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Flexible Service Capacity:  

Optimal Investment and the Impact of Demand Correlation 

 

Abstract: We consider a firm that provides multiple services using both 

specialized and flexible capacity.  The problem is formulated as a two-stage 

single-period stochastic program.  The firm invests in capacity before the actual 

demand is known and optimally assigns capacity to customers when demand is 

realized.  Sample applications include a car-rental company’s use of mid-sized 

cars to satisfy unexpectedly high demand for compact cars and an airline’s use of 

business-class seats to satisfy economy-class demand.  We obtain an analytical 

solution for a particular case, when services may be upgraded by one class.  The 

simple form of the solution allows us to compare the optimal capacities explicitly 

with a solution that does not anticipate flexibility.  Given that demand follows a 

multivariate Normal distribution, we analytically characterize the effects of 

increasing demand correlation on the optimal solution.  For the case with two 

customer classes, the effects of demand correlation are intuitive: increasing 

correlation induces a shift from flexible to dedicated capacity.  When there are 

three or more classes, there are also adjustments to the resources not directly 

affected by the correlation change.  As correlation rises, these changes follow an 

alternating pattern (for example, if the optimal capacity of one resource rises, then 

the optimal capacity of the adjacent resource falls).  These results make precise 

conjectures based on numerical experiments that have existed in the literature for 

some time. 
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1. Introduction 

Consider a telecommunications company that must construct daily service assignments for its 

hardware technicians and must also, in the long run, determine the number of technicians to hire 

and train.  There are three major functions that the technicians perform.  They are, in order of 

increasing complexity, equipment installation, testing, and repair.  Technicians from the repair 

department are able to handle the other two jobs, those in the testing department can also 

accomplish installation, and members of the installation department are not yet cross-trained in 

any other job.  When constructing the daily schedule, if the company runs out of technicians in 

one department, it may try to borrow a specialist with expertise at the next highest level.  Due to 

union rules and employee preferences, borrowing from a department with skills two levels higher 

may not be feasible.  In the long run, this limited flexibility may be taken into account when 

specifying the number of technicians needed to staff each department. 

This paper considers such environments, in which customers may be upgraded to a higher 

level of service at no cost to the customer.  We consider the short-term assignment problem, 

when actual demand is known, as well as the long-term capacity decision in the face of uncertain 

demand.  This model applies to problems in which customers may not be aware of the upgrade 

(as in the hardware technician example, above), as well as service environments in which the 

customer experiences the upgrade directly.  Examples include commercial aviation (economy to 

business-class upgrades), time-shared executive jets (the use of larger, faster jets to substitute for 

smaller, slower aircraft, as described by Keskinocak, 1999) and the car rental industry 

(customers who request a compact car may be offered a mid-sized car). 

We formulate the problem as a one-period model (in Section 2, after describing the 

formulation, we will discuss the limitations of such a model for real-world service applications).  

The firm must commit to resource capacities at the beginning of the period, when demand is 
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uncertain but a distribution is known.  During the period the firm must assign available resources 

to realized demand.  We find, below, that significant benefits can be gained if the possibility of 

service substitution is accounted for at the time of capacity planning, rather than only at the time 

of service delivery.  We also find that the correlation structure of demand has a significant 

impact on the value of resource flexibility. 

There are two major streams of work in the Operations Management literature that have 

focused on the benefits of flexible capacity in the face of demand uncertainty.  We will 

characterize these as the capacity investment literature and the inventory literature.  The capacity 

investment literature is quite large, with strong connections to production economics and finance 

(options pricing).  Examples of work close to ours are Fine and Freund (1990), who also 

formulate a single-period capacity acquisition problem as a two-stage stochastic program.  While 

their formulation allows for an unlimited number of products, their analysis focuses on two 

products, two dedicated resources, one flexible resource, and a discrete demand distribution.  We 

assume that the demand follows a continuous distribution and that the firm has multiple flexible 

resources that accept customer upgrades.  Van Mieghem (1998) also focuses on a two-product 

firm and, with the assumption of continuous demand and capacity, he shows that the optimal 

capacities can be found by solving a multidimensional news-vendor problem.  Harrison and Van 

Mieghem (1999) examine the multi-period capacity problem with uncertain demand in each 

period and a cost to adjust capacity between periods.  Our environment is substantially simpler, 

with the advantage that the solution reduces to a relatively simple set of simultaneous equations.  

Finally, Jordan and Graves (1995) examine the benefits of process flexibility and demonstrate 

that limited flexibility, carefully configured, can be nearly as valuable as complete flexibility.  

Here we also consider a form of limited flexiblity, although we focus our efforts on finding the 

optimal resource capacities, while Jordan and Graves assumed that capacity is fixed.    

https://www.researchgate.net/publication/222495501_Multi-resource_investment_strategies_operational_hedging_under_demand_uncertainty_Eur_J_Oper_Res?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/37593712_Principles_on_the_benefits_of_manufacturing_process_flexibility?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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The related inventory literature is also quite voluminous, and we will only mention a few 

closely-related works here.  Good summaries can be found in Khouja (1999) and Bassok, 

Anapundi and Akella (1999, hereafter referred to as BAA).  The earliest work on inventory 

substitution is by McGillivray and Silver (1978) who compare cases with no substitution and 

complete substitution, and present a heuristic for finding optimal order-up-to levels with partial 

substitution.  Pasternak and Drezner (1991) examine the value of substitution in a two-product 

inventory system.  They derive optimality conditions similar to those presented below in Section 

3, although our approach is more concise and is extended to the general case with 'n' services and 

'n' resources.   Mathematically, the model presented in this paper is a special case of the model 

developed in BAA, 1999.  Our model was developed with the service application in mind, and in 

this paper we will continue to interpret its parameters in terms of the application described 

above.  However, with minor modifications, the following results apply to the inventory problem 

as well.  Gans and Zhou (1999), in a different setting, also describe the relationship between an 

inventory problem and a problem in staffing and capacity planning.  Finally, Rudi and Netessine 

(1999) consider a related problem where customers (rather than firm) decide how to substitute a 

product that is out of stock. 

