N multiple servers each.

PROOF of Proposition 13 Part (i): It is straightforward to show A0 is not an equilibrium strategy

since lk0 = π1(k,0)
π2(k,0) = gρkF π1(0,0)

(1−g)ρkSπ2(0,0)
=
(

g
1−g

)
ρkF
ρkS

< g
1−g . Suppose the customers follow a strategy AB.

Writing the steady state equations for the states when v1 > v2, we have the following equations.

7



For k > 1,

(λ+ µ1 + µ2)πk+i,k = λgπk+i−1,k + λ(1− g)πk+i,k−1 + µ1πk+i+1,k + µ2πk+i,k+1 ∀ 0 < i ≤ B − 1

(λ+ µ1 + µ2)πk+i,k = λgπk+i−1,k + µ1πk+i+1,k + µ2πk+i,k+1 for i = B

(λ+ µ1 + µ2)πk+i,k = λgπk+i−1,k + µ1πk+i+1,k + µ2πk+i,k+1 for i = B + 1

(λ+ µ1 + µ2)πk+i,k = λgπk+i−1,k + µ1πk+i+1,k + µ2πk+i,k+1 for i > B + 1

(λ+ µ1)πi,0 = λgπi−1,0 + µ1πi+1,0 + µ2πi,1 ∀ 0 < i ≤ B + 1

(λ+ µ1)πi,0 = λgπi−1,0 + µ1πi+1,0 + µ2πi,1 for i > B + 1

In the next steps, we sum up the probabilities of all the states along the ith diagonal. As ρ2 ≈ 1

we have πi,0 → 0∀i. As the service rates are high, the process behaves asymptotically as a birth

and death process on both sides of the diagonal with each state being one of ‘diagonals’ (where ith

state is defined as sum of the states ∪k(k+ i, k)). For example, under A1, the process moves from

the main diagonal to the lower diagonal with birth rate (gλ+µ2) and death rate µ1. Similarly, the

process moves from the main diagonal to the upper adjacent diagonal with birth rate (1− g)λ+µ1

and death rate µ2. Therefore let us consider the asymptotic limiting expression for first upper and

first lower diagonals.

∞∑
k=0

πk+1,k =
(gλ+ µ2)

µ1

∞∑
k=0

πk,k

∞∑
k=0

πk,k+1 =
((1− g)λ+ µ1)

µ2

∞∑
k=0

πk,k

We have,∑∞
k=0 π

1
k+1,k∑∞

k=0 π
2
k+1,k

=

∑∞
k=0 π

1
k+1,k∑∞

k=0 π
1
k,k+1

=
(gλ+ µ2)

µ1

µ2

((1− g)λ+ µ1)
=

µ2
2(gρ2 + 1)

µ2
1((1− g)ρ1 + 1)

=
ρ2
1(gρ2 + 1)

ρ2
2((1− g)ρ1 + 1)

<
ρ2
1gρ2

ρ2
2(1− g)ρ1

since gρ2 > (1− g)ρ1 always.

=
ρ1g

ρ2(1− g)

<
g

(1− g)

Hence there is at least one state along (k + 1, k) such that
π1
k+1,k

π2
k+1,k

< g
1−g where the customers’ best

response is to follow their signal. So A1 cannot be in equilibrium. A similar argument can show

that any strategy AB for finite B > 1 is not in equilibrium by considering the asymptotic steady

state probabilities at the corresponding diagonal.
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Part (ii) When ρ1 ≈ 0, we have ρ1 << ρ2. Then at all states π(m,n) = 0 ∀m > 1. Also,

consider the likelihood ratios at (1, 0).

l00 =
π1(0, 0)
π2(0, 0)

= 1 Follow Signal

l10 ≈ ε <
(1− g)
g

Follow the shorter queue (or queue 2).

l0j >
g

1− g
Follow queue 1.
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