The most important difference between our model and that of Van Mieghem (1998) and 

BAA is in the description of capacity flexibility.  Van Mieghem's formulation can be adapted to 

an arbitrary substitution structure, while BAA allow "full downward substitution", i.e. a 

customer can be served by any capacity of a higher, more expensive class.  Here we assume that 

substitution by only one level is profitable.  In many service environments this is a reasonable 

approximation of reality, for substitution by more than one class may dedicate a prohibitively 

expensive resource, such as a luxury car, to service generating little revenue, as from a customer 

only willing to pay for a subcompact.  Our assumption enables us to find simple expressions for 

https://www.researchgate.net/publication/238290733_Optimal_inventory_policies_for_substitutable_commodities_with_stochastic_demand?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/220244172_Centralized_and_Competitive_Inventory_Models_with_Demand_Substitution?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/220244172_Centralized_and_Competitive_Inventory_Models_with_Demand_Substitution?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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the first-order optimality conditions, to make explicit comparisons among solutions with and 

without considering flexibility, and to derive efficient methods for calculating the optimal 

solutions for problems with large numbers of products and services.  With a more general 

structure it is difficult to find solutions to problems with more than a few products.  For example, 

the solution method proposed by BAA requires the computation of nested integrals whose 

number "increases exponentially with the number of products." (pg. 637). 

Our single-upgrade structure, as well as the assumption that we make later in the paper, that 

demand follows a multivariate Normal distribution, also allows us to characterize the effect of 

changes in demand correlation on the optimal solution.  To our knowledge, there are no previous 

analytical results describing these effects on flexible capacity decisions.  Eppen (1979) discusses 

the impact of correlation on the centralization decision for a single-product inventory system.  

Eynan (1996) studies the effect of demand correlation on the benefits of component 

commonality.  Using a bivariate uniform distribution with correlation, he derives algebraic 

expressions for the optimal inventory levels of specialized and shared components.  These 

expressions are quite complex, and Eynan uses numerical experiments to examine the impact of 

correlation.  Fine and Freund (1990) demonstrate numerically that the value of flexible capacity 

can disappear in the presence of perfect correlation.  Van Mieghem (1998) shows analytically 

that, given perfect correlation, it may yet be optimal to invest in flexible capacity if there are 

differences in the profit margins of the products.  Van Mieghem (1997) describes numerical 

evidence that the optimal level of dedicated (flexible) capacity increases (decreases) as 

correlation increases.   

Our analytical results demonstrate that when there are just two types of service, an increase 

in correlation will indeed lead to a shift from flexible to dedicated capacity.  This shift may also 

occur as both types of capacity rise or fall, a phenomenon not described in the literature.  When 

https://www.researchgate.net/publication/227447144_Investment_Strategies_for_Flexible_Resources?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/227446187_Optimal_Investment_in_Product-Flexible_Manufacturing_Capacity?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/233469760_The_Impact_of_Demands'_Correlation_on_the_Effectiveness_of_Component_Commonality?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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there are three or more classes, there are also adjustments in the resources not directly affected 

by the correlation change.  The adjustments follow an alternating pattern, with every other 

resource rising, and the remaining resources falling. 

We present the general model in the following section, while in Section 3 we restrict the 

model to the single-upgrade case and derive simple optimality conditions.  Section 4 describes 

the impact of the demand correlation structure on the optimal capacity decision.  Section 5 

suggests algorithms for solving the problem numerically and provides numerical examples based 

on parameters gleaned from the car rental industry.  Finally, in Section 6 we summarize the 

results and describe directions for the future research. 

2. Model formulation 

Consider a company that provides services indexed by  i = 1,…,n, for which each service has an 

associated revenue per unit (e. g., billing rate) pi and a penalty cost per unit for not fulfilling the 

demand for this service Ci.  To provide these services, the company invests in resources  j = 

1,…,n.  Service i can be delivered by resource i, but it can also be delivered by any resource j ≤ i, 

as in BAA.  The amount of capacity of resource j purchased by the firm is xj, with a cost paid per 

unit of capacity Fj.  This cost is incurred whether the resource is used or not.  In addition to this 

fixed or purchase cost, there is a variable or usage cost Vj, which is incurred if the unit of 

capacity is used. 

After the capacity investment decision is made, the demand is observed.  Demands for 

services {Di} have realizations {di} and a joint probability density function  fD(•) (we denote 

vectors by underlined letters (D, x) and assume that all demand levels, capacities, and allocations 

are continuous variables).  Our objective is to find the optimal capacity for each resource in order 

to maximize expected profit under the assumption that once demand {di} is observed, we 

allocate optimally the existing resources to fulfill demand.  Let yij, i = 1,…,n, j = 1,…,n represent 
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the amount of service i delivered by resource j once demand is observed.  The problem 

formulation is 
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where ijiij CVp +−=α is the contribution margin when resource j handles a demand i. 

Although the firm will often have a choice of which resource to use to provide a service we 

assume that the customers either do not perceive a difference in the service based on the resource 

or if they do perceive a difference they do not attempt to game the system.  An example of such 

gaming would be when a customer asks for a compact car when he actually wants a midsized 

car, knowing that it is likely that he will be upgraded while paying the price of a compact car. 

As mentioned in Section 1, similar models have appeared in the literature (Fine and Freund 

(1990) for capacity investment decisions, Hsu and Bassok (1999) for production management 

with random yields, and BAA (1999) for inventory order-up-to policies).  Our model is closest to 

BAA in mathematical structure but is different in interpretation.  Our variables are capacity 

decisions; theirs are order-up-to levels.  Our costs, Fj,Vj, and Cj represent capacity costs and 

contribution margins from use of a unit of the capacity; their  costs are inventory purchase, 

holding, and lost sales costs.    

Our general focus is on the long-term capacity choice, and we seek insights into the value of 

resource flexibility.  For analytical tractibility we choose a simple, single-period model to 

accomplish short-term scheduling.  Implicitly, our model assumes that the capacity (Stage 1) 

https://www.researchgate.net/publication/227446187_Optimal_Investment_in_Product-Flexible_Manufacturing_Capacity?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
https://www.researchgate.net/publication/227446187_Optimal_Investment_in_Product-Flexible_Manufacturing_Capacity?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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decision is fixed for some period of time, and that the Stage 2 problem is solved repeatedly (e.g., 

day after day) within that period.  Note that the fixed costs, Fj, must be appropriately scaled by 

prorating the total fixed costs over the period.   In addition, the distribution of demand fD(•) is 

derived from the distributions of daily demands.  For example, fD(•) may incorporate both 'peak' 

and 'lull' demand days, with the probability of each demand scenario determined by that 

scenario's relative frequency within the long-term period.  Since in most service applications the 

demands from various customer classes may move together, or in opposite directions, it is 

particularly important to understand the effects of demand correlation on the overall capacity 

decision.  This discussion motivates our efforts in Section 4, below. 

This single-period model has a few potential pitfalls, and we discuss these shortcomings 

here.  First, the single period model does not capture situations in which customers order a rental 

car, for example, for several days.  Such multi-day rentals create a correlation in demand among 

days that is not captured by our model.  Our model is an approximation, and we suspect that if 

the percentage of multi-day rentals is small then the effect of the multi-day orders on the optimal 

capacity is small.  Second, we assume that all demand in a period is observed before resources 

are allocated to it.  In reality orders would come in more continuously and resources would need 

to be allocated to them continuously.  Thus, our model gives an optimistic estimate of the value 

of a given set of resources.  There is a great deal of research in the revenue management 

literature that discusses the problem of allocating a given capacity as demand is observed.  The 

dynamic capacity investment and allocation problem is beyond the scope of this paper, but is a 

promising area for research. 

Third, given multiple periods and continuous arrivals, one might consider a queuing model 

to represent this situation.  Again we feel this approach, although possibly more accurate, would 

limit our ability to derive analytic results.  Green (1985) and Shumsky (1999) must resort to 
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numerical procedures and approximations for steady-state performance analysis of queueing 

systems with both general and flexible servers, while Harrison and Lopez (1999) use a heavy 

traffic analysis for the dynamic scheduling problem.   

Fourth, the assumption that all customers are willing to upgrade to a higher service level 

may not be true in reality (if, for instance, a person has a strong preference for a smaller car due 

to the fuel consumption).  However, our model can be altered to incorporate a parameter 

designating the proportion of customers willing to upgrade, although in the following text, to 

keep the number of parameters manageable, we shall assume that all customers will accept 

upgrades.  Finally, the continuity assumption makes it difficult to apply this model to problems 

of small size where every unit of capacity can have a significant impact on profits.  In practice, 

however, such problems may be solved by complete enumeration. 

We end this section by noting that our formulation is solvable at least in theory because the 

problem is concave. 

Proposition 1. The objective function Π(x) is jointly concave in capacity variables x.   

Proof:  Observe that function Θ(d,x) is jointly concave in d and x  since d and x determine the 

right-hand-side of a linear program.  Further, the expectation of a concave function, e.g., 

ED(Θ(D,x)), is concave in x and hence Π(x) is concave as it is a sum of concave and linear 

functions.  

On the other hand, if arbitrary upgrades are allowed the problem is still quite complex.  Thus 

in the next section we limit ourselves to single level upgrades and a further restriction of the 

costs that allow the stage 2 transportation problem to be solved explicitly. 

3. Single Level Upgrades 

We now make the following additional assumptions about the structure of the problem.  We 

restrict the firm to using only resources i and i-1 for service i by restricting the parameters of the 
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problem as follows: 

 (I)   Vn ≤ Vn-1 ≤ ··· ≤ V2 ≤ V1 

(II)  (pn+Cn) ≤ (pn-1+Cn-1) ≤  ··· ≤ (p2+C2) ≤ (p1+C1) (2) 

(III) αij ≥ 0 for all j ≤ i ≤ j+1 and αij < 0 otherwise 

Although these assumptions may seem restrictive we claim that many practical problems would 

fall in this category.  For example in rental cars, it is fairly common to see customers upgraded 

for lack of capacity of the desired car type but rarely do companies upgrade more than one level, 

the implication of constraint III.  Rental cars have a natural ordering where Assumptions I and II 

apply, namely that as you move up in quality, the sizes of revenues, lost-sales costs, and variable 

costs all increase. These assumptions allow us to solve the inner “transportation problem” so as 

to obtain analytical expressions for the objective function without constraints.  Furthermore, 

under these assumptions there exists a very efficient procedure for computing solutions. 

Proposition 2.  Suppose that there are n service classes and n resource classes with one level 

upgrades and where conditions (2) apply.  The stage 2 problem can be solved to optimality by a 

greedy algorithm as follows: 

 
.1,,1        )    min

,,1                                      min

11,1 −=∀=

=∀=
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+++ ni)d-,(x)x-((dy

ni)d,(xy

iiiiii

iiii
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K
 

Note that the allocation method described by the algorithm is very natural: first allocate each 

customer to her requested class and then upgrade the rest if there remains excess capacity.  

Hoffman (1966) identified conditions under which the transportation problem is solvable by the 

greedy algorithm, and conditions (2) meet his criteria.  BAA provide additional references and 

demonstrate that the result applies to their generalization of our formulation (recall that their 

formulation allows multi-level upgrades).   

In Figure 1 we show the transportation problem, including the demand realizations for n 
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services on the left, and the capacities for the n resources on the right.  The yij indicate the 

allocation of services to resources and are the flows on these arcs.  
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Figure 1: Transportation problem for n types of service and n resources. 

From Proposition 2 we can see that the Stage 1 objective function is: 
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where we define αn+1,n ≡ 0.  Note that )()( xx Π≡Γ if the demand distribution has positive 

support.  For the remainder of the paper we will focus on )(xΓ rather than )(xΠ , and in Section 

4 we will use )(xΓ as an approximation for )(xΠ when the demand distribution is Normal and the 

coefficients of variation for all demand classes are small (σi << µi for all i).   

Now note that the second expectation within each term of (3) represents the benefits of 

the flexibility in an explicit form.  Since the objective function is concave, the first order 

conditions are necessary and sufficient.  They are 

0 =),()()(
1212111211111

1

FxxDDxDPxDP
x

x
−+≥+≤+≥=

∂
Γ∂ αα  (4) 

12for                     0 ),(              

),()()(

111,

11,1

,...,n-i FxxDDxDP

xxDDxDPxDP
x
x

iiiiiiiii

iiiiiiiiiiii
i

==−+≤+≥−

+≥+≤+≥=
∂
Γ∂

−−−

+++

α

αα
 (5) 



11 

 

0 = ),()()(
111, nnnnnnnnnnnnn

n

FxxDDxDPxDP
x

x
−+≤+≥−≥=

∂
Γ∂

−−−αα  (6) 

BAA derive conditions for their more general case by a systematic, logical argument.  For 

our case the greedy algorithm results in an analytic expression for the objective, (3), which in 

turn allows us to derive (4)-(6) by differentiating (3).   From (4)-(6) it is easy to compute the 

second partial derivatives. Specifically, 0/)(2 =∂∂Γ∂ ji xxx for j > i+1 and j < i, and for all 

i=1...n-1, 

 ∫ +−=
∂∂
Γ∂

∞−
+++

+
+

i

iii

x

iiDDDii
ii

dtxxtf
xx
x ),()(

1,,1
1

2

1
α  (7) 

These derivatives are non-positive, thus proving that the profit function, Γ(x), is sub-modular in x 

(see Topkis, 1978).  The submodularity of the objective function shows that an increase in one of 

the variables (capacity) decreases the returns due to increasing the other variable.  Hence, once 

flexibility is introduced, the two resources become substitutes. 

Recall that, without accounting for flexibility, a solution can be obtained by using the 

classical news-vendor formula: 

 
ii

iiiNV
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F
xDP

α
α −

=≤ )(    for i = 1,…,n (8) 

We can rearrange the first order conditions for our problem to obtain 
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 (11) 

where xi
* shall denote the optimal capacity decision for the case with flexibility.  Observe that 

the first terms of the expressions on the right of (9) and (11) are the news-vendor ratios.  One 

https://www.researchgate.net/publication/239665683_'Minimizing_A_Submodular_Function_on_A_Lattice'?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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would expect that the optimal capacity levels should be different from the news-vendor 

quantities when accounting for flexibility.  This is indeed the case, as shown by (9) and (11).  

Moreover, the relationship between the optimal capacity levels and the news-vendor quantities is 

quite specific: 

Proposition 3.  x1
*≥ x1

NV, xn
*≤ xn

NV. 

Proof:  This follows immediately from equations (9) and (11) above and the sign on the second 

probability terms.  

Note that we cannot conclude that a similar inequality holds for xi
*  for i = 2,…, n-1.  The first 

terms on the right of (10) are the news-vendor ratios.  However, it is no longer obvious if each 

optimal capacity xi
*is more or less than the news-vendor quantity for i = 2, …, n-1, since the 

right-hand side of (10) involves both a positive and a negative term and it is not clear which one 

dominates.  We provide an example later where the optimal quantity of a “middle” resource rises 

above and below the news-vendor quantity as a parameter changes.  

Finally, Equations (9)-(11) allow us to derive simple bounds on the optimal capacity choice.  

Given α10 = αn+1,n ≡ 0, then we have 

Proposition 4.    .,...,1for    )(
,1

*

1,

1, ni
F

xDP
F

iiii

iii
ii

iiii

iiiii =
−
−

≤≤≤
−
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−

αα
α

αα
αα

 

Proof: To prove the upper bound note that 
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Therefore, ( ) ( )./)( ,1
*

iiiiiiiii FxDP +−−≤≤ ααα   The proof for the lower bound is similar.  

Note that when i=1, the lower bound is the news-vendor ratio, while when i=n the upper bound 

is the news-vendor ratio.  The numerical experiments in Section 5 will demonstrate that these 
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bounds are quite loose for many problem parameters (see, for example, Figure 4).    

4. Correlation and Capacity 

In a variety of business environments it is important to understand the impact of correlation on 

the optimal capacity choice.  For example, a car rental company may experience a heavy load 

throughout the week due to business travelers who tend to rent mid-sized and luxury cars.  

During the weekend the demand shifts to leisure travelers who, on average, prefer either smaller, 

cheaper vehicles or minivans (Carroll and Grimes, 1995).  When daily demands are aggregated 

into a general distribution, demand among certain cars classes will be negatively correlated.  This 

pattern will be altered during holidays and special events when demand for all car classes is high.  

What effect does the correlation structure of demand have on the optimal capacity decision? 

Van Mieghem (1997) examines the relative benefits of dedicated and flexible capacity for 

the production of two goods.  Numerical experiments using a demand distribution with positive 

support over an elliptical region demonstrate that "the optimal levels of dedicated capacity 

increase in a concave manner as correlation increases, while the optimal level of flexible 

capacity decreases in a convex manner." (Van Mieghem, 1997, pg. 12).   Is this experimental 

result true, in general?  And what can we say about the n×n case?  In this section we present our 

main results about how the optimal capacities vary when one correlation, e.g., ρi,i+1, increases.  

For the 2×2 case, Van Mieghem's experiments reveal just one of three possible results: as 

correlation rises, both types of capacity may rise, both may fall, or dedicated capacity may rise 

while flexible capacity falls.  However, given any of the three cases, there will be a shift from 

flexible to dedicated capacity.  

Initially, we will make no assumptions about the distribution of demand.  In fact, in Section 

4.1 we show that our objective function, as defined in (3), is concave for any demand 

distribution, including those with negative support. In Section 4.2 we restrict our attention to the 

https://www.researchgate.net/publication/247823535_Evolutionary_Change_in_Product_Management_Experiences_in_the_Car_Rental_Industry?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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multivariate normal distribution, and in Section 4.3 we further limit the range of possible 

parameters.  Each assumption allows us to characterize more strongly the impact of a rise in 

correlation on the optimal capacity decision. 

4.1 Impact of Correlation for an Arbitrary Demand Distribution 

In Section 4.2 we will assume that the products follow the multivariate Normal demand 

distribution.  However, in order to make this statement precise we must first define what we 

mean when we say that demand can take on negative values, which would be meaningless as 

demands, and render model (1) infeasible. 

If µ >> σ then truncating the distribution and giving it a probability mass at 0 (or 

distributing that mass over the rest of the distribution) is a common approach used by 

practitioners.  However, this method would complicate our analysis and would exclude the 

application of the substantial mathematical machinery that has been developed for the Normal 

distribution. 

Thus, our approach is to approximate the true optimum, Π(x) evaluated using a truncated 

distribution, with the expression Γ(x) given by (3) but with an arbitrary distribution for demand.  

From now on it is understood that Γ(x) denotes an approximation to the optimal Π(x) in cases 

where demand has negative support. We have confirmed, through both analytical results and 

numerical experiments, that this approximation is a good one when demand is normally 

distributed and when the coefficients of demand variation are reasonably small (i.e. σi/µi  < 0.5  

for all i).  We will confirm that the expression Γ(x) expressed as (3) is concave for any 

distribution, but first we state and prove two auxiliary results. 

Lemma 1. Let H(Γ) be the Hessian of Γ(x).  For any demand distribution, H(Γ) ≤ 0 and all 

elements on the diagonal of H(Γ) are strictly negative. 

Proof: see Appendix A. 
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Lemma 2. For any demand distribution H(Γ) is strictly diagonally dominant. 

Proof: see Appendix A. 

Proposition 5. The objective function Γ(x) as expressed in (3) is concave for any demand 

distribution. 

Proof:  A sufficient condition for strict concavity of a function is that its Hessian is negative 

definite.  According to Horn and Johnson (1996, Corollary 7.2.3) the sufficient condition of 

negative definiteness is that all diagonal elements are strictly negative (Lemma 1) and strict 

diagonal dominance (Lemma 2).  Hence, Γ(x) is strictly concave.  

We are interested in how the optimal capacity levels change as a single coefficient of 

correlation changes.  It is understandable that a complete characterization will depend on the 

demand distribution.  There are, however, some results that we would expect to hold for any 

demand distribution.  For example, it is conceivable that a change in the coefficient of 

correlation ρi-1,i will have the largest effect on the capacities xi-1 and xi and that the effect will 

diminish as we move away (in terms of the ordering 1,…,n) from i and i-1.  We might also 

expect that the direction of capacity change (i.e., decrease or increase) as correlation rises will be 

reversed for neighboring capacities.  This result is suggested by the submodularity of the 

objective function.  In other words, an increase in the capacity xk should lead to a decrease in the 

capacity xk-1.  This change will in turn lead to an increase in the capacity xk-2 and so on.  The next 

proposition verifies that both of these hypotheses are correct. 

Let *x  be an optimal capacity vector, given correlation vector ρ .  In the following 

proposition we will examine the effect of a change in ρi-1,i, while the other elements of ρ are held 

constant.  We will see that *x can be seen as a function of the correlation coefficient, e.g., 

)( ,1
*

iifx −= ρ . 
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Proposition 6. Let sgn(•) indicate the sign of its argument. Then for any demand distribution 

and any i=2,…,n: 

(i) 
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In Figure 2 we illustrate Proposition 6 using an example with six resources.  Arrows 

show the direction of change for each optimal capacity, and the size of each arrow indicates the 

relative magnitude of change.  Note that the directions of change for capacities 3 and 4 are 

picked arbitrarily at this point, since Proposition 6 does not say anything about changes in xi-1 

and xi.  We address this issue in the next section. 

ρ34

d1

d2

d3

d4

d5

d6

x1

x2

x3

x4

x5

x6  

Figure 2. Direction and magnitude of the change in optimal capacity. 

Proof:  To simplify the notation, let ρρ ≡− ii ,1 . We will prove statements (i) and (iii), while the 

proofs of statements (ii) and (iv) are analogous.  Consider the first order conditions, (4) through 
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(6) above.  Let us denote the expressions on the left with the function ( ) ,:, 1 nn RRx →Ω +ρ  

where x  is the vector of capacities and ρ  is a single correlation coefficient.  This function is 

continuous and is equal to zero at the optimal capacity vector 0x for a given 0ρ : ( ) .0, 00 =Ω ρx   

Note that 0x is defined implicitly by 0ρ  through function Ω.  

We will use the implicit function theorem (IFT) to characterize this relationship. First we 

make sure that all the relevant conditions are satisfied.  The function Ω has continuous partial 

derivatives  / and / ρiji x Ω∂∂Ω∂ in a neighborhood of ( )00 , ρx , and the Jacobian matrix of 

partial derivatives of Ω with respect to ( )xJx Ω  , , is invertible when evaluated at ( )00 , ρx .  The 

IFT states that under these conditions, there is an open set 1RV ⊂ containing 0ρ  and a unique 

function nRVf →: such that ( ) ( )( ) Vfxf ∈=Ω= ρρρρ  allfor  0,   ,00 .  In other words, 

)(* ρfx = . 

We are interested in the derivative of the function f.  Let ( ) ( )ρρ ΩJJ f  and  denote the 

vectors of partial derivatives with respect to ρ  of functions f and Ω, respectively.  The IFT states 

that 

 ( ) ( )[ ] ).(1 ρρ Ω
−

Ω−= JxJJ f  (12) 

We left-multiply this expression by the matrix ( )[ ]xJ Ω  and note that ( )[ ]xJΩ  is a Hessian matrix 

of the objective function Γ(x).  Therefore: 

 ( ) ( ) )()( ρρ Ω−=Γ JJxH f . (13) 

We will denote the (ij)-th entry of the Hessian by jiij xxH ∂∂Γ∂= /2 .  Since H is symmetric 

Hij=Hji.  Equation (13) in a more explicit form is 
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The remainder of the proof is by mathematical induction.  To simplify the proof we will modify 

the result (i) by making it stronger. Instead of proving that ρρ ∂∂<∂∂ − // **
1 kk xx  we will 

demonstrate that 

 
ρρ ∂

∂
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∂
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*

1,1

,1
*

1 k

kk

kkk x
H
Hx

for k=2,…,i-1. (14) 

Since, according to Lemma 2, 1,1,1 −−− < kkkk HH , the result (i) will immediately follow. First, we 

verify that conjectures (14) and (iii) hold for i=2.  Consider the equality obtained by multiplying 

the first row of the Hessian: 
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It immediately follows that (14) holds and hence ρρ ∂∂>∂∂ // *
1

*
2 xx .  Further, recall from 

Lemma 1 that 011 <H  and 012 <H .  Hence, [ ] [ ]ρρ ∂∂−=∂∂ /sgn/sgn *
2

*
1 xx . 

 Next, we assume that (14) and (iii) hold for some k, k=3,…,i-2 and use this assumption to 

prove that the same is true for k+1.  Consider the equality obtained by multiplying the k-th row 

of the Hessian: 

 0
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First, re-write (16): 
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By diagonal dominance, kkkk HH <− ,1 , and by the induction assumption, ρρ ∂∂<∂ − // **
1 kk xx . It 

then follows that ρρ ∂∂<∂ −− // **
1,1 kkkkkk xHxH  and hence [ ] [ ]ρρ ∂∂−=∂∂ + /sgn/sgn **

1 kk xx  

meaning that (iii) holds for all k.  Next, re-arrange (16) again using induction assumptions (iii) 

and (14): 
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Finally, using induction assumption (14), 
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Hence, (14) holds and therefore (i) holds as well.  

4.2 Impact of Correlation for the Normal Demand Distribution 

Proposition 6 describes how the elements of the set of optimal capacities ),...,,( *
1

*
2

*
1 −ixxx  change 

relative to each other as ii ,1−ρ  changes, and it does the same for the set ),...,,( **
1

*
nii xxx + .  

However, Proposition 6 does not describe the relationship between *
1−ix  and *

ix .  To characterize 

this relationship, we will assume that demand is normally distributed.  This assumption allows us 

to use a standard result from probability theory, Slepian's inequality (see Tong, 1980, pg. 10).  

Slepian's inequality states that the probability ),( 2211 aDaDP ≤≤ is increasing (and hence 

probability ),( 2211 aDaDP ≥≤  is decreasing) in the coefficient of correlation for any fixed a1 

and a2.  Note that this result, and thus the results for the remainder of this section, apply to any 

elliptically contoured distribution, a set of distributions that include the multivariate normal and t 

distributions (Tong, 1980, Theorem 4.3.6). 

We will first characterize the impact of correlation on the function ),( ,1 iix −Ω ρ , the first 

order conditions defined previously in (4)-(6).  Later, we will use this characterization together 
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with the implicit function theorem to obtain a final characterization of the change in the optimal 

capacity levels with the change in correlation. 

Lemma 3. Let iΩ represent the ith element of ),( ,1 iix −Ω ρ .  If demand is Normally distributed, 

then 0// ,1,11 <∂Ω∂−∂Ω∂ −−− iiiiii ρρ . 

Proof:  Again, let ρρ ≡− ii ,1 .  From the first order conditions (4)-(6), ραρ ∂∂=∂Ω∂ −− // 1,11 Piii , 

where ),( 11111 iiiiii xxDDxDPP +≥+≤= −−−− .  In addition, ραρ ∂∂−=∂Ω∂ − // 2,1 Piii , 

where ),( 112 iiiiii xxDDxDPP +≤+≥= −− . 

Therefore, 

 0
),( 11

,1
2

,1
1

,1
1 <

∂
≥≤∂

=
∂
∂

+
∂
∂

=
∂
Ω∂

−
∂
Ω∂ −−

−−−
−

ρ
α

ρ
α

ρ
α

ρρ
iiii

iiiiii
ii xDxDPPP

 

where the last inequality follows directly from the Slepian’s inequality (Tong, 1980).  

Lemma 3 leads to an intuitive result: as ii ,1−ρ  rises there will be a shift from more to less 

expensive capacity.  When there are two classes of customers and services, the relatively 

expensive capacity, x1, is flexible while the relatively inexpensive capacity, x2, is specialized.  

Therefore, in the 2×2 case, as 12ρ  rises there will be a shift from flexible to specialized capacity. 

 Proposition 7. Given that demand is normally distributed, 
ii

i

ii

i xx

,1

*

,1

*
1

−−

−

∂
∂

<
∂
∂

ρρ
. 

Figure 3 displays this result by showing the direction of change in capacity, given a 

change in ii ,1−ρ .  The proposition states that the shift will lie somewhere in the halfplane, in 

regions I, II, or III.  Note that the total amount of capacity may either rise or fall.   
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iiix ,1
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iiix ,1
*

1 / −− ∂∂ ρ

 
Figure 3: Change in capacity, given an increase in ρ. 

A shift to region I indicates a decline in the relatively expensive capacity while 

inexpensive capacity rises.  A shift to region II or region III indicates a rise or decline, 

respectively, in both types of capacity.  However, in region II we add more inexpensive capacity 

than expensive capacity, and in region III we subtract more expensive capacity than inexpensive 

capacity.   

While the Proposition does not rule out a shift to regions II or III, we can do so under 

particular parametric assumptions (see the next section).  In addition, our numerical experiments 

demonstrate that while a shift to region II or III is possible, a shift to region I is the norm. 

Proof of Proposition 7.  As in Proposition 6, let ρρ ≡− ii ,1 , let )(* ρfx =  be the optimal 

capacity vector that maximizes Γ(x), and let )( 00 ρfx =  be the optimal capacity vector for a 

given .0ρ  We will examine the impact on **
1  and ii xx − as ρ  moves away from 0ρ .  To this end, 

define the function 

( ) ( ) ( )εδεδεδεδ ,,,...,,,,,...,, ***
1

00
1

*
2

*
1 xxxxxxxg niiii Γ≡+++−Γ= +−−  

where δ represents the optimal decrease below 0
1−ix and the optimal increase above 0

ix with a 

change from 0ρ to an arbitrary ρ , and ε represents the optimal orthogonal shift that takes both 

capacities in the same direction. 
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As in Proposition 6, we will use the implicit function theorem (IFT) and Slepian’s 

inequality to show that δ rises as ρ rises.  To apply the IFT, we note that the first-order condition 

0),(/ =≡∂∂ ρδδ Kg  implicitly defines δ as a function of ρ.  Therefore, 

 
δρδρδρ

δ
∂∂

∂








∂
∂

−=
∂
∂









∂
∂

−=
∂
∂

−− ggKK 21

2

21

 (18) 

The first of the two terms is a second-order directional derivative of a concave function, so that 

.0/ 22 <∂∂ δg   To find the sign of the second term, δρ∂∂∂ /2 g , we first note that the derivative 

of the function g with respect to δ is 
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From first order conditions (4) through (6) and Lemma 3, 
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Therefore, .0/ >ρ∂δ∂   We complete the proof by linking a change in δ with changes in 

*
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4.3 Impact of Correlation for Specified Parameters 

Thus far we have not made any assumptions about parameters of the demand distribution.  It is, 

however, possible to somewhat strengthen the results of Proposition 7 if appropriate restrictions 

are imposed on the parameters of the distribution.  In fact, given certain parameter restrictions, it 

is possible to eliminate region II or region III of Figure 3 from the feasible set of capacity 

changes.  In what follows, we will show that if **
11 iiii xx +<+ −− µµ  (the firm maintains a high 

service level), then region III may be ruled out.  In that case, a rise in correlation cannot reduce 
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the optimal levels of both types of capacity.  On the other hand, if **
11 iiii xx +>+ −− µµ  (the firm 

maintains a low service level) then region II may be ruled out, and both types of capacity cannot 

increase.  In each case we will require moderate restrictions on the correlation coefficient to 

obtain our results. 

Proposition 8. Suppose demand is Normally distributed. Then, 

(i) if **
11 iiii xx +<+ −− µµ and either 1,1 / −− −< iiii σσρ  or iiii σσρ /1,1 −− −> , then 0/ ,1

* >∂∂ − iiix ρ , 

(ii) if **
11 iiii xx +>+ −− µµ and either iiii σσρ /1,1 −− −<  or 1,1 / −− −> iiii σσρ , then 0/ ,1

*
1 <∂∂ −− iiix ρ . 

Proof: See Appendix B. 

Note that the assumptions on the correlation coefficients in Proposition 8 are not very 

restrictive.  The conditions ii ,1−ρ  > -σi-1/σi in (i) and ii ,1−ρ  > -σi/σi-1 in (ii) are true for a variety of 

situations.  They both hold if ii ,1−ρ  ≥ 0  or if σi+1=σi or if σi+1 is close to σi and ii ,1−ρ  is not too 

negative.  However, we will later verify through numerical experiments that it is not possible to 

further restrict the direction of the capacity shift.  We will demonstrate that shifts to any of the 

regions are possible, given appropriate parameters. 

5. Algorithms and Numerical Experiments 

Here we describe an algorithm for finding the optimal capacities .*
ix  Let us denote the inverse of 

the cumulative distribution function by Ψi
-1(•) and define the function )(xiη as: 
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After developing their more general model, BAA propose a successive approximation algorithm 

to find the optimal capacities.  Their algorithm may be applied to our problem, but convergence 

can be slow, particularly when demand classes are strongly negatively correlated.  To increase 

the rate of convergence we employ a standard technique called Steffenson extrapolation (Ortega 
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and Rheinboldt 1970, pg. 198).  This method estimates the derivative of convergence using the 

three successive iterations.  In what follows, η(x) will denote a vector (η1(x),…,ηn(x)). 

Algorithm 
Step 1:  xi=xi

NV for all i, 

Step 2:  for all i: 
[ ]

iii

ii
ii xxx

xx
xx

+−

−
−←

)(*2))((
)())((

))((
ηηη
ηηη

ηη , repeat until convergence. 

While conducting the following numerical experiment, we found that this algorithm converges 

within 5-7 iterations for the majority of problem parameters.  Note that there are other methods 

for determining the optimal capacities (see, for example, the discrete programming approach 

used by Fine and Freund, 1990), and we did not measure the performance of our algorithm 

against these alternatives. 

We now consider a particular example, an automobile rental company with multiple classes 

of demand and capacity.  First, assume that there are only two classes of demand (i=1,2) and two 

types of capacity (j=1 can serve either demand class while j=2 can serve only demand class 2).  

Table 1 presents the parameters for the first set of numerical experiments; note that demand class 

2 has a larger mean and standard deviation than class 1.   

Demand and 
capacity classes 

Revenue 
(pi)  

Variable 
cost (Vj) 

Penalty 
cost (Ci) 

Marginal 
contribution (αij)

Fixed cost 
(Fj) 

µi σi 

i=1, j=1 $42 $18 $12 $36 $20 120 50 
i=2, j=2 $35 $10 $7 $32 $18 200 80 
i=2, j=1 $35 $18 $7 $24    

Table 1. Parameters for car rental example – two car classes. 

We assume that demand follows a bivariate Normal distribution.  To characterize the 

benefits of flexibility, we compare our optimal profits with profits generated by a firm that 

allows service substitution in the second stage (when demand is realized) but does not consider 

this flexibility in the first stage (when the capacity decision is made).  In other words, we 

compare our results to the alternative in which the capacity is chosen at the news-vendor 

quantity, and the transportation problem is solved to optimally allocate this capacity. 

https://www.researchgate.net/publication/227446187_Optimal_Investment_in_Product-Flexible_Manufacturing_Capacity?el=1_x_8&enrichId=rgreq-241c881c535b75e6d2e9cf109e7aaa0c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NDEyMjtBUzoxMDI2MjE4ODQ5NzcxNTZAMTQwMTQ3ODM3MjQ4OQ==
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Figure 4 shows how the optimal capacity decision varies with the coefficient of correlation, 

ρ.  As has been shown in Proposition 3, the optimal capacity *
2x  is always below the news-

vendor quantity and *
1x  is always above the news-vendor quantity.  Also, in accordance with 

Proposition 7, *
2x  is increasing and *

1x  is decreasing in the coefficient of correlation.   

The effect of varying the coefficient of correlation on the relative profitability of our 

procedure is shown in Figure 5.  There is a significant increase in profitability when we account 

for flexibility in the capacity decision stage, as compared to the objective function value given 

the news-vendor solution.  The profit increase is 20% when the demand classes are not 

correlated, and relative profits increase as correlation declines.  
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 Figure 4: Resource Capacities            Figure 5: Increase in profit 
          as a function of correlation                    as a function of the correlation 

 
To demonstrate that, as correlation rises, a decrease in capacity 1−ix  and increase in 

capacity ix  is not the only possibility, we offer two examples.  First, we construct a situation in 

which ii  xx and 1−  increase (region II in Figure 3).  As we demonstrated analytically, this may 

occur when 21
*
2

*
1 µµ +>+ xx , a condition that can be satisfied when fixed costs are low. We will 

therefore use F1 = 8 and F2 = 7 (all the other parameters shown in Table 1 are held constant).  
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The results are presented in Figure 6. 

Now, we construct an example in which ii  xx and 1−  decrease (region III in Figure 3).  Since 

this can be achieved only when 21
*
2

*
1 µµ +<+ xx , we shall increase fixed costs to F1 = 30 and F2 

= 25, and leave all other parameters unchanged.  The result is presented in Figure 7.  Observe 

that in both cases, non-intuitive responses by the optimal capacities occur only when correlation 

is close to -1. 
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Figure 6: Both optimal capacities   Figure 7: Both optimal capacities 
                 may rise with correlation          may fall with correlation 

 

We now demonstrate that, as noted in section 3, the relationship between the optimal 

capacity levels and the news-vendor quantities is not obvious when there are more than two 

demand classes.  In Table 2 we introduce a third car class.   

Demand and 
capacity classes 

Revenue 
(pi)  

Variable 
cost (Vj)  

Penalty 
cost (Ci)  

Marginal 
contribution (αij) 

Fixed 
cost (Fj) 

µi σi 

i=1, j=1 $70 $40 $7 $37 $20 120 50 
i=2, j=2 $50 $30 $5 $25 $15 165 80 
i=3, j=3 $35 $20 $3 $18 $12 220 100 
i=2, j=1 $50 $40 $5 $15    
i=3, j=2 $35 $30 $3 $8    

Table 2. Parameters for the automobile rental example – three car classes. 

We again assume that demand classes follow a multivariate Normal distribution with correlation 
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coefficients ρ23=0 and ρ12∈(-1,1).  The resulting optimal capacities are presented in Figure 8. As 

has been noted earlier, the optimal capacity for class 2 can be more than, or less than, the 

corresponding news-vendor quantity.  As predicted by Proposition 6, *
3x rises as *

2x  falls, and 

*
3x falls as *

2x  rises. 
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Figure 8: Optimal capacities for three resources 
              as a function of correlation coefficient ρ12 

 

Finally, we examine the impact of demand variability on the optimal capacities.  Additional 

numerical experiments have demonstrated that as the standard deviation of demand for type i 

increases the optimal capacity for type i-1 increases.  This observation is consistent with a result 

of Van Mieghem (1998), that as the level of uncertainty in the demand distribution increases, the 

optimal level of the flexible resource rises. 

6. Conclusions and Future Research 

By restricting service upgrades to at most one class, we have found a relatively simple method to 

determine the optimal capacity of flexible resources.  While we have described the problem in 

terms of service delivery (automobile rental, flexible staffing), the method is also applicable to 
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inventory problems in which inventory may be used to satisfy multiple demand streams (see 

BAA).  We compared our solution with the traditional news-vendor solution, and we found that a 

strategy in which higher (lower) capacity of more flexible (specialized) resources is an optimal 

strategy when there are two service classes.  However, we found that this does not necessarily 

hold in the general case.  We have also determined that a change in correlation between adjacent 

demand streams has an 'alternating' impact on the optimal capacity, for capacities of adjacent 

resources move in opposite directions.  We then developed an efficient algorithm to find the 

optimal capacities and demonstrated these results with numerical experiments. 

It is plausible to assume that our results can be generalized to probability distributions other 

than the Normal distribution and its elliptical cousins, and that similar results may be found for 

demand-capacity structures with upgrades to multiple levels.  The results may also be employed 

within a dynamic program to solve this problem in a multi-period setting.  This extension is 

particularly important for applications such as automobile rentals and technician staffing, in 

which resources may be consumed for more than one period. 

Similar techniques may also be successfully applied to additional revenue management 

problems.  For example,  Karaesmen and Van Ryzin (1998) present a problem formulation for 

determining optimal overbooking levels that is similar to ours.  However, their formulation 

allows a more general structure for substitution.  It may be possible to derive analytical results, 

as well as additional intuition, by restricting substitution to one-level upgrades. 

Appendix A 

Proof of Lemma 1: We need to show that the second order partial derivatives of the objective 

function are all non-positive. 
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where the last inequality is a result of assumption (iii) of (2).  

Proof of Lemma 2: In our case diagonal dominance means: 
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After writing out terms and employing manipulations similar to equations (A.4) through 

(A.7), we find that 
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Appendix B 

To simplify the notation, let ρρ ≡− ii ,1 . Before proving Proposition 8, we will first prove the 

following lemma: 

Lemma 4. Suppose demand is Normally distributed. Then: 

(i) if **
11 iiii xx +<+ −− µµ  and either 1/ −−< ii σσρ  or ii σσρ /1−−> , then 0/2 <∂∂ ρP , 

(ii) if **
11 iiii xx +>+ −− µµ  and either ii σσρ /1−−<  or 1/ −−> ii σσρ , then 0/1 <∂∂ ρP . 

Proof: We will prove (i) only, and the proof of (ii) is analogous.  We will now show that, 

given **
11 iiii xx +<+ −− µµ  and ii σσρ /1−−> , 0/2 <∂∂ ρP .  We will assume that i=2, and therefore 

121, ρρρ ≡≡ −ii  (the proof is identical for all i = 3…n).  Our challenge is to apply Slepian's 

inequality to the probability term of interest, P2= ),( 212122 xxDDxDP +≤+≥ . 

The joint density function of D1 and D2 is the bivariate Normal distribution with mean 

(µ1,µ2), correlation coefficient ρ. Define random variables  
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The pair (Z1 , Z2) is distributed according to the standard bivariate Normal distribution with 

correlation coefficient 2
221

2
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We examine the total derivative: 
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By the Chain Rule, the second term of (B.3) is  
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where ( )ρ2a is taken as a constant in the final derivative of (B.4).  By taking derivatives and 

applying some algebra we find that: 
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In addition, from Slepian's inequality, 
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Given the assumptions of the lemma, the sufficient conditions (B.5) are true, so that expression 

(B.3) is strictly negative.  Therefore, the expression ),( 2121222 xxDDxDPP +≤+≥=  is decreasing 

in the coefficient of correlation ρ .  Further, one can verify that 0/1 >∂∂ ρP  for 1/ −−< ii σσρ .  

Since 0// 21 <∂∂+∂∂ ρρ PP  (see the proof of Lemma 3), it follows that 0/2 <∂∂ ρP  holds also for 

1/ −−< ii σσρ .  This completes the proof of Lemma 4.  

Proof of Proposition 8: We will prove statement (i) only and statement (ii) can be proven in a 

similar manner.  Using equation (13) in the proof of Proposition 6, Lemma 3, and Lemma 4 we 

write: 
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The rest of the proof is by contradiction.  Assume 0/* <∂∂ ρix . Then, by Propositions 7, 

0/*
1 <∂∂ − ρix .  Finally, using Proposition 6 and by invoking diagonal dominance (Lemma 2), it is 

straightforward to verify that (B.7) can not hold. This is a contradiction and hence 0/* >∂∂ ρix .  
